
sensors

Article

Automatic Cephalometric Landmark Identification System
Based on the Multi-Stage Convolutional Neural Networks with
CBCT Combination Images

Min-Jung Kim 1, Yi Liu 2, Song Hee Oh 3 , Hyo-Won Ahn 1 , Seong-Hun Kim 1,* and Gerald Nelson 4

����������
�������

Citation: Kim, M.-J.; Liu, Y.; Oh, S.H.;

Ahn, H.-W.; Kim, S.-H.; Nelson, G.

Automatic Cephalometric Landmark

Identification System Based on the

Multi-Stage Convolutional Neural

Networks with CBCT Combination

Images. Sensors 2021, 21, 505.

https://doi.org/10.3390/s21020505

Received: 12 December 2020

Accepted: 8 January 2021

Published: 12 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Orthodontics, Graduate School, Kyung Hee University, Seoul 02447, Korea;
grace206@naver.com (M.-J.K.); hyowon@khu.ac.kr (H.-W.A.)

2 Department of Orthodontics, Peking University School of Stomatology, Beijing 100081, China;
lyortho@163.com

3 Department of Oral and Maxillofacial Radiology, Graduate School, Kyung Hee University, Seoul 02447, Korea;
ohbbang50@gmail.com

4 Division of Orthodontics, Department of Orofacial Science, University of California San Francisco,
San Francisco, CA 94143, USA; gdnelson41@gmail.com

* Correspondence: bravortho@khu.ac.kr; Tel.: +82-2-958-9390

Abstract: This study was designed to develop and verify a fully automated cephalometry landmark
identification system, based on multi-stage convolutional neural networks (CNNs) architecture, using
a combination dataset. In this research, we trained and tested multi-stage CNNs with 430 lateral and
430 MIP lateral cephalograms synthesized by cone-beam computed tomography (CBCT) to make a
combination dataset. Fifteen landmarks were manually and respectively identified by experienced
examiner, at the preprocessing phase. The intra-examiner reliability was high (ICC = 0.99) in manual
identification. The results of prediction of the system for average mean radial error (MRE) and
standard deviation (SD) were 1.03 mm and 1.29 mm, respectively. In conclusion, different types
of image data might be the one of factors that affect the prediction accuracy of a fully-automated
landmark identification system, based on multi-stage CNNs.

Keywords: artificial intelligence; convolutional neural networks; automatic identification; lateral
cephalograms; cone-beam computed tomography; maximum intensity projection (MIP)

1. Introduction

As a prerequisite for diagnosis in orthodontic treatment, cephalometric analysis is
examined with a goal to achieve a much higher accuracy [1]. The conventional cephalo-
gram is most used in orthodontics, however, it only provides plane information from a
three-dimensional (3D) craniofacial structure [2]. Emergence of the cone-beam computed
tomography (CBCT) provides high-quality diagnostic images to develop an appropriate
treatment plan and facilitate successful orthodontic and orthognathic treatment results [3,4].
Typical software programs enable the clinician to synthesize two-dimensional (2D) digital
radiographs in multi-angles with various algorithms, from the CBCT image [3,4]. Several
images can be synthesized from one CBCT scan and used for 2D or 3D cephalometric
analysis [5–7].

A 2D radiograph synthesized from the CBCT has the advantages of maintaining the
object size without magnification, and the ability to adjust the head position to reduce
distortion (reorientation) [8–11]. Maximum intensity projection (MIP) is one of the image
modalities available in software used to synthesize 2D from CBCT. The visualization effect
made with maximum intensity issues voxels parallel on the projection plane. The CBCT
image is displayed in a matrix of isotropic voxels or volume elements. The concept of the
pixel is 2D cross-sections of voxels that represent image density, or the absorption features
of a specific structure in the CBCT image. The highest value of the pixel column corresponds
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to the projection displaying the anatomic structure with clearer contours. Therefore, the
3D craniofacial image orthographically projected onto the plane to synthesize the 2D MIP
lateral cephalogram, has the advantage of a clearer facial tissue profile, an important
analytic feature of orthodontic cephalometry [6,12].

Several studies propose systems of fully automated cephalometry landmark identi-
fication, based on a machine learning technique [13–17]. Deep learning is subset of the
machine learning concept that gives outstanding abilities to recognize features of a com-
plicated image [18–21]. Several factors influence the accuracy of landmark identification
with deep learning—the type of deep learning architecture, the number of datasets, the
image quality, or the number of landmarks and identification pattern. Some studies exist
used conventional lateral cephalograms and a deep learning architecture based on a fully
automated cephalometry landmark identification system. They report a precision range of
2 mm [22–25].

Accordingly, lateral cephalograms synthesized by CBCT are able to minimize inter-
vention in the layered structure images and enable us to easily identify landmarks. It also
has less distortion images than 2D conventional lateral cephalograms. As mentioned above,
MIP is able to intensively and clearly address the skeletal structure. Therefore, we assumed
that the accuracy of automatic landmark identification would increase if both kinds of
lateral cephalograms are used to take advantages of.

This study was designed to make a combination dataset that consisted of 2D lat-
eral and MIP lateral cephalograms synthesized by CBCT, to perform efficient landmark
identification. It was made for developing and verifying a fully automated cephalometry
landmark identification system, based on the multi-stage convolutional neural networks
(CNNs) architecture.

2. Materials and Methods

This retrospective study was performed under approval from the Institutional Review
Board of Kyung Hee University Dental Hospital (IRB Number: IRB-KH DT19013). In-
formed consent was waived due to the retrospective nature of this study. All experiments
were carried out in accordance with the approved guidelines.

2.1. Subjects

Subjects were randomly selected from the PACS (picture archiving and communication
systems) database at Kyung Hee University Dental Hospital. Subjects that interfered
with landmarks identification with missing upper and lower permanent incisors, missing
permanent upper and lower first molars, craniofacial syndromes, or dento-facial traumas,
were excluded. All age, gender, and skeletal discrepancy were included. A total of
430 CBCT scans were selected for CBCT-LC and MIP-LC.

2.2. Image Acquisition from CBCT
2.2.1. CBCT Protocol

The CBCT scans were taken with a 0.39-mm3 voxel size level, 16 × 13 cm field of
view, 10 mA, 80 kV, and 30 s scan time (Alphad vega, Asahi Roentgen Inc., Kyoto, Japan).
The obtained data were imported as DICOM (Digital Imaging and Communications in
Medicine) files to the Dolphin software 11.95 Premium (Dolphin Imaging & Management
Solutions, Chatsworth, CA, USA).

2.2.2. Reorientation

The 430 CBCT images were oriented according to the anatomic structures of refer-
ence [26]. The horizontal plane was established using the skeletal orbitale and right porion.
The sagittal plane passing through the nasion was perpendicular to the horizontal plane.
The coronal plane passing through nasion, perpendicular to the horizontal plane and
sagittal plane, was utilized to finish the reorientation. Simultaneously, we aligned the
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bilateral fronto-zygomatic point to the same coordinate of X-axis in the lateral view. The
consistent coordination was used for all CBCT images.

2.2.3. Synthesizing the Cephalogram

A total of 430 reoriented CBCT images were used to automatically synthesize the
CBCT-LC and MIP-LC by the Dolphin software, to prepare the dataset (Figure 1). A total
of 860 images were prepared for multi-stage CNN training and testing. Based on previous
findings [27,28], 80% of the data were prepared for deep CNNs training and 20% of data
were used for testing, or 345 and 85 for each dataset. The synthesized images were saved
with a range of pixel size width at 2048 pix, and height at 1755–1890 pix in JPG format.

Figure 1. Image acquisition from CBCT: Import the CBCT data to the Dolphin software and reorient the head image. Using
the ‘Build X-ray’ function in the software to synthesize the CBCT lateral cephalogram (CBCT-LC) and CBCT MIP lateral
cephalogram (MIP-LC) with orthogonal X-ray. All synthesized image data were saved with a range of pixel size width at
2048 pix and the height at 1755–1890 pix in the JPG format.

2.3. Reproducibility of Intra-Examiner

We randomly selected 50 CBCT-LC and 50 MIP-LC to verify the inter-examiner re-
producibility. All landmarks were identified twice at intervals of two weeks, by a single
examiner (MJK). The See-through Ceph (See-through Tech Inc., Seoul, Korea) software was
implemented to accomplish landmark identification. Pixel values of each landmark were
extracted in an Excel file (version 2010; Microsoft, Redmond, Washington). The intraclass-
correlation-coefficient (ICC) was calculated to indicate reproducibility in intra-examiner
repetitive identification with 95% confidence intervals. Statistical analyses were performed
using the SPSS software (version-22.0, SPSS Inc., Chicago, IL, USA).

2.4. Multi-Stage CNNs Architecture

The multi-stage CNNs used in this study was developed with customized open-source
Keras library and TensorFlow (Google, Mountain View, CA, USA), backend on Python
language. The computer components used in this study were—CPU: AMD Ryzen 7 1700;
Mainboard: MSI Z370-A PRO; Ram: SAMSUNG DDR4 16G x 2; GPU: Geforce, GTX 1080Ti;
POWER: Master Watt Lite 600 80PLUS Standard 230V EU; SSD: SAMSUNG 850 EVO Series
256 GB; and Linux: Ubuntu 14.04 (Canonical, London, UK).
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One of the prominent abilities in deep CNNs learning is that it disseminates salient
feature information based on a hierarchy to the subsequent layers. CNNs’ architecture is
composed of convolution layers, pooling, and dense layers (fully connected layer). The
target features of image were extracted from the convolution layers and pooling, during
training. At the convolution layer, two-dimensional simple addition and multiplication
were performed using suitable filters. Convolution operation outputs the intuitive mea-
surement of the spatial similarity of the input. The CNNs learns from a filter that observes
a specific image pattern in some spatial location of the previous layer’s output. The pooling
layer is to sort out sampling and to prevent the number of parameters from increasing
gradually. Commonly used pooling operation in CNNs is maximum pooling, which takes
the maximum value pixels. Last layers of CNNs are dense layers, where a set of neurons
are fully connected and the feature of input data to the network is classified to make a final
decision [18,19].

At the image preprocessing stage, the first input model was developed with 400 widths,
400 height, and three-color channels—R (red), G (green), B (blue). In the model architecture,
six convolutional layers extracted target features from the input image.

Mathematically, a convolution of two functions ‘f ’ and ‘g’ was defined as:

(f ∗ g)(i) =
m

∑
j=1

g(j)·f
(

i − j +
m
2

)
(1)

Therefore, the algorithm could only be expressed by the dot products in the input
function and a kernel function, which we used. A unit conversion used 1 mm = 10 pixels.
To increase the learning effect, data augmentation techniques were applied as follows—up
to left, right, up and down 50 pixels shift, up to 10◦ rotation left and right each side. To
input the training dataset, the deep CNNs must first learn the full image. At a second
learning phase, each 15 landmarks on the lateral cephalograms was cropped and trained
with different sizes—250, 200, 150, 100, and 50, so that a total of five stages of multiple
convolutional layers were arranged in parallel. Fifteen landmarks used for the Tweemac
cephalometric analysis were to be intensively trained by CNNs [29]. The definition of
15 landmarks are described in Table 1. Schematic diagram of our proposed multi-stage
CNNs architecture is in Figure 2, and the visualization is in Figure 3.

Table 1. Landmark definitions.

Landmarks Definition

Nasion (N) The most anterior point of the frontonasal suture
Orbitale (Or) Inferior margin of the orbit
Porion (Po) Superior margin of the external auditory meatus

Anterior nasal spine (ANS) Tip of anterior nasal spine

A point Point at the deepest concavity on the maxilla between the anterior nasal
spine and prosthion

Maxillary central incisor root (Mx1r) Maxillary central incisor root
Maxillary incisal edge (Is) Maxillary incisal edge

Mandibular incisal edge (Ii) Mandibular incisal edge

Infradentale (Id) The highest and most anterior point on the alveolar process in the median
plane between the mandibular central incisors

Mandibular central incisor root (Md1r) Mandibular central incisor root

B point Point at the deepest concavity on the mandibular symphysis between
infradentale and pogonion

Pogonion (Pog) The most anterior midpoint of the chin of the mandibular symphysis
Menton (Me) The most inferior point of the mandibular symphysis
Gonion (Go) Most posterior inferior point on angle of mandible

Posterior occlusal plane point (Pop) Posterior occlusal plane point: mesio-buccal cusp of 1st molar
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Figure 2. Schematic diagram of our proposed multi-stage CNNs architecture. Put the preprocessed image data. Input data
passing through the deep CNNs model of composition with 6 convolution layers, with 32 × 2, 64 × 2, 128, 256 nodes, and
max pooling for the features to be extracted. Subsequently, the two dense layers classified the features to make final decision.

Figure 3. The visualized effect of input data at convolution layers during training.
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2.5. System Evaluation

The accuracy of AI prediction was evaluated by mean radial errors (MRE) and a
successful detection rate (SDR). MRE (mm) was the absolute distance differences between
the manual identification (truth ground) and the AI prediction position. Definition:

MRE =
∑n

i=1 R1

n
(mm) (2)

Standard deviation (SD) =
√

∑n
i=1(Ri−MRE)

n−1

2
, R =

√
∆x2 + ∆y2.

SDR (%) represents percentages of the absolute landmark distance difference between
manual identification and the AI prediction position, if the prediction range was less than
2 mm, it was considered to be the clinical acceptance level.

SDR (%) =
number of accurate identification

number of identification
× 100% (3)

Common ranges of ≤2 mm, 2.5 mm, 3 mm, 4 mm were used to divide the groups for
the number of accurate identification in SDR.

2.6. AI Prediction on Different Lateral Cephalograms

The paired t-test was used to compare the AI prediction on CBCT-LC and MIP-LC. To
verify whether AI could make better prediction on MIP-LC or not, statistical analysis was
performed using the SPSS software (version 22.0; IBM, Armonk, NY, USA). Measurements
were calculated and statistically analyzed at the 0.05 level of significance.

3. Results

The ICC was 0.99, which had high rate of reproducibility in intra-examiner repetitive
identification.

The results of AI prediction with the combination data showed an average MRE of
1.03 ± 1.29 mm, and SDR of 2.0 mm, 2.5 mm, 3.0 mm, and 4.0 mm precision ranges achieved
87.13%, 91.19%, 93.52%, 96.59%, respectively. The details between manual identification
and AI prediction for each landmark are described in Table 2 and Figure 4.

The MRE for each landmark revealed that nasion showed the highest accuracy, and
gonion showed the lowest. Eight landmarks out of the nineteen yielded distance errors
ranging within 1 mm. Six landmarks showed accurate MRE range within 2 mm. Only
gonion showed 2.04 mm in MRE measurements.

Table 2. System prediction results of 15 landmark identification in combination data.

Landmark. MRE (mm) SD (mm)
SDR (%)

2.0 mm 2.5 mm 3.0 mm 4.0 mm

N 0.56 1.497 95.97 96.55 97.12 98.27
Or 0.69 1.397 97.12 98.27 98.27 98.85
Po 1.43 1.689 78.73 84.48 89.65 94.82

ANS 0.76 0.726 93.67 97.12 98.27 99.42
A 1.22 2.697 89.08 91.95 96.55 98.27

Mx1r 1.59 1.308 69.54 78.73 86.2 95.4
Is 0.61 1.081 93.1 94.25 94.82 98.27
Id 0.79 1.080 90.8 94.25 95.4 96.55
Ii 0.65 0.927 93.67 94.25 95.97 97.7

Md1r 1.39 1.266 81.03 88.5 89.65 94.25
B 1.09 0.891 83.33 92.52 95.97 98.85

Pog 0.58 0.580 95.97 97.7 98.85 100
Me 0.59 0.547 97.12 98.27 98.85 100
Go 2.04 1.727 62.64 72.98 77.58 85.63
Pop 1.31 1.897 85.05 87.93 89.65 92.52

Average 1.03 1.288 87.13 91.19 93.52 96.59
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Figure 4. Mean Radial Error of each landmark and average MRE.

The paired t-test showed that there were no significant differences between truth
ground and AI prediction on CBCT-LC. No significant differences were observed between
the truth ground and AI prediction on MIP-LC. The details are described in Tables 3 and 4.

Table 3. Comparison of landmark identification between truth ground and AI prediction on the CBCT synthesized lateral
cephalograms (CBCT-LC).

Truth Ground AI Prediction CBCT-LC
p-Value *

Landmark Mean SD Min Max Mean SD Min Max

N_x 1642.71 58.46 1479.00 1866.00 1641.33 55.81 1487.66 1849.16 0.868
N_y 564.09 124.36 285.00 865.00 551.58 122.73 259.93 828.51 0.488
Or_x 1561.92 55.80 1363.00 1755.00 1558.83 54.22 1378.06 1732.80 0.703
Or_y 819.48 105.41 628.00 1079.00 805.06 105.67 604.01 1047.61 0.350
Po_x 851.02 81.24 526.00 991.00 850.27 78.83 530.84 989.41 0.950
Po_y 827.38 107.98 633.00 1085.00 819.01 107.73 612.38 1088.11 0.593

ANS_x 1665.24 55.63 1505.00 1875.00 1663.51 52.62 1497.87 1838.49 0.829
ANS_y 1052.13 86.66 883.00 1280.00 1042.43 90.04 834.11 1275.94 0.453

A_x 1642.36 54.26 1496.00 1851.00 1640.73 52.12 1497.96 1831.31 0.833
A_y 1105.75 84.83 946.00 1327.00 1095.83 88.24 914.74 1325.59 0.423

Mx1r_x 1618.64 53.64 1468.00 1813.00 1612.80 50.99 1479.12 1779.62 0.457
Mx1r_y 1134.80 79.14 969.00 1349.00 1128.02 79.84 951.91 1323.55 0.545

Is_x 1697.26 68.22 1534.00 1926.00 1697.33 65.10 1543.72 1899.46 0.994
Is_y 1314.39 75.45 1150.00 1499.00 1306.30 78.15 1123.21 1506.45 0.455
Id_x 1655.10 79.85 1475.00 1873.00 1650.89 75.27 1482.44 1848.20 0.716
Id_y 1392.60 64.48 1262.00 1546.00 1384.93 70.47 1224.56 1557.32 0.401
Ii_x 1677.85 75.42 1515.00 1902.00 1677.02 70.94 1514.51 1875.32 0.939
Ii_y 1305.05 69.12 1164.00 1475.00 1294.47 72.27 1129.55 1466.30 0.282

Md1r_x 1596.45 82.52 1414.00 1788.00 1590.17 78.16 1415.73 1778.64 0.605
Md1r_y 1453.87 58.29 1336.00 1575.00 1445.50 64.19 1283.63 1621.69 0.326

B_x 1607.09 86.88 1424.00 1813.00 1602.59 82.05 1424.10 1785.40 0.723
B_y 1506.37 64.14 1337.00 1628.00 1497.51 71.16 1294.64 1650.67 0.358

Pog_x 1613.85 93.19 1419.00 1837.00 1610.07 88.90 1419.37 1809.18 0.785
Pog_y 1601.34 58.20 1471.00 1704.00 1600.11 58.44 1442.15 1712.63 0.880
Me_x 1555.66 96.74 1352.00 1783.00 1553.77 91.11 1355.66 1748.78 0.894
Me_y 1663.93 55.23 1526.00 1770.00 1658.06 55.99 1510.33 1773.85 0.445
Go_x 992.75 87.06 725.00 1184.00 988.62 79.60 719.04 1152.65 0.748
Go_y 1373.97 65.90 1202.00 1537.00 1355.27 64.39 1213.18 1528.06 0.053
Pop_x 1434.15 58.52 1264.00 1616.00 1425.49 56.55 1261.20 1588.02 0.314
Pop_y 1263.29 65.40 1130.00 1426.00 1253.58 68.57 1104.16 1427.76 0.292

* Paired t-test was done for comparison of manual identification and AI prediction on CBCT-LC. Unit of measurement: Pixel.
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Table 4. Comparison of landmark identification between truth ground and AI prediction on CBCT synthesized MIP lateral
cephalograms (MIP-LC).

Truth Ground AI prediction MIP-LC
p-Value *

Landmark Mean SD Min Max Mean SD Min Max

N_x 1642.71 58.46 1479.00 1866.00 1646.17 59.46 1479.27 1862.75 0.754
N_y 564.09 124.36 285.00 865.00 562.05 118.36 288.38 830.26 0.793
Or_x 1561.92 55.80 1363.00 1755.00 1565.48 57.18 1369.46 1756.59 0.649
Or_y 819.48 105.41 628.00 1079.00 819.07 100.80 630.06 1048.80 0.959
Po_x 851.02 81.24 526.00 991.00 850.48 81.05 517.92 986.90 0.920
Po_y 827.38 107.98 633.00 1085.00 822.26 101.70 635.18 1053.43 0.156

ANS_x 1665.24 55.63 1505.00 1875.00 1670.20 56.72 1505.48 1875.80 0.406
ANS_y 1052.13 86.66 883.00 1280.00 1052.22 86.83 875.05 1278.58 0.752

A_x 1642.36 54.26 1496.00 1851.00 1645.53 55.47 1496.60 1849.64 0.778
A_y 1105.75 84.83 946.00 1327.00 1107.52 83.06 950.80 1328.57 0.752

Mx1r_x 1618.64 53.64 1468.00 1813.00 1621.62 54.20 1479.40 1825.12 0.771
Mx1r_y 1134.80 79.14 969.00 1349.00 1138.54 77.21 980.84 1351.76 0.333

Is_x 1697.26 68.22 1534.00 1926.00 1701.67 68.60 1542.86 1927.34 0.601
Is_y 1314.39 75.45 1150.00 1499.00 1314.79 74.57 1149.57 1501.82 0.599
Id_x 1655.10 79.85 1475.00 1873.00 1655.84 78.72 1482.70 1873.20 0.799
Id_y 1392.60 64.48 1262.00 1546.00 1397.29 65.69 1262.71 1561.40 0.381
Ii_x 1677.85 75.42 1515.00 1902.00 1679.90 74.65 1512.09 1899.68 0.986
Ii_y 1305.05 69.12 1164.00 1475.00 1307.15 69.11 1164.50 1474.31 0.770

Md1r_x 1596.45 82.52 1414.00 1788.00 1596.19 82.44 1408.86 1815.76 0.684
Md1r_y 1453.87 58.29 1336.00 1575.00 1456.71 62.78 1310.59 1610.44 0.997

B_x 1607.09 86.88 1424.00 1813.00 1608.83 85.34 1422.78 1812.24 0.979
B_y 1506.37 64.14 1337.00 1628.00 1507.28 67.61 1326.61 1642.09 0.435

Pog_x 1613.85 93.19 1419.00 1837.00 1615.02 91.87 1415.98 1837.82 0.915
Pog_y 1601.34 58.20 1471.00 1704.00 1607.11 57.09 1467.66 1703.10 0.294
Me_x 1555.66 96.74 1352.00 1783.00 1556.17 94.12 1353.87 1767.15 0.862
Me_y 1663.93 55.23 1526.00 1770.00 1666.42 55.77 1522.65 1768.89 0.657
Go_x 992.75 87.06 725.00 1184.00 992.71 81.71 719.39 1169.11 0.941
Go_y 1373.97 65.90 1202.00 1537.00 1374.04 63.35 1186.13 1531.91 0.493
Pop_x 1434.15 58.52 1264.00 1616.00 1429.53 60.57 1253.62 1616.57 0.064
Pop_y 1263.29 65.40 1130.00 1426.00 1261.56 65.56 1131.64 1427.02 0.182

* Paired t-test was done for comparison of manual identification and AI prediction on CBCT-MIP. Unit of measurement: Pixel.

4. Discussion

A fully automated landmark identification system was presented as an alternative
option for consistent cephalometric landmark identification in repetitive tasks [30]. Several
factors might affect deep learning prediction—the data size, the number of layers in
the architecture, computer components, and the image resolution [31,32]. In this study,
we intended to train the multi-stage CNNs with two modalities of lateral cephalograms
synthesized from CBCT to increase the training samples, to broaden the training ranges,
and to enhance the ability of image recognition without additional radiation to the patient.

The purpose of creating and using combination dataset in this study was to perform
effective and efficient landmark identification both in manual and AI prediction. Although
we used lateral cephalograms synthesized by CBCT to minimize the superimposed and
layered bilateral structures, layered images still remained as confounding variables. For
instance, the superimposed mandible prominently made two lines, especially in patients
who had asymmetry that made it difficult to decipher gonion. Therefore, as a compensation,
we tried to use the MIP image to reinforce these defects. However, the paired t-test showed
that there were no significant differences between truth ground and AI prediction on
CBCT-LC, MIP-LC. The AI learned the examiner’s identification pattern from preprocessed
image data in deep learning, which explained that there were no significant differences
in AI prediction on the CBCT-LC or MIP-LC, in our results. Whether the dataset was
combined or not, AI would prediction on the same corresponding position with the same
pattern. Details are explained below.

Deep learning is conceptually similar to supervised machine learning, but there are
some differences. Supervised machine learning requires that the researcher process the
image to extract target features. Deep learning works directly on the data image; and
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automatically reduces the burden of work. Traditional machine learning should have
created a new algorithm for each new datum. On the other hand, retraining in the deep
learning model is possible with new data. Substantial number data were used to train
the deep learning architecture. Among the deep learning options, CNNs architecture
had the outstanding ability to recognize particular appearance patterns that were widely
used. This is an essential aspect of cephalometric landmark identification [33,34]. Classic
deep CNNs are composed of a convolutional layer, pooling layer, and a fully connected
layer. Although CNNs have the outstanding ability to recognize images that are used
in medical image science, robustness is limited for geometrical transformations, other
than parallel movements, such as scaling and rotation. Therefore, image features with
scaling and rotation would present recognition errors in CNNs, but it steadily improved in
CNNs architectures.

In this study, we proposed the multi-stage CNNs architecture that was constructed
by stacking the convolution layers. The multi-stage architecture consisted of multiple
convolutional layers and the number of layers was arranged in increasing parallel order.
Since these CNNs structures weights of each convolution layer were connected to share
features with corresponding layers of other stages, features of the original input image
transferred to each stage. The features of preprocessed image extracted at all stages were
concatenated and fulfilled to the integration layer, which showed strengths to improve the
accuracy [35–37].

Most recent systems were developed using a conventional lateral cephalogram. How-
ever, the lateral cephalogram synthesized by CBCT had advantages—customization of
resolution, ability to re-orientate the image to enhance the image quality, and use of an
orthogonal projection to reducing the interference caused by superimposition of bilateral
structures. Due to difficulties in the segmentation of internal organs, the MIP algorithm
was invented in 1988 by the nuclear medicine doctor Jerold Wallis [38,39]. The MIP
image helped to find the relative 3D position of anatomic structures. Emergence of a
three-dimensional image and this display technique offered the information on depth
and volume. However, since the three-dimensional image required a rendering process,
inevitably noise and blurring occurred, inhibiting accurate detection of the anatomic struc-
ture. The MIP algorithm provided better detection of the relationship between objects and
the surface contours. Structures of interest could be highlighted by selecting the objects,
and the surface contour could be indirectly inferred by the depth information. One of the
matters with the lateral cephalogram was superimposed bilateral structures, which could
be eliminated by the enhanced image contrast in MIP. While MIP was visualized in planar
space, it still included a part of the three-dimensional structural information, without using
the full three-dimension rendering [39].

Previous studies compared reproducibility between conventional lateral cephalo-
gram and different types of CBCT synthesized 2D lateral cephalograms (MIP, Ray-sum
or usual). Conclusion of these studies was that linear and angular measurement derived
from CBCT synthesized cephalogram resulted in higher consistency than conventional
cephalogram [1,2,6,40,41]. We used CBCT synthesized combination data to perform ef-
ficient landmark identification for training. We used 15 landmarks positioned on the
anatomic structure contours that were displayed more clearly in the MIP image. Compari-
son of AI prediction results between CBCT-LC and MIP-LC are shown in Figure 5.

Although the CBCT was currently used to provide 3D information, further studies
would lead to better standardization in cephalometry. The ability of direct landmark
identification and measurement was lacking. Even though we obtained the 3D images
from patients to use current research-based analyses, it had to be transformed to a 2D
aspect [42,43].
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Figure 5. Cont.
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Figure 5. Comparison of AI prediction between CBCT-LC (a,c,e,g,i) and MIP-LC (b,d,f,h,j); Orbitale c and d; Maxilla e and f; Porion g
and h; and Mandible i and j. The red dot is manual identification (truth ground), and the blue dot is AI prediction.

In 2017, the first fully-automated cephalometric landmark identification system was
applied to a deep CNNs learning model [22]. They trained 400 conventional lateral
cephalogram datasets that included 19 landmarks. The result showed a 75.58% SDR range
of 0 to 2 mm. In 2019, 1311 trained conventional lateral cephalograms using the You-
Only-Look-Once version 3 (YOLOv3) with 80 landmarks achieved an 80.4% SDR range
of 0 to 2 mm. The prediction result achieved approximately 5% higher in all ranges of
SDR, than a previous study [24]. Another study used a personal computer to develop
the CNNs architecture training with 153 lateral cephalograms and tested 66 images. Ten
landmarks frequently used in cephalometry were included. There were no significant
differences between the manual and automatic prediction in the cephalometric analysis,
but the average prediction errors recorded 17.02 in pixel (approximately 4.50 mm) [23]. In
2020, many studies introduced new CNNs algorithms or methods [44–46]. Kunz et al. [44]
used customized Keras and Tensorflow, similar to us. In their study, MRE was not described
but AI prediction showed similar results with examiners. Kim et al. [45] Reported a web-
based deep learning method, which had advantage in accessibilities. They evaluated four
different dataset groups. The highest SDR range of 0 to 2 mm achieved 84.53 % with an
acceptable MRE, 1.37 ± 1.79 mm. Comparison of SDR in different CNNs architecture, based
on fully automatic landmark identification systems, is described in Table 5 and Figure 6.
However, the deep learning model also applied automatic landmark identification of the
CBCT image. Some important factors that affected accuracy for the CNNs-based fully
automatic landmark identification system were—CNNs architecture’s structure, sufficient
learning data, and the supervising method. Comparison to the above studies, we employed
improvements—(i) to achieve better accuracy we increased the number of layers and only
extracted the necessary features for learning; (ii) we used a sufficient dataset; and (iii) used
combination data to perform efficient supervising (setting the truth ground). The number
of landmarks did not significantly affect the system accuracy. However, an increased
number of landmarks might enhance clinical procedures.
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Table 5. Comparison of automatic landmark identification system prediction results.

Method. Landmark Total Data
SDR (%)

2.0 mm 2.5 mm 3.0 mm 4.0 mm

SDD22 19 400 75.6 81.3 84.7 88.1
YOLOv324 80 1311 80.4 87.4 92.0 96.2

Web-based45 23 2075 84.5 90.1 93.2 96.8
Proposed 15 860 87.1 91.2 93.5 96.6

Figure 6. Comparison of successful detection rate of different CNNs architecture based on fully automatic landmark
identification system.

The highlights of this study were proposal of customized CNNs architecture and
we reported the AI prediction results of CBCT-LC and MIP-LC as a transitional study of
3D CBCT data. However, a limitation of this study, first of all, was that the amount of
data required to achieve the expected accuracy could not be explained. A previous study
reported that greater the number of data, higher the accuracy [47]. They used 2200 training
data as the maximum number to prove it and results of MRE showed more than 1.5 mm.
Although we did not try to discover the suitable number of data with a gradual dataset,
this was possible to presume through the results, which achieved our expectations, that
the means and the amount of data, was used properly in this study. Second, we could
not compare if our CNNs architecture was better than that of similar studies as different
computer components and dataset were used in other studies. In order to identify whether
the combination dataset had any benefit, we needed to compare with a unified dataset in
the further study.

5. Conclusions

Recently, artificial intelligence technology is rapidly being commercialized. In this
study, we introduced a method to customize the CNNs architecture using open-source.
A new learning concept in the aspect of the CNNs architecture and dataset achieved
superior results compared to previous studies that obtained 87.10% SDR range of 0 to
2 mm with 1.03 mm average MRE. However, no control group was established in this study.
Hence, a comparison of CBCT-LC combined with MIP-LC training and CBCT-LC training
is needed in future studies, to verify if a combination dataset has any benefit or not.
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