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Circular RNAs (circRNAs) participate in development of malignancies through its active role as a “miRNA sponge.” Their roles in
type 1 diabetes mellitus (T1DM) pathogenesis are elusive. Here, the important role of circRNAs in T1DM was explored. circRNA
profiling was performed for isolated CD4+ T cells from blood of T1DM and healthy volunteers. There were 257 differentially
expressed circRNAs. Only three upregulated DEcircRNAs (hsa_circ_0000324, hsa_circ_0001853, and hsa_circ_0068797) were
consistent with the GEO database. Through KEGG analyses, it was found that the three DEcircRNAs were associated with 11
miRNAs and 8 immune-related target genes (mRNA). Further analysis found that four miRNAs, two circRNAs, and four
mRNAs were associated with nine circRNA-miRNA-mRNA networks. This confirmed the requirements of sponge
mechanisms. The qRT-PCR analysis revealed that circRNA000324/miRNA675-5p/MAPK14 and circRNA000324/miRNA-675-
5p/SYK may be potential mechanisms in regulation of differentiation and proliferation of CD4+ T cell in patients with T1DM.
Therefore, targeting circRNA to regulate cellular immune responses by regulating CD4+ T cell differentiation may be a new
strategy for the treatment of T1DM.

1. Introduction

Type 1 diabetes mellitus is a condition in which pancreatic
beta cells are destroyed by autoreactive T cells and insulin
dysfunction [1]. Although combined antibody testing such
as GADA, IA-A2, and ZnT8A has been recently performed
for diagnosis of T1DM, there are patients with clinical char-
acteristics of T1DM but negative antibodies [2]. Further, the
pathogenesis of T1DM autoimmunity has not been well
evaluated. Therefore, biomarkers with the potential to pre-
dict T1DM development should be investigated.

Differentiation and proliferation of autoreactive T cells
(CD4+ T) is key in T1DM. Naïve CD4+ T cells can differen-
tiate to T helper cells under stimulation by different cyto-
kines. Biased differentiation of naïve CD4+ T into Th1 in
the early stages contributes to T1DM development; subse-
quently, Th17 is induced to maintain the progression of
T1DM. Impaired differentiation or survival of Th2 and
nTregs has also been attributed to this pathological process
[3–8]. It eventually activates cytotoxic T lymphocytes

(CTLs) to attack β cells. The significance of different CD4+
T subgroups in T1DM development has been reported.

Circular RNAs (circRNAs) are crucial regulators in var-
ious biological and pathological processes, including devel-
opment, apoptosis, cell differentiation, proliferation, and
inflammation [9]. They are largely resistant to breakdown
by exonuclease RNase [10]. circRNAs have key roles as
endogenous miRNA sponges or miRNA reservoirs because
some circRNAs possess miRNA response elements (MREs)
that allows them to exert their inhibitory effects on and reg-
ulate target gene expressions; circRNAs function as endoge-
nous miRNA sponges or reservoirs [11]. Moreover,
circRNAs also act as transcription regulators to influence
gene expression [12, 13]. Apart from their high resistance
to RNase activities [10, 14], circRNAs are believed to be
potential biomarkers which show organ and cell-specific
expression patterns. Moreover, they are present in serum,
plasma, blood, and in exosomes, hence are potential bio-
markers for liquid biopsy [13, 15, 16]. Alterations in expres-
sions of many circRNAs have been associated with various
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effects in autoimmune disease onset and progression [17].
Therefore, circRNAs can regulate immune functions and
harbor important implications for developing therapeutic
drugs [18]. A recent study involving peripheral blood mono-
nuclear cells (PMBCs) revealed that overexpressed
circPPM1F enhances M1 macrophage activation and pro-
motes pancreatic islet injury in children with T1DM [19].
Therefore, the appearance of circRNAs that respond to dif-
ferentiation and proliferation processes of CD4+ T cells is
assumed to be the essential inducer for regulation of self-
tolerance in T1DM.

We identified DEcircRNAs in CD4+ T cells between
T1DM and normal samples by whole-transcriptome
sequencing and comparisons with GEO datasets. Various
bioinformatics tools were used to systematically investigate
the circRNA-miRNA-mRNA interactions. The functions
and associated pathways were determined through GO and
KEGG pathway analyses. Then, we validated a few genes
that regulate CD4+ T cell differentiation and proliferation
by qRT-PCR. Our findings form the basis for identification
of innovative diagnostic and drugs for T1DM.

2. Materials and Methods

2.1. Study Participants. The CD4+ T cells were isolated and
extracted from diagnosed in-hospital T1DM patients on
hypoglycemic therapy at the endocrinology and metabolic
department of the health examination center at the affiliated
hospital of Qingdao University. The control participants
were healthy volunteers at the hospital. Participants were
recruited from July 2019 to December 2020 (Table S1). All
patients were diagnosed by clinical manifestation, islet
autoantibodies (GADAb and IAA-Ab), and islet function
(insulin and C peptide) assessments by at least two
experienced specialists. All control participants were from
the same geographic areas and had no diabetes or family
history of diabetes. All potential participants with a history
or family history of autoimmune disease were not included.
All participants had no acute or chronic infectious diseases
and were without trauma, surgery, and stress, within at
least one month before blood collection. The informed
consent document was obtained from patients or their
families while the study was approved by the Ethics
Committee of the Affiliated Hospital of Qingdao University
and conducted in accordance with the principles of the
Declaration of Helsinki.

2.2. Isolation and Extraction of CD4+ T Cells. The CD4+ T
cells were isolated from peripheral venous blood samples
under EDTA anticoagulation conditions. Briefly, fresh antic-
oagulated blood samples were diluted with the same volume
of PBS (Solarbio). The diluted blood was spread on the
human lymphocyte separation solution (Solarbio) to form
a layered interface. It was centrifuged at room temperature
(RT) for 30min at 1000g and after centrifugation until strat-
ification was formed. The white membrane layers between
the plasma layer and separation solution layer were aspirated
into 15mL centrifuge tubes, centrifuged at 250g for 10min
after which white membrane layer cells were washed thrice

using PBS. The supernatants were discarded, and cells
counted for subsequent use.

After centrifugation at 300g for 10min, the supernatants
were completely aspirated. Cell pellets were resuspended in
80μL buffer (1 × 107 cells), mixed with 20μL CD4 microbe-
ads (Miltenyi Biotec) and incubated at 4°C for 15 minutes.
Cells were washed using a buffer (auto-MACS Rinsing Solu-
tion: MACSBSA Stock Solution = 20 : 1) at 300g for 10
minutes and resuspended in 500μL washing buffer. The
MS column was placed in the mini-MACS separator and
rinsed using 500μL buffer after which the cell suspension
was introduced into the column. Unlabeled cells that passed
through the column were collected after which the column
was washed thrice using 500μL buffer per time. The column
was removed from the separator and placed on enzyme-free
EP tube, and the magnetically labeled cells immediately
flushed out using 1mL buffer by firmly pushing the plunger
into the column (all the products/reagents were purchased
from Miltenyi Biotec). The CD4+ T cells were isolated on
the same day of sample collection, immediately placed in liq-
uid nitrogen and stored at −80°C.

2.3. RNA Preparation. To isolate RNA, the CD4+ T cells
were treated with 2mL TRIzol® reagent (Thermo Fisher Sci-
entific) and then with 200μL chloroform (Merck KGaA).
This was followed by vortexing for 15 sec, incubation at RT
for 5min, and centrifugation at 12,000g for 15min at 4°C.
We then collected the upper aqueous phase into a fresh tube
and added 400μL isopropyl alcohol (Merck KGaA) to pre-
cipitate RNA. After mixing, it was allowed to stand 5min
at RT before centrifugation at 12,000g for 15min at 4°C.
The pellet was mixed with 1mL 75% EtOH (Merck KGaA)
and then span at 12,000g for 10min at 4°C. This was
followed by removal of EtOH and recentrifugation at the
same conditions. The pellet was finally dried in air and then
suspended in 30μL molecular grade H2O and treated with
DNase reagent. The RNA clean-up was performed by stan-
dard EtOH precipitation.

2.4. Expression Profiling of RNA Microarray. RNA microar-
ray analysis was conducted by the Beijing CNKINGBIO Bio-
technology Corporation. Whole-transcriptome circRNA
sequencing data from the two groups were acquired using
the Illumina Hiseq2500 platform. Total RNA from CD4+
T cells of T1DM patients (n = 3, each consisted of a mixture
of CD4+ T cells from six patients) and age-matched healthy
controls (n = 1, mixture of CD4+ T cells from six controls)
were extracted, purified, amplified, and labeled with a Low
Input Quick Amp WT Labeling Kit. Labeled cRNAs were
purified using the RNeasy mini kit. Each slide was hybrid-
ized with 1.65μg Cy3-labeled cRNA for 17 hours using a
gene expression hybridization kit and scanned with an Agi-
lent microarray scanner using default settings. Data were
extracted using the feature extraction software 10.7 (Agilent
Technologies, Santa Clara, CA, US). The Limma package in
R and quantile algorithm were used to normalize the raw
data. Overall, DEcircRNAs were analyzed with cutoff fold
changes ≥ 2.
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2.5. Bioinformatics Analysis and Target Prediction. The RNA
microarray analysis was performed at the Beijing CNKING-
BIO Biotechnology Corporation. Whole-transcriptome cir-
cRNA sequencing data were acquired from the two groups
by the Illumina Hiseq2500 platform. Total RNA from CD4
+ T cells of T1DM patients (n = 3, each consisted of a mix-
ture of CD4+ T cells from 6 patients) and age-matched
healthy controls (n = 1, mixture of CD4+ T cells from 6 con-
trols) were extracted, purified, amplified, and labeled with a
Low Input Quick Amp WT Labeling Kit. After labeling, the
cRNA samples were treated with the RNeasy mini kit
reagent to purify them. The gene expression hybridization
kit was employed to hybridize the slides using 1.65μg Cy3-
labeled cRNA for 17 h. The slides were analyzed with an Agi-
lent microarray scanner under default settings, and the
results were obtained with the feature extraction software
10.7 (Agilent Technologies, Santa Clara, CA, US). Raw data
were normalized by the quantile algorithm and Limma
package in R. Overall, we analyzed DEcircRNAs with cutoff
fold changes ≥ 2.

2.6. qRT-PCR Validation. Only the DEcircRNAs, target
miRNAs, and mRNAs that met the requirements of the
sponge mechanism were validated. Their expressions were
evaluated by the qRT-PCR assay using SYBR® Premix Ex
Taq™ II (Takara, Japan) on a Roche 480 Real-Time PCR
System. The qRT-PCR conditions consisted of an initial
denaturation step of 2min at 95°C, followed by 35 cycles of
15 s at 95°C, 10 s at 58°C, and 20 s at 72°C with fluorescence
reads during extension. Melting curves (Tm) of amplicons
were analyzed at 60–95°C with 0.5°C increments every 5 s.
GAPDH was the internal control for mRNAs and circRNAs
while U6 was the internal control for miRNAs. The 2− ΔΔCT

method was conducted to analyze the PCR results. Primer
sequences for qRT-PCR are shown in Table 1. Total RNAs
extracted from CD4+ T cells of two groups (n = 30 vs. 15,
T1DM vs. control) were used for validation.

2.7. Statistical Analysis. Normally distributed data were com-
pared using the unpaired Student’s t-test. p ≤ 0:05 was set as

the threshold for statistical significance. The Pearson’s correla-
tion and linear regression were used to determine correlations.
The SPSS v.19.0 and GraphPad Prism 7.0 software were used
for analyses. Data are presented as mean ± SEM.

3. Results

3.1. Differentially Expressed circRNAs. Based on the filtra-
tion screening criteria (fold changes ≥ 2:0), it was found
that there were 261 (35 upregulated, 222 downregulated,
and 4 regulated in different directions among groups)
DEcircRNAs in CD4+ T blood cells of T1DM patients.
A total of 257 DEcircRNAs were screened for further anal-
ysis. There are 8 groups of microarray data from PBMCs
of patients with T1DM and healthy volunteers in the
GEO database (GSE133225), including 4 for patients with
T1DM (GSM3902728, GSM3902729, GSM3902730, and
GSM3902731) and 4 for normal samples (GSM3902724,
GSM3902725, GSM3902726, and GSM39027). Samples
GSM3902728 and GSM3902724 were excluded from the
study because of poor reproducibility. Finally, 3 T1DM and
3 standardized normal sample data were obtained for identi-
fying circRNAs (Figure 1(a)). Genes of samples with similar
biological functions were clustered into one cluster. Compared
to controls, circRNAs with p ≤ 0:05 were identified as signifi-
cantly DEcircRNAs. After hierarchical clustering of these sam-
ples and their genes, there were 3182 DEcircRNAs (1365
downregulated and 1817 upregulated) between patients with
T1DM and healthy controls in this database (Figure 1(b)).
Intersection of 257 DEcircRNAs in our microarray data
and 3182 circRNAs from the GEO database revealed 3 DEc-
ircRNAs (hsa_circ_0000324, hsa_circ_0001853, and hsa_
circ_0068797) that were significantly upregulated in both
GEO databases (p < 0:05) (Figure 2) and our circRNA
sequencing data (fold change, FC ≥ 2) as compared with the
healthy controls.

3.2. Prediction of Target miRNAs for DEcircRNAs. To inves-
tigate the potential miRNAs, DEmiRNAs were obtained
from the GEO database (GSE133217) based on the previously

Table 1: Primers for qRT-PCR.

RNA ID Primer type Primer sequence

hsa_circ_0000324
Forward CGGCAGGTTGGGACTTAGAT

Reverse GGTGTGTGCTGTGGGATAAG

hsa-miR-675-5p
Forward CGACTCCACGACACGCACT

Reverse AGGGCCCACAGTGTCGTAT

MAPK14
Forward CCCGAGCGTTACCAGAACC

Reverse TCGCATGAATGATGGACTGAAAT

SYK
Forward CATGGAAAAATCTCTCGGGAAGA

Reverse GTCGATGCGATAGTGCAGCA

GAPDH
Forward GGAGCGAGATCCCTCCAAAAT

Reverse GGCTGTTGTCATACTTCTCATGG

U6
Forward AACGCTTCACGAATTTGCGT

Reverse CTCGCTTCGGCAGCACA
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Figure 1: The sample clustering diagram (a) and expression profiles of circRNAs (b) and target mRNAs (c) between T1DM and control in
GEO datasets GSE133225. T1DM: GSM3902729-31; control: GSM3902725-27; red strip: high relative expression; blue strip: low relative
expression.
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described analysis strategy. The PBMCs were obtained to per-
form the data of miRNAs, including 3 about the patients with
T1DM (GSM3902466, GSM3902467, and GSM3902468) and
3 on the normal samples (GSM3902464, GSM3902465, and
GSM3902466). The screening criteria (p < 0:05) revealed that

126 miRNAs were significant DEmiRNAs (Figure 2). A total
of 261 miRNA targets for the three DEcircRNAs were pre-
dicted using the sequence binding algorithm in the TargetScan
6.1 software. In this study, three upregulated DEcircRNAs in
CD4+ T cells were linked to the regulation of their networks
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Figure 2: Three DEcircRNAs and their expression levels in peripheral blood mononuclear cells from T1DM patients in GEO datasets. The
expression levels of hsa_circ_0000324, hsa_circ_0001853, and hsa_circ_0068797 were significantly upregulated in PBMCs from T1DM
patients compared with healthy controls (p values < 0.05), as determined by RNA-seq.
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by acting as miRNA sponges. Analysis of hsa_circ_000324,
hsa_circ_0001853, and hsa_circ_0068797 revealed that these
circRNAs separately bound to more than 80 miRNAs (84,
88, and 89, Figures 3 and 4) and hence supporting our previ-
ous hypothesis. Only 11 differentially expressed miRNAs
which were possibly binding to the three DEcircRNAs were
also included in the 261 target miRNAs (Figure 5).

3.3. Prediction of Target mRNAs for miRNAs. Only 56497
mRNAs in three or more of these databases were selected.
The target mRNAs were compared with the 2349 DEmR-
NAs from the GEO database (GSE133225) (Figure 6). Our
findings showed that there were 542 target mRNAs by inter-
section. Further analysis of gene interactions, which defined
the “Homo sapiens” species with the minimum required
interaction score as 0.4, showed that only 198 mRNAs were
involved in the PPI network (Figure 7). The top 18 mRNAs,

with interactional genes > 7 (degree ≥ 7), were identified as
the key genes.

3.4. GO and KEGG Pathway Enrichment Analyses. Further,
GO and KEGG analyses were carried out to determine the
associated functions and pathways. Notably, 542 enriched
genes were identified. Figure 8(a) indicates that ficolin-1-
rich granule lumen (GO: 1904813), ficolin-1-rich granule
(GO: 0101002), ubiquitin ligase complex (GO: 0000151),
and late endosome membrane (GO: 0031902) were the most
enriched cellular components. For the molecular function,
protein domain specific binding (GO: 0019904), interferon
receptor activity (GO: 0004904), kinase binding (GO:
0019900) and cytokine receptor activity (GO: 0004896). The
most enriched biological process terms were related to protein
homooligomerization (GO: 0051260), T cell selection (GO:
0045058), regulation of cytokine-mediated signaling pathway
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Figure 3: The expression profiles of miRNAs between T1DM and control in GEO datasets GSE133217. T1DM: GSM3902466-68; control:
GSM3902462-64; red strip: high relative expression; blue strip: low relative expression.
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Figure 4: circRNA-miRNA network. Cytoscape was used to generate a circRNA-miRNA coexpression network. Node indicates the number
of miRNA, indirectly representing circRNA function. Red round: circRNA; blue box: mRNA or miRNA: hsa_circ_0000324, hsa_circ_
0001853, and hsa_circ_0068797 bind to 84, 88, and 89 miRNAs, respectively.
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(GO: 0001959), and production of molecular mediators
involved in inflammatory responses (GO: 0002532).

In the KEGG analysis, 542 genes were enriched in 39
pathways. Among them, the osteoclast differentiation, Toll-
like receptor, NF-kappa B, and Th1 as well as Th2 cell differ-
entiation signaling pathways were the most enriched. The
top 30 enriched pathways are shown in an enriched scatter
diagram (Figure 8(b)).

To identify the key immune-related genes in T1DM and
establish concise and effective networks, we excluded

mRNAs that were not responsive to immune mechanisms
based on literature and findings from GO and KEGG path-
way analyses. Finally, 8 key mRNAs (MAPK14, SYK,
CD86, ATM, TLR6, TRAF2, IL2RB, and CD3E) were
selected as they were highly involved in immune-related
functions and signaling pathways.

3.5. Prediction of circRNA-miRNA-mRNA Interaction and
Network Visualization. According to the spongy mechanism
theory, the upregulated circRNA can lead to downregulation
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Figure 8: GO enrichment analysis (a) and KEGG enrichment analysis (b) for the significant functions of 542 predicted target mRNAs
(p < 0:05).

10 BioMed Research International



hsa_circ_0068797

Interacts with

Interacts with
Interacts with

Interacts with

Interacts with

Interacts with

Interacts with

Interacts with

Interacts with

hsa-miR-675-5P

hsa-miR-3152-3P

hsa_circ_0000324

MAPK14

TLR6

Interacts with

Interacts with
Interacts with

Interacts with

Interacts with

Interacts with

Interacts with
Interacts with

Interacts with

hsa-miR-6071

hsa-miR-609

CD86

SYK

(a)

Figure 9: Continued.

11BioMed Research International



of miRNA and upregulated expressions of mRNA [20].
Notably, as shown in Figure 5, only four downregulated tar-
get miRNAs (hsa-miR-3152-3p, hsa-miR-6071, hsa-miR-
609, and hsa-miR-675-5p) were used to construct the
circRNA-miRNA-mRNA interaction network. Prediction
of circRNA-miRNA interactions and networks showed only
two DEcircRNAs (hsa_circ_0000324 and hsa_circ_0068797)
that interacted with these four miRNAs. The miRNA-
mRNA interaction prediction between these four target
miRNAs and 8 immune-related key mRNAs shows that only
four mRNAs (MAPK14, SYK, CD86, and TLR6) interacted
with these miRNAs. Therefore, a total of eight network path-
ways constructed by two circRNAs (hsa_circ_0000324 and
hsa_circ_0068797), four miRNAs (hsa-miR-3152-3p, hsa-
miR-6071, hsa-miR-609, andhsa-miR-675-5p), and four

mRNAs (MAPK14, SYK, CD86, andTLR6) were predicted
(Figure 9(a)). All the ncRNAs and mRNAs in the eight path-
ways were validated through qRT-PCR. The result of this
study showed that two circRNAs (MAPK14 and SYK) were
significantly upregulated, and only one miRNA (hsa-miR-
675-5p) was significantly downregulated, as compared with
the controls. Finally, only the hsa_circ_0000324/miR-675-
5p/MAPK14 and hsa_circ_0000324/miR-675-5p/SYK net-
works were successfully validated and conformed to the
sponge mechanism principle (Figure 9(b)).

4. Discussion

circRNAs are new transcriptional and translational regula-
tors of genes [21, 22]. Data have shown that ncRNAs play
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Figure 9: circRNA-miRNA-mRNA network (a) and validation of the expression of hsa_circ_0000324, hsa-miR-675-5p, MAPK14, and SYK
in CD4+ T cells from T1DM patients and controls.
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important roles in β cell functions, inflammation, complica-
tions, and diagnosis of T1DM [23–28]. Elsewhere, it was
revealed that miR-210, miR-21, and miR-126 levels were
deregulated in plasma and urinary samples of patients with
T1DM [29]. circRNAs are widely distributed in different tis-
sues, blood, and urine as well as saliva where their extrac-
tions are easy to conduct [22]. Because of their tissue and
cell specificity, high-throughput sequencing of circRNAs
using specific tissues and especially certain cells is the basis
of accurate research, and circRNAs in body fluids are poten-
tial diagnostic markers [30, 31]. For instance, the biomarker
potential of circRNAs can be increased if they were found in
exosomes, as has been evidenced in solid tumors. Some cir-
cular RNAs have been shown to possess biomarker potential
in colorectal cancer [32, 33].

Recently, circRNAs were reported to modulate immuno-
cyte processes through epigenetic modifications [34–37].
Similar to other types of autoimmune diseases, T1DM is also
caused by overactivation of certain immunocytes that may
be regulated by circRNA. The current studies investigated
the roles of circRNAs on T1DM [19, 31, 38, 39]. Two of
the studies assessed human plasma circRNAs [31, 36], while
one study evaluated the circRNAs of human α, β, and exo-
crine cells [31]. In addition, the other two studies on immu-
nocytes were carried out on PBMCs from children with
diabetes [19, 39, 40]. It has been found that circPPM1F pro-
motes apoptosis of pancreatic β-cells and exacerbated pan-
creatic injury by promoting activation of M1 macrophage
in vitro [19]. However, the underlying mechanisms remain
unknown, and hence, there is a need for further studies to
explore and elucidate it.

We investigated circRNA profiles in CD4+ T cells from
T1DM patients. To improve the accuracy of bioinformatics
analysis, DEcircRNA was combined with target miRNAs or
mRNAs and GEO datasets for the three steps. Given the sig-
nificance of CD4+ T cells in T1DM pathogenesis, it was pos-
tulated that the genes involved in the differentiation and
proliferation of CD4+ T cells could be the causative genes.

To determine their functions, GO enrichment and
KEGG analyses were carried out for the mRNAs. We found
that the genes were presumably involved in interferon recep-
tor activity, cytokine receptor activity, T cell selection, and
regulation of cytokine-mediated signaling pathways. The
results of KEGG pathway analysis showed that target
mRNAs were associated with Th1 and Th2 cell differentia-
tion pathways, NF-kappa B, and Toll-like receptor pathways.
Further, the results of the prediction analysis found only two
upregulated DEcircRNAs and four downregulated miRNAs,
which targeted four genes. This was in accordance with the
principle of sponge mechanism and coexisted in the
circRNA-miRNA-mRNA coexpression network. After
qRT-PCR validation, the present study found the two regu-
latory networks, (hsa_circ_0000324/miR-675-5p/MAPK14
and hsa_circ_0000324/miR-675-5p/SYK) which may corre-
late with differentiation and proliferation of CD4+ T cells
in T1DM.

Collectively, the aforementioned data suggest that cir-
cRNAs are deregulated in PBMCs from T1DM patients.
Further, it was evident that the hsa_circ_0000324/miR-

675-5p/MAPK14 or hsa_circ_0000324/miR-675-5p/SYK
network could provide a novel way to understand the dis-
ease processes and hence the prevention of T1DM. Target-
ing the circRNA signaling pathway to regulate CD4+ T
cell functions may be an effective approach for diagnosis
and treatment of T1DM. However, there is a need for fur-
ther studies; more studies should be performed to verify
the predicted results. Nevertheless, we demonstrate that
circRNAs may be important in T1DM and hence provide
a new way to investigate the circRNA functions in patients
with diabetes.

This study has some limitations. First, the study evalu-
ated circRNAs in CD4+ T cells from patients with T1DM,
which differs from the sample used in the GEO dataset
(PBMCs). The difference in samples may have caused the
deviations in expressions of gene between the data. The
CD4+ T cells from PBMCs directly reflect the immune char-
acteristics of T1DM. Second, each group of samples in our
circRNA sequence assay contained CD4+ T cells from six
patients and six controls. Further, no replicate was done in
control, and miRNA and mRNA microarrays were not
simultaneously performed. Third, this study was based on
in vitro and bioinformatic analyses for preliminary valida-
tion to identify multiple potential genes. There is a need
for carrying out an ongoing functional experiment and
in vivo assays to confirm our findings.

5. Conclusions

In conclusion, the present results reveal the circRNA profile
of T1DM using circRNA-seq analyses. Further, a series of
bioinformatics predicational analysis and verification exper-
iments found the targeting miRNAs and mRNAs of DEc-
ircRNAs. Our findings provided new evidence on the
underlying mechanisms of circRNAs and related circRNA-
miRNA-mRNA networks in T1DM.
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