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Abstract

Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of
myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events
in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts.
No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal
muscle biopsies of competitive cyclists for muscle-specific attributes and expression of
human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion
of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the
pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold
decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We
propose that during the pre-competitive season SC proliferation occurred following with
increased cell fusion during the competitive season. Expression of twenty-two envelope
genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fuso-
genic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohis-
tochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of
myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and
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SLC1AS5 of Syncytin-1 showed significant decrease of expression in post-competitive mus-
cles compared with the pre-competitive season, but only SLC1A4 protein expression local-
ized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber,
whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors,
PPARy and RXRa, showed no protein expression in the myofiber, whereas the pCREB-
Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syn-
cytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified
during proliferating or actively-fusing human primary myoblast cell cultures, resembling
muscle biopsies of cyclists. Myoblast treatment with anti-Synycytin-1 abrogated cell fusion
in vitro. Our findings support functional roles for ERV envelope proteins, especially Syncy-
tin-1, contributing to cell fusion of myotubes.

Introduction

Cell fusions leading to multinucleated cells, like syncytiotrophoblasts during placentogenesis,
bone resorbing osteoclasts and myofibers for production and repair of muscles are essential for
human development. Although, all of the above are characterized by cell fusions, a unifying
pathway with gene members has not been found to date. Some regulators important for myo-
blast fusion in vitro using mouse cell lines have been identified, like CD164 and Interleukin-4,
as well as members of the AKT and p38MAPK pathways [1] [2] [3] [4]. Interestingly, envelope
(env) genes of endogenous retroviruses (ERVs), were found essential for human trophoblast/
syncytiotrophoblast fusions and were also involved in the process of multinucleated osteoclasts
[5] [6]. ERVs are derived from exogenous retrovirus infected germ cells, which integrated into
the genome more than 45 and less than 0.2 million years ago where some ERV genes produce
functional proteins [7]. Syncytin-1, the env gene of ERVW-1, and Syncytin-2 (env of ERVFRD-
1) were found crucial for the fusion of human trophoblasts via their receptors ASCT1/2 and
MFSD2a, respectively [8] [9] [10]. Human Syncytin-3 {env of ERVP(b)} was also shown to be
fusogenic in vitro, but is only lowly expressed in placentae, and envV2 (ERVV-2) of Old World
monkeys was also implicated fusogenic in vitro [11, 12].

Muscle growth is the result of complex developmental processes comprising the activity of
myogenic transcription factors, cell cycle withdrawal, apoptosis resistance and myoblast fusion
into myotubes. During these processes many proteins are regulated, like induction of myostatin
in vivo and in vitro [13] [14], early induction of MyoD, subsequent expression of myogenin in
satellite cells (SC) [15] [16] and FoxO proteins which regulate cell cycle progression and apo-
ptosis involved in myotube fusion [17]. During myogenesis, mononuclear myoblasts differenti-
ate into elongated myocytes and fuse to nascent myotubes to form bi- or trinucleated nascent
myotubes. Additional rounds of cell fusion between myoblasts and nascent myotubes result in
the formation of large, mature myotubes with hundreds or thousands of nuclei [18] [19]. Myo-
cytes cease cell division after fetal birth, but growth as well as regeneration occurs with SC,
which are derived from the embryonic dermamyotome. SCs are considered tissue-specific stem
cells and are located adjacent to the myofibers of skeletal muscles, which have the ability to re-
enter the cell cycle after exercise, injury or disease thereby providing new myonuclei for post-
natal growth, remodeling and regeneration of muscle [20-23]. The transplantation of only 7
SCs with one myofiber generated over 100 new myofibers and thousands of myonuclei [24]. In
addition, although controversial discussed, SCs have been described in the literature to possess
self-renewal capabilities by symmetric expansion or asymmetric division [25]. SCs do express a
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variety of specific markers, including PAX7, MYF5, myogenin, c-Met and CD34 [26]. The SC
markers PAX7 and PAX3 indicate an un-differentiated state, whereas myogenin positive SCs
specify a differentiated state producing myonuclei [27] [28] [29].

The model organism for myoblast fusion is Drosophila, where multiple crucial genes for cell
migration, adhesion and the initial stages of cell fusion have been revealed, for example, Kirre,
Rst, Racl, Mbc and Sns [30] [4]. Despite differences in muscle structure, some of these genes
could also be identified as essential for myoblast fusion in mice [4]. In vitro analyses have been
performed the mouse cell line C2C12 and also with primary muscle cells from rodents and
humans. Experiments showed that remodeling actin was essential for myoblast cell fusion [31].
Similarly during formation of multinucleated osteoclasts, a unique cytoskeletal structure called
the “actin ring” was essential during bone resorption [32]. It is well known that skeletal muscle
fibers can reach several centimeters in length and are equipped with a high number of myonu-
clei [33, 34] to assure proper skeletal muscle support and maintain skeletal muscle fiber integ-
rity. This model proposes that skeletal muscle fibers are arranged in largely independent
subunits, the so-called myonuclear domains (MND) [35, 36]. The size of MNDs is strongly
related to SCs, because they can fuse with adult skeletal muscle fibers due to metabolic and/or
mechanical stress [37-39]. Various authors showed that resistance training was a strong stimu-
lus to induce adaptation-processes of skeletal muscle hypertrophy [40-42].

This present study determined the cellular changes of muscle-specific attributes (e.g. num-
ber of myonuclei per muscle fiber, mean cross-sectional area of muscle fiber, mean myonuclear
length (um) and SC number) from skeletal muscle isolated from human cyclists undergoing
long-term endurance exercise. With these muscle biopsies we had the opportunity to molecu-
larly analyse and test, if specific genes, which are known to mediate cell fusion of syncytiotro-
phoblasts (Syncytin-1 and Syncytin-2) and osteoclasts (Syncytin-1) along with other candidate
ERV genes, play a role in myoblast fusion. Therefore, we quantified the gene expression of a
spectrum of 22 ERV env genes and three cellular fusion gene receptors in muscle biopsies. Fur-
thermore, using fractionated normal human primary muscle progenitor cells from non-cyclists
we performed cell culture experiments focusing on proliferation and differentiation of actively
fusing myoblast cells. We demonstrate that Syncytin-1 is an essential protein involved in medi-
ating cell fusion. Notably, the muscle attributes along with our molecular comparison showed
a similarity of ERV genes essential for myoblast fusion in vitro and in vivo.

Materials and Methods
Subjects

Eight endurance-trained junior males with a minimum of 5 yrs competitive cycling experience
volunteered for this study. The trial was performed during the competitive-season from Febru-
ary to October. The cyclists underwent a physical examination according to the regulations of
the International Cycling Union. Their physical characteristics at the beginning of this study
were (mean = SEM): age, 17.3 + 0.2 yrs; body mass, 69.6 + 1.6 kg; and peak oxygen consump-
tion (VO2peak), 65.2 + 2.0 mlekg-1emin-1. For the quantitative determination of serum levels
of free testosterone (pgeml-1) radioimmunoassay test kits were used (Beckman Coulter, Kre-
feld, Germany) and for the levels of estradiol (pgeml-1) chemiluminescence immunoassay kits
with an Architect i1000SR immunoassay module (Abbott, Ludwigshafen, Germany) were used.
All serum samples were analyzed in duplicate and the mean was used for statistical analysis.
All participants and their guardians were informed about the experimental protocol and asso-
ciated risks before their written informed consent was obtained. The study was approved by
the Institutional Ethics Committee of the German Sport University Cologne, Germany, and
conducted in accordance with the Declaration of Helsinki.
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Testing procedures, training and racing

After a 3-month winter pre-competitive season (November to January) consisting of sport-spe-
cific base training (long slow distance) and several days before the start of the competitive-sea-
son (February to October), all cyclists underwent blood profiling, an incremental exercise test
and a muscle biopsy 3 days later (referred as pre-competitive season samples). The participants
were requested to keep a record of their daily training and competition data quantified in
terms of volume and intensity by heart rate (Polar S710i, Polar, Kempele, Finland). The time
spent in cyclists’ individual training zones was documented in a modified classification scheme
for physical activity based on relative exercise intensities providing a moderate (< 70% of
VO2peak), hard (70-90% of VO2peak) and very hard (> 90% of VO2peak) training zone [43].
During the pre-competitive season and competitive-season the subjects maintained their regu-
lar exercise training and competition program. One week after the end of competitive-season
all subjects were tested again for blood profiling, an exercise test and a muscle biopsy (referred
as the post-competitive season samples). Body and leg muscle mass were recorded using bio-
electrical impedance analyser (BC-418, Tanita Corporation, Tokyo, Japan). Afterwards all sub-
jects performed an incremental exercise test to volitional exhaustion in order to assess
VO2peak and peak power output (Wpeak) on an electromagnetically braked cycle ergometer
(SRM-Ergometer, Schoberer Rad Messtechnik, Jiilich, Germany). Gas exchange data were
determined with an open-circuit breath-by-breath spirograph (nSpire Health, ZAN600USB,
Oberthulba, Germany) throughout the testing as previously described [44]. VO2peak was
recorded as the highest VO2 value observed during the test [45]. The incremental cycling test
started at 100 W, increased by 40 W every 5 min at constant cadences between 80-90 remin-1
throughout the test.

Muscle biopsies

Muscle samples (60-95 mg) were obtained from the vastus lateralis muscle at one-third (+ 2
cm) of the distance between the patella and anterior superior iliac spine using a 5 mm Berg-
strom biopsy needle [46]. In the pre-competitive season and post-competitive season, multiple
biopsy samples were obtained 3 days after the incremental exercise test of each participant.
After extraction from the leg, muscle biopsy samples were embedded in Tissue-Tek (Sakura
Finetek, Zoeterwoude, Netherlands), immediately frozen in liquid nitrogen-cooled isopentane
and stored at —-80°C.

Histology

For the analysis of muscle fiber classification, Adenosinetriphosphatase (ATPase)-staining was
performed on serial cryocut cross-sections (7um) as previously described [47]. Muscle fiber
phenotypes were matched in MyHC type I and type II fibers including ITA and IIX fibers. For
muscle fiber type distribution, a mean total of 325 + 125 muscle fibers were analysed for each
participant, taken from sections at different depths of the muscle. The mean fiber type-specific
diameter was determined on ATPase-stained sections using Scion Image (NIH, Bethesda, MD)
calculating the ellipse minor axis [48]. To determine the number of myonuclei inside the mus-
cle fiber, serial cryocut cross-sections (7um) were stained with Mayer’s haematoxylin and
counterstained with eosin. The cross-sections were examined under a Zeiss Observer micro-
scope (Jena, Germany). The muscle fiber composition and the number of nuclei per muscle
fiber (average of 141 fibers, range 80-162 fibers) were investigated using the PALM Robo V4
image analysis software (Zeiss, Jena, Germany). The mean cross-sectional area was determined
in the same fibers using Scion Image (NIH, Bethesda, MD). For the calculation of the length of
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myonuclei, a range of 260-325 nuclei were quantified from serial sections from different depths
of the vastus lateralis. Analyses were performed for each participant.

Myonuclear domains

The myonuclear domain (MND) was calculated as the number of myonuclei in a muscle fiber
segment X = (NxL) / (d +1) [49], with (N) as the number of myonuclei counted in a cross-sec-
tion of a particular fiber profile, (L) as the desired length of the fiber segment set at 1 mm [34]
[36], (d) as the thickness of the cryostat cut cross-section, and (1) as the average length of a
muscle nucleus. Other parameters were used from the morphometric analyses obtained from
HE-stained sections. The volume of cytoplasm (um?) per myonucleus (Y) was assessed with: Y
= (CxL) / X [36], with (C) as the quantified cross-sectional area of a muscle fiber profile (deter-
mined from HE-stained sections), (L) as the length of the segment (set as Imm), and (X) as the
number of myonuclei per fiber segment of the same profile as calculated by the formula above.

Immunofluorescence and Immunohistochemistry

PAX7 and myogenin immunolocalization was performed on serial cryocut muscle cross-sec-
tions (7um), postfixed with 4% paraformaldehyde. The slices were oxidized for 30 min at room
temperature with 3% H,0,, treated with Triton-X100 and blocked with 5% BSA. Slides were
incubated overnight at 4°C with primary antibodies against PAX7 (1:400) or myogenin (1:500)
(both from Developmental Studies Hybridoma Bank, Iowa City, IA) and afterwards incubated
with a secondary antibody (biotinylated goat anti-mouse IgG, 1:400; Dako, Glostrup, DK),
streptavidin-biotinylated horseradish peroxidase complex (1:150; Amersham, Freiburg, Ger-
many) and DAB (3,3"-diaminobenzidine-HCI, 0.1 M, pH 7.4). The SCs were counterstained
with methyl green and the sections were coverslipped with Entellan (Merck, Darmstadt, Ger-
many). For the quantification of PAX7 and myogenin a digital camera (AVT Horn, Aalen, Ger-
many) coupled to an Axio Observer microscope (Zeiss, Jena, Germany) was used at 400x
magnification. To assess muscle fiber SC content, a mean total of 192 + 33 muscle fibers were
analysed for each participant using the PALM Robo V4 image analysis software (Zeiss, Jena,
Germany). To determine the localization of PAX7 positive (+) SCs, serial cryocut muscle
cross-sections (7um) were post-fixed with acetone, treated with Triton-X100 and blocked with
5% BSA. Slides were double-stained with antibodies directed against PAX7 (1:500) visualized
with biotinylated goat anti-mouse IgG (1:400) labeled with streptavidin conjugated Alexa Fluor
555 (1:400; Molecular Probes, Darmstadt, Germany), and laminin (1:800; Sigma, Missouri,
USA) with Cy2 conjugated goat anti-rabbit IgG (1:400; Jackson ImmunoResearch, Suffolk,
UK). Myonuclei were counterstained with DRAQ5 (1:1,000; Axxora, Lorrach, Germany) and
the sections were coverslipped with Aqua-Poly/Mount (Polysciences, Eppelheim, Germany).
For all staining procedures negative controls were generated by omitting the primary antibod-
ies. Images were digitally captured at 200x magnifications using a confocal laser scanning
microscope (LSM 510 Meta, Zeiss, Jena, Germany) and processed using LSM Image software.
The localization of MyHC-I and MyHC-II proteins in the same human muscle biopsies were
done with mouse monoclonal antibodies directed for MyHC-I (1:100; A4.840) and MyHC-IIA
and -IIB (1:80; BF-35) from Developmental Studies Hybridoma Bank, University of Iowa,
USA. The detection of ERV env proteins, their receptors and transcription factors, muscle
cryosections were treated as above and incubated with the following antibodies: Syncytin-1
(1:200; Imgenex, San Diego, USA), Syncytin-2 (1:200; abcam, Cambridge, UK) erv3 (1:1,000;
everest biotech, Oxfordshire, UK), envK (1:50; USBiological, Swampscott, USA), SLC1A4
(1:200; Aviva Systems Biology, San Diego, USA), SLCAS5 (1:200; Cell Signaling, Frankfurt, Ger-
many), MFSD2 (1:200; antibodies online, Atlanta, USA), pCREB-Ser133 (1:1,000; Millipore,
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Temecula, USA), PPARy (1:200; USBiological), RXRa: (1:50; antibodies online) and pan cyto-
keratin (clone 80, 1:500; Kamiya biomedical, Seattle, USA) using the LSAB+HRP kit (Dako,
Hamburg, Germany) and Hematoxylin according to the manufacturer’s instructions, [11] [50].
Normal human placental control tissues (third trimester) were incubated with anti-Syncytin-1
(1:200; Imgenex, San Diego, USA) and used as a positive control for comparison with human
muscle biopsies hybridized with anti-Syncytin-1. For semi-quantification of Syncytin-1 pro-
tein, 10 independent fields of equal size from IHC muscle tissue sections were measured for sig-
nal intensities using Image]J (http://imagej.nih.gov). Syncytin-1 protein signal intensity was
then correlated with the specific MyHC-I, MyHC-IIA and MyHC-IIX myofiber type.

Primary human myoblast cultivation

Human muscle biopsies isolated from the vastus lateralis muscle of control participants

were used for myoblast isolation and cell cultures. Biopsies were obtained with Institutional
Ethics Board approval from 2 healthy donors (Ludwig Maximillian’s University of Munich,
Germany). Isolated myoblast preparations isolated from controls consisted of a homogenous
cell population and was confirmed to be of satellite origin, using an antibody against human
neuronal cell adhesion molecule (clone 123C3; Monosan, Uden, The Netherlands) according
to Faenza et al. [51]. For maintaining myoblasts in culture F10 medium (Gibco-BRL, Germany)
containing 15% fetal bovine serum (FBS), 5% defined supplemented calf serum (Hyclone Labo-
ratories, South Logan, UT, USA) and 1% penicillin/streptomycin (Sigma, St. Louis, MO, USA)
was used. For specific cell culture experiments either growth medium (GM) or a specific differ-
entiation media (DM) was used. Myoblasts grown in GM (PromoCell, Heidelberg, Germany)
was supplemented with 10% (v/v) fetal calf serum (Lofer, Austria), 1.5% (v/v) 100x Glutamax,
and 50 pg/ml gentamicin. The myoblast GM was changed every 2 days. To initiate differentia-
tion, the myoblasts were grown to 80% confluency in growth medium (GM) and then was
replaced with DM (DMEM,; Gibco-BRL) with 2% horse serum (HS) and 0.01 M insulin accord-
ing to [52]. The DM was changed daily. In addition, myoblasts were grown for up to 4 days in
40uM Forskolin (Sigma-Aldrich) in GM or DM for comparison. Cell culture experiments were
also designed to block Syncytin-1 protein at the cellular membrane. Primary myoblast cultures
were grown in GM on coverslips coated with Laminin protein extracted from Engelbreth-
Holm-Swarm murine sarcoma basement membrane (10pg/ml) (Sigma) until cells were 80%
confluent (n = 3). Myoblasts were then incubated in DM media to initiate myotube differentia-
tion (day 1) with no or with the addition of 1ug/ml anti-Syncytin-1 polyclonal antibody (Imge-
nex, San Diego, USA). The addition of anti-Syncytin-1 was then added on day 2 (1pg/ml) and
day 3 (0.5pg/ml) in DM. On day 4 the muscle cells were fixed in 4% paraformaldehyde (PFA)
and processed according to the fluorescence staining protocol below.

RNA isolation, cDNA and Semiquantitative and quantitative real time
PCR (gPCR)

RNA, cDNA and qPCR was made according to our previous publications [50, 53]. QPCR of 22
different human ERV envelope genes (Syncytin-1, -2, -3 (envP (b)), erv3, envK1-7, envV1,
envV2, envE, envH1-3, envRb, envT, envFcl, envFc2, envW2 were performed using primers
and PCR [53] [50]. Semiquantitative PCR was performed for the receptors SLC1A4 (TF: 5
TGAATCAGAAGGCAACAAAGAA; BR: 5 GATGTCTCCTCCTCAGACTTGC), SLC1A5
(TF: 5 CTTCGTAAAGATCATCACCATCCG; BR: 5> ATGATGGCCAGAGTGAGGACQ), the
cell type specific genes PAX7 (TF: 5> ACCCACTACCCAGACATATACACG; BR: 5 TTACTG
AACCAGACCTGCACAC), MyoD1 (TF: 5 ACTTCTATGACGACCCGTGTTT; BR: 5 GA
GTGCTCTTCGGGTTTCAG), Myogenin (TF: 5 GTGTGTAAGAGGAAGTCGGTGTC;
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BR: 5 GAAGGCCTCATTCACCTTCTT) and S100A4 (TF: 5> GCTCAACAAGTCAGAAC
TAAAGGAG; BR: 5 CTTCTGGAAAGCAGCTTCATC).

Fluorescence imaging of primary cells

Human primary myoblasts were cultured in DM or GM for up to 96 h as described above and
cells were fixed using 4% PFA. The localization of F-actin was determined using Phalloidin
Alexa488 (Molecular Probes, Life Tech., Darmstadt, Germany), the cell membrane was stained
with wheat germ agglutinin conjugated with Alexa594 and the nuclei with Hoechst 33342
according to [11]. Representative photos were made using the confocal microscope Nikon
Eclipse E1000-M or using an Olympus BX-51 fluorescent microscope (Olympus, Hamburg,
Germany) equipped with an F-View II CCD camera (Soft Imaging System, Stuttgart).

Statistical analyses

Data are presented as means + SEM. Data was analyzed using the Kolmogorov-Smirnov tests
to determine the equality of samples for comparison. Differences in muscle and hormone
parameters between pre- and post-competitive season were analyzed using paired (2-tailed) t-
tests. Gene expressions were analyzed using Mann-Whitney-U test. Relationships between
changes in exercise volume and/ among changes in muscle parameters were described using
Pearson product-moment correlation coefficient. Statistical significance was set at P < 0.05.
All statistical tests were processed using the Statistica software (StatSoft Inc., Tulsa, OK, USA)
and SPSS 21 (IBM, New York, USA).

Results

The cyclists” average weekly exercise volume (in minutes) spent at training and racing through-
out the three months of pre-competitive season and the following 8 month competitive-season
were analyzed. A significant decrease of the average weekly total exercise volume in the com-
petitive-season compared to pre-competitive season was found. This was most likely due to a
relative reduction of the cyclists time spent training at moderate intensity, whereas a significant
increase in average weekly time spent training at high intensity and racing was during the com-
petitive-season (Fig 1A). A significant 2.22-fold increase of myonuclei per muscle fiber was
found at the post-competitive compared to the pre-competitive season (Fig 1B) whereas the
mean cross-sectional area of muscle fiber remained unchanged (Table 1). Conversely the fiber
area (um?) per nucleus was significantly decreased in the post-competitive season by 2.4-fold
compared to the pre-competitive season (P < 0.01) and without any variation in the mean
myonuclear length (um) (Table 1). A significant decrease of the myonuclear domain (um?>/
myonucleus) and a significant increase of myonuclei per millimeter fibre length (myonuclei/
mm fibre length) from the pre-competitive season to the post-competitive season were also
observed (Fig 1C and Table 1). Correlation analyses revealed a significant relationship between
the change in myonuclear number and increase in exercise intensity (high intensity training
and racing) related from pre- to post-competitive season (r = 0.71; P < 0.05). Comparing single
measurements from V’O2peak with fiber types and leg muscle masses of the cyclists between
pre- and post-competitive season no significant changes were noticed (Table 2).

Additionally, in order to determine PAX7(+) SCs and their localisation in muscle biopsies
of the cyclists before the competitive-season, an antibody specific for laminin was used to label
the fiber basement membrane. SCs were located between the basal lamina and plasma mem-
brane of the skeletal muscle fiber as previously described [20] [16]. A representative localiza-
tion of PAX7(+) SCs is shown in Fig 2. Immunostaining for the SC marker myogenin was
negative, however myonuclei counterstained with DRAQS5 showed co-localization with PAX7
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Fig 1. Cyclists (n = 8) were evaluated for: A) average exercise volume per week (min) throughout pre-
competitive season (PS) and competitive-season (CS), B) myonuclei per muscle fibre, C) myonuclear
domain (um*myonucleus) and D) SCs/muscle fibre after pre-competitive season (PRE) and post-
competitive season (POST). * =P < 0.05, ** =P < 0.01, and ##, ++ = P < 0.001 (A: ++, ## indicate
differences from corresponding pre-competitive season training zone and race time). Percentage of total time
spent training and race in corresponding season is shown in parentheses.

doi:10.1371/journal.pone.0132099.g001

(+) nuclei of SC, indicating an undifferentiated state (Fig 2 and data not shown). Regarding the
SC content, a significant decrease of PAX7(+) SCs per muscle fiber (SCS/muscle fibre) as well
of the number of SCs as a percentage of the total number of nuclei (SC %) in the post-competi-
tive compared to the pre-competitive season were identified (Fig 1D and Table 1). A relation-
ship was also determined between the change in myonuclear number and change in SCs/fiber
(r=-0.91; P < 0.01) throughout the post-competitive-season.

In order to investigate, if human muscle demonstrated significant expression of ERV env
genes and their receptors, RNA of muscle biopsies from the cyclists was analysed for 22 ERV
env genes by gPCR and for the Syncytin-1 receptors SLC1A4 and SLCIA5 by semi-quantitative
PCR (Fig 3 and S1 Table). Only Syncytin-1, Syncytin-3, and erv3 showed a significant increase
of expression in post-competitive when compared to the pre-competitive season, whereas
envFcl and envFc2 showed a significant decrease (Fig 3 and S1 Table). All other ERV env genes
were not significantly changed in expression. Importantly, Syncytin-1 and Syncytin-3 were pre-
viously shown as fusogenic proteins participating in cell-cell fusions [5] [54]. The Syncytin-1
cellular receptors SLC1A4 and SLCIA5 demonstrated a significant decrease of expression in

Table 1. Myonuclear and satellite cell (SC) characteristics in human vastus lateralis muscle before (PRE) and after (POST) competitive-season.

Fibre area/nucleus (um?)

Muscle fibre cross-sectional area (um?)

Myonuclear length (um)
Myonuclei/mm fibre length
SC %

PRE POST

3,421 £ 426 1,438 + 150%**
5,739 + 393 5,731 £ 443
7.65+0.25 7.39+0.23
127.70 + 18.92 287.80 + 23.00**
5.57 +£0.43 1.79 £ 0.10***

Data presented as mean + SEM. POST significantly different from PRE as

** P <0.01and
*** P <0.001.

doi:10.1371/journal.pone.0132099.1001

PLOS ONE | DOI:10.1371/journal.pone.0132099 July 8, 2015 8/22



@’PLOS ‘ ONE

Myoblast Fusion during Human Endurance Exercise

Table 2. Physiological and muscle fibre characteristics in cyclists before (PRE) and after (POST) com-
petitive-season.

analysis PRE POST
Wpeak {W} 3445+12.4 331.5+11.8
V’O2peak {l*min—1} 4.55 +0.20 4.98 +0.23
Mass {kg} 69.6+1.6 709+1.7
Hematocrit {%] 41.7£0.7 42.0+0.9
Hemoglobin {gedL—1} 142 +0.3 14.1£0.5
Free testosterone {pgeml—1} 11.0+1.6 10.3+14
Estradiol {pgemlI—1} 10.1+24 12.3+3.0
Fibre type | {%} 635+1.7 56.1 £4.0
Fibre type Il {%} 36.5+1.6 439+4.0
Fibre type | {pm} A 67.97 £ 2.80 63.65 + 2.53
Fibre type 1A {pm} A 67.89 + 3.31 62.38 £ 2.21
Fibre type IIx {um} A 63.58 + 1.67 63.33 £2.13
Leg muscle mass {kg} 21.0+0.34 21.1+£0.32

Data presented as mean + SEM. All differences between PRE and POST were not significant (P > 0.05).
Mean values of Hematocrit and hemoglobin levels were measured using Sysmex system (KX-21N,
Sysmex, Kobe, Japan).

A =in ellipse minor axis.

doi:10.1371/journal.pone.0132099.t002

the post-competitive compared to the pre-competitive season (Fig 3). Further analysis using
IHC of ERV env genes, their receptors, as well as Syncytin-1 transcription factors was per-
formed using biopsies from cyclists in the pre-competitive season and demonstrated different
cellular locations (Fig 4). Results showed a homogenous Syncytin-1 protein expression
throughout myofibers with enrichment at the membrane or sarcolemma. Interestingly, Syncy-
tin-1 myofiber expression was similar in intensity to term placental control tissue, where Syn-
cytin-1 is considered strongly expressed [55] (Fig 5). The Syncytin-1 receptor SLC1A4 only
demonstrated positive expression throughout myofibers, whereas the second receptor SLC1A5
was negative. The other fusogenic env gene Syncytin-2, which was not significantly differen-
tially expressed using qPCR, demonstrated positive expression throughout myofibers, whereas
its receptor MFSD2 was mainly enriched at the sarcolemma (Fig 4). We were not able to ana-
lyze Syncytin-3 expression due to no currently available antibody. The erv3 env protein showed
strong positive protein expression throughout the myofiber, whereas, interestingly envK
expression localized at the myonuclei and nuclei of SCs. Examining protein expression of Syn-
cytin-1 transcription factors in myofibers demonstrated a unique pCREB-Ser133 protein
expression at the basal lamina of the SCs as well as nuclear SCs and myonuclear expression
(Fig 4). In contrast the Syncytin-1 transcription factors PPARy and RXRa, showed no expres-
sion in myofibers supporting no regulatory role. According to the literature, PPARY was in
contrast to PPARS very lowly expressed in healthy skeletal muscle [56].

Due to strong protein expression of Syncytin-1 in myofibers, we asked the question which
kind of myofibers were Syncytin-1 positive. Muscle biopsies of the cyclists from the pre-com-
petitive season were immunolocalized for MyHC-I and MyHC-IIA as well as for Syncytin-1
on serial, consecutive sections. Considering the contractile speed of muscle fibers, MyHC-I
represent slow or type I fibers whereas MyHC-IIA and IIX represent fast or type II fibers
(human skeletal muscle does not express MyHC-IIB). Results showed that the majority of
myofiber types were MyHC-I and less were the MyHC-IIA class. The remaining non-MyHC-I
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Fig 2. Immunostaining of serial cryocut cross-sections in vastus lateralis muscle of cyclist after the
pre-competitive season. (A) Muscle fibers are shown, where one area is viewed at a higher magnification
(white box) in (B) and (C); (D, E, F) co-immunolocalization of Laminin (green), PAX7 (red) and myonuclei
(arrowhead) counterstained with DRAQ5 (blue); the marked area in (A-C) represents the same area as
shown in (D—F); SCs (arrows) are indicated. (C) Note that PAX7 positive SC is located between the
sarcolemma and the basal lamina of the muscle fibre. Bars: 50 pm (A), 10 um (B) and 5 ym (C-F).

doi:10.1371/journal.pone.0132099.g002

and non-MyHC-IIA represented MyHC-IIX positive myofibers (Fig 5). A further comparison
of Syncytin-1 protein expression between the different types of myofibers was performed semi-
quantitatively. Results demonstrated that Syncytin-1 expression of type I MyHC-I myofibers
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Fig 3. Gene expression profiles of ERV env genes and two receptors SLC1A4 and SLC1A5 after qPCR of cyclists after pre- (PRE) and post-
competitive season (POST). Statistical significant genes are in red (PRE = 1-fold) and green (POST = fold). * = P<0.05 and ** = P<0.005.

doi:10.1371/journal.pone.0132099.9003
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SLC1A5 pCREB-Ser133

Syncytin-1

Fig 4. Serial cryocut muscle cross-sections from cyclists after the pre-competitive season demonstrate immuno-localization of different ERV env
genes and their receptors, transcription factors ()CREB-Ser133, PPARy and RXRa). An antibody recognizing keratins from skin was used as a
negative control for skeletal muscle, as well as a negative (neg.) control without primary antibodies. Bars = 25um.

doi:10.1371/journal.pone.0132099.9004

was significantly stronger in intensity when compared with type I MyHC-IIA and IIX myofi-
bers (Fig 5).

Gene expression of ERV env and their receptors were verified using cultured human pri-
mary myoblasts, fractionated from muscle biopsies of non-cyclists (Fig 6 and S2 Table). Pri-
mary myoblasts were grown in growth media (GM) or differentiation media (DM) for 1-4
days. Importantly, myoblast cells grown in GM demonstrated a 13.4-fold increase of growth at
day 4 compared to day 1; on the other hand no significant growth occurred in DM supporting
differentiation (data not shown). Regarding gene expression, significant differences of ERV env
genes and their receptors were observed between GM and DM and showed some similarities to
the gene expression of muscle biopsies of cyclists from the pre- and post-competitive season.
Although, Syncytin-1 expression increased in GM from day 1 to day 4 (2.8-fold), a further
increase of induction was observed when the cells were switched to DM from day 1 (3.5-fold)
till day 2 (5.1-fold) but then decreased until day 4 (2.8-fold). In line with Syncytin-1 its receptor
SLC1A4 also showed a significant induction of expression from day 1 to day 2 (3.1-fold) in DM
(Fig 6). The other putative fusogenic gene Syncytin-3 showed an early strong induction at day 1
(3.2-fold) in DM, and then decreased in a stepwise manner till day 4 (0.7-fold) (Fig 6). Also
examined were several muscle specific genes using cultured human primary myoblasts. For
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Fig 5. Muscle cross-sections of cyclists after pre-competitive season show consecutive tissue sections with immuno-localization of MyHC-l and
MyHC-IIA as well as the fusogenic ERVW-1 env protein Syncytin-1. For comparison of Syncytin-1 protein expression with muscle cells the far right
picture shows a positive control of Syncytin-1 immunolocalization on normal third trimester placental tissues [left = extra villous trophoblasts (EVT);

right = syncytiotrophoblast (SCT)]. The graph represents a semi-quantitative analysis of Syncytin-1 protein signal intensity measured using ImageJ. The
Syncytin-1 expression was then correlated with the fiber types, including MyHC-I (set to 100%), MyHC-IIA and MyHC-IIX. Note that the upper panels show
IHC and the lower panels show magnifications of the squares. Color code represents fiber type in the lower panels: red = MyHC-I, green = MyHC-IIA and
difference of both is marked black = MyHC-IIX. Bars = 100pm. *** = statistically significant (p< 0.005).

doi:10.1371/journal.pone.0132099.9005

example, PAX7 showed a significant 2.0-fold induction in GM after day 2 and day 4 but a
repression to 0.5-fold on day 4 in DM, supporting the presence of SC growth. As expected
expression of MyoD]I increased using GM but even further increased in DM from day 1
(11-fold) till day 2 (10.2-fold), supporting a role in myoblast growth and differentiation.
Importantly, myogenin showed the highest induction in DM from day 1 (100-fold) till day 2
(550-fold) and then leveled in expression at day 4 (400-fold), further supporting myoblast dif-
ferentiation into myotubes. We also checked for the presence of the fibroblast specific marker
gene S100A4, which showed an induction of expression in GM but a profound reduction by
day 2 and 4 in DM (Fig 6). Finally, a microscopic analysis was performed using immunofluo-
rescence of primary human myoblasts cultured in GM and then DM, which clearly demon-
strated differentiation of myoblasts into myotubes solely occurring in DM (Fig 7). Specifically
differentiated myotubes demonstrated multiple nuclei at day 4 in culture. Co-staining for F-
actin also showed an induction of expression in multinucleated myotubes in DM (Fig 7).
Furthermore, when a polyclonal antibody specific for Syncytin-1 was incubated directly with
myoblasts in DM media for 4 days, myoblast fusion was entirely abrogated (Fig 7, S1 Fig). This
result supports Syncytin-1 as an essential protein mediating myoblast cell fusion. Taken
together, all of the above findings demonstrate that upon incubation of primary myoblasts in
DM, a differentiation and fusion into myotubes occurred, but which could be halted when Syn-
cytin-1 was functionally blocked.

We further tested the influence of Forskolin on myoblast growth and differentiation of pri-
mary myoblasts in culture (Fig 6 and S2 Table). Forskolin is a known adenylate cyclase/cAMP
and Syncytin-1/cell fusion activator [57]. However, we observed that Forskolin inhibited
differentiation of primary myoblasts into myotubes. Thus, no detection of myotubes was seen
micoscopically with Forskolin treatment of myotubes (data not shown). Results showed that
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Fig 6. Gene expression profiles of Syncytin-1, -2, -3, and receptor SLC1A4 as well as different muscle specific genes by qPCR and PCR of human
primary myoblasts grown for 1, 2 and 4 days in growth medium (GM) and differentiation medium (DM). The value of each gene for day 1in GM was
setas 1. Diamond: Significances (P<0.05) comparing GM and DM at different days; *: significant differences (P<0.05) between Forskolin and no Forskolin
addition.

doi:10.1371/journal.pone.0132099.9006

Forskolin treated myoblasts in DM compared to the control significantly down regulated mus-
cle specific genes (p = 0.05) (Fig 6 and S2 Table). For example, in comparison to control myo-
genin expression decreased throughout day 1 and 2 in DM plus Forskolin and only induced at
day 4. MyoD1 expression levels also decreased on day 1 and 2 (1.5-2.5-fold). In contrast, in
GM plus Forskolin MyoD1 was up-regulated in myoblasts at day 1 and 2, suggesting different
roles in cAMP signaling during muscle growth and differentiation. On day 2 PAX7 showed a
significant 1.7-fold increase of gene expression in DM plus Forskolin, suggesting a role of
cAMP signaling in SCs. We also investigated the expression of the fusogenic ERV env genes
Syncytin-1, -2 and -3 along with SLC1A4 of primary myoblasts treated with Forskolin (Fig 6).
Syncytin-1 expression was induced on day 1 and 2 in GM and DM, Syncytin-2 was activated
3.1-fold on day 2 in DM. In contrast to Syncytin-1, its receptor SLC1A4 was inhibited in the
presence of Forskolin in GM and DM, suggesting that the lack of myoblast cell fusion could be
linked with the level of receptors. Additionally, Forskolin inhibited expression of Syncytin-3 on
day 1 in DM. Taken together the above results suggest various regulations of ERV env genes
following cAMP signalling.
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Fig 7. Inmunofluorescence of human primary myoblasts in culture with GM and DM with or without anti-Syncytin-1 (-/+ Ab) for 4 days and analysis
by confocal microscopy for nuclei (Hoechst 33342), F-actin (Phalloidin Alexa488), membrane (wheat germ agglutinin Alexa594) and the merge
with all. Note the multinucleated myofibre in DM. DM composite of 96 z-stacks and GM of 17 z-stacks. Bars = 50pm.
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Discussion

Early studies from extensor digitorum longus muscles of swimming rats showed that the mean
cross-sectional area of muscle fibers was unaltered, but the mean length of capillary per unit
volume of muscle and number of nuclei per unit volume of muscle was increased [58]. Simi-
larly in our study with muscles from cyclists comparing pre- and post-competitive seasons the
number of myonuclei/mm fiber length increased (2.25-fold), however with no change of the
muscle fiber cross-sectional area or the myonuclear length. Additionally, the fiber area per
nucleus significantly decreased by 2.4-fold in the post-competitive season. Thus, as cell fusion
proceeds and the number of nuclei increases within a muscle fiber, the internal fiber area per
nucleus must decrease in order to maintain a constant fiber cross-sectional area, which is
necessary to maintain proper skeletal muscle homeostasis and tissue integrity. It is interesting
to note that other human studies in part demonstrated differences, which most likely could

be attributed to the type of sport and biopsy localization. For example, when vastus lateralis
biopsies were analyzed from fifteen individuals who performed 3-times/week resistance leg
training, a significant increase in muscle fiber area occurred after 90 days along with the myo-
nuclear domain and the number of SC [59]. In contrast, the authors found no difference in the
myonuclear number. Further comparisons from the literature involving power lifters (n = 10),
who trained 4-6-times per week, when compared to controls (n = 6) showed an increased num-
ber of myonuclei/fiber from trapezius muscles, further indicating a higher cell fusion rate in
muscle sport activities [60]. This study also showed an increased number of SC in muscle fibers
compared to controls.

It is known that an increase of SC numbers is essential for the maintenance and repair of
muscle function. Using skeletal muscles of rats it was shown that different intensities and dura-
tions of training (treadmill) had no influence on the mean fiber area and myonuclei per fiber.
However, the SC pool increased in rats who trained with a higher intensity rather than an
increased duration [61]. Another study involving mice exercising with moderate intensity for 8
weeks on a treadmill also showed an increase of SC [62]. Increases of the SC amount in the
skeletal muscles have also been reported with over 14 weeks of endurance training in healthy
older men [63, 64]. Considering the SC amount, our study showed that a 3.1-fold decrease of
SC occurred in muscles of cyclists comparing the post- with the pre-competitive season. This
result speaks for proliferation of SCs during moderate training in the pre-competitive season,
in contrast to a possible SC exhaustion due to increased cell fusion during the competitive
season.

Many proteins have been found to be essential in myoblast fusion, like myogenin [65],
DOCK1 [66], Racl, Cdc42 [67] and N-WASP [68] [69]. Especially the ELMO-DOCK1-Racl-
pathway, which regulates the actin cytoskeleton, has an essential role in myoblast fusion. New
studies linked transmembrane proteins like brain-specific angiogenesis inhibitors (BAI) and
Myomaker to murine myoblast fusion. For example, one study identified BAI1 as a receptor
for phosphatidylserine presented by apoptotic cells as crucial for myoblast fusion during mus-
cle repair [70]. An additional family member, BAI3 was also found necessary for myoblast
fusion by its interaction with ELMO [71]. Another driver for myoblast fusions was the murine
transmembrane protein Myomaker, which was found to induce cell fusions, when only
expressed in one partner cell [72]. Subsequently, a yet unknown receptor on the recipient cell
must be necessary for myoblast fusion events. The actin-cytoskeleton is also essential for cell
tusions. In Drosophila, the protein complex FuRMAS is a signaling center at cell-cell contact
sites, including F-actin, cell adhesion and signaling proteins. Especially, F-actin accumulation
and branching is one prerequisite for myoblast fusion in Drosophila [69]. In another Drosoph-
ila study, two fusing muscle cells showed F-actin foci along the membrane at the site of fusion,
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with invading finger-like cell protrusions occurring from one cell to another [73]. Although we
did not detect myoblast fusions “in statu nascendi”; differences were observed with F-actin
polymerization of primary myoblast cells grown in GM and DM after 4 days in culture (Fig 7).
For example, the mononuclear myoblasts in GM showed high F-actin polymerization at parts
of the cell membrane, whereas multinuclear myotubes showed a more uniform F-actin
polymerization.

Our present research findings implicate that the ERV env genes, Syncytin-1 and Syncytin-3
are involved in human myoblast fusion, for example the over 3-fold higher level of expression
observed for both genes in fused muscle fibers of cyclists at the post-competitive season and
the detection of Syncytin-1 at the sarcolemma using IHC (Fig 4). As noted earlier in the litera-
ture, Syncytin-1 was found significantly elevated in muscle biopsies of patients with motor neu-
ron disease compared to Syncytin-1 expression in muscles of control individuals [74]. The
latter study implicated that increased levels of Syncytin-1 in muscles from diseased patients was
linked with oxidative stress and cytotoxicity. A recent study also demonstrated that the Syncy-
tin-1 protein localized to membranes of connecting human primary cultured myoblasts and
partially co-localized with caveolin-3 in myogenin-positive and negative cells [75]. In the same
study antisense primers against Syncytin-1 inhibited cell fusion of cultured myoblasts. Further
confirmation for a role of Syncytins in myoblast cell fusion stems from our in vitro primary
myoblast cultures, where myoblasts in DM showed a significant induction of Syncytin-1 after
day 1 and 2. Importantly, our results that cell fusion of myoblasts were blocked using an anti-
body targeting Syncytin-1 protein points to an essential role of this membrane protein in myo-
blast differentiation. Its receptor SLC1A4 was also induced on day 2 and 4 in DM.
Additionally, Syncytin-3 expression was induced earlier on day 1 in DM. Overall we predict
that myoblast differentiation was maximal after day 1 and day 2 and with a reduction of gene
expression by day 4 along with the presence of multinucleated myotubes supports differentia-
tion was complete. It is known that Syncytin proteins require cellular receptors to mediate cell
tusions, like SLC1A4 and SLC1AS5 (for Syncytin-1) and MFSD2a (for Syncytin-2), however a
cellular receptor for Syncytin-3 is not known so far. Northern blots previously demonstrated
that SLCIAS5 (also called receptor for RD114/type D retrovirus) was mainly expressed in a vari-
ety of tissues containing skeletal muscles [76]. Since we only detected the SLC1A4 and not
SLCIAS5 protein in muscle from pre-competitive season, supports translational regulations for
SLCI1AS5. Therefore in skeletal muscles of cyclists, SLC1A4 appears to be the primary trans-
porter for both glutamate and neutral amino acids and the main receptor of Syncytin-1 for
mediating cell fusions. Additionally, a lower requirement for amino acids after the 8 month
long competitive season could contribute to the abrupt decrease of SLC1A4 gene expression.
Taken together, our results implicate that both ERV env genes along with their receptors may
be responsible for active myoblast fusion in vivo and in vitro.

An induced protein kinase A pathway characterized through elevated cAMP and pCREB-
Ser133 has been shown to be responsible for the activation of Syncytin-1 in placental tropho-
blasts [77], choriocarcinoma cells [78], endometrial carcinoma [79] and pituitary adenomas
[80] with different cellular outcomes. Strong pCREB-Ser133 signals were found at muscle fibers
of the cyclists after the pre-competitive season using IHC (Fig 4). Interestingly, like envK,
PCREB-Ser133 postively localized to the myonuclei and SC nuclei of myofibers of cyclists in
the pre-competitive season (Fig 4), pointing to a role in the SC regulation. Using our primary
myoblast cell cultures PAX7 gene expression was significantly induced in GM at day 2 and also
following Forskolin treatment in DM, further implicating cAMP regulation of SCs. A study of
rat SC showed that an inhibition of protein kinase A (and protein kinase C) induced differenti-
ation (cell fusion) without affecting proliferation [81]. This suggests protein kinase A nega-
tively regulates muscle fusion. Therefore, our study points to a unique role of the protein
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Fig 8. Schematic model showing the links between the significant changes of muscle-specific attributes with the expression of ERV env genes,
their receptors and muscle specific genes relating to cell fusion occurring in vivo (biopsies from cyclists at the pre- and post- competitive
seasons) and in vitro. The top represents the muscle differentiation in cyclists from pre- (PRE) to post-competitive season (POST), whereas the bottom
symbolizes the myoblast cultures proliferating in growth media (GM) or differentiating to myotubes in differentiation media (DM). Additionally, since SCs and
myonuclei showed positive expression for protein kinase A activated pCREB-Ser133 (Fig 4) and treatment of primary myoblast cultures with the cAMP
stimulator Forskolin did not promote myoblast cell fusion (Fig 6), we predict that cAMP may be important for regulating SCs. SC = satellite cells; MP = muscle
progenitors; MT = myotubes; PRE = pre-competition; POST = post-competition; GM = growth media; DM = differentiation media; arrow up = significantly up-
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doi:10.1371/journal.pone.0132099.g008

kinase A-pathway (pCREB-Ser133) regulation of SCs possibly inducing a shift towards a more
undifferentiated state. This could help to explain our results of a higher SC content and
reduced cell fusion during the pre- compared to the post-competitive season.

In search of pro-myogenic compounds using Zebrafish embryo cultures, Forskolin at a
50uM concentration enhanced mouse SC proliferation and together with bFGF and a GSK383
inhibitor, induced skeletal differentiation of human induced pluripotent stem cells [82]. Inter-
estingly, the latter study found no induction of cell fusion in cell culture with Forskolin. In con-
trast to Xu et al. [82] who showed no change of cell fusion with Forskolin, our results
demonstrate that Forskolin inhibited cell fusion of primary myoblasts measured over 4 days.
Similar to other cell culture studies [77-80], we also found that Syncytin-1 gene expression was
significantly induced in primary myoblasts with Forskolin on day 1 and 2 in DM and GM.
However, the inhibition of SLC1A4, MyoD1 and myogenin with Forskolin along with our
microscopic findings supports no induction of cell fusion. Comparable to a study with Forsko-
lin and human pituitary adenoma cells, Forskolin induced Syncytin-1 and also did not result in
cell fusions [80]. This is in contrast to human primary placental trophoblasts (not choriocarci-
noma cells), which showed high cell fusions and Syncytin-1 induction after Forskolin treat-
ment [11, 83]. In agreement with our findings showing inhibition of primary myoblast fusion
with Forskolin, another study showed that protein kinase A activation through elevated cAMP

PLOS ONE | DOI:10.1371/journal.pone.0132099 July 8,2015 17/22



@’PLOS ‘ ONE

Myoblast Fusion during Human Endurance Exercise

levels inhibited skeletal myogenesis by phosphorylating and inactivating myocyte enhancer
factor 2D [84].

In summary, based on our results, we present a model demonstrating the link between the
process of muscle differentiation in human cyclists in vivo and human myoblasts in vitro
(Fig 8). In the future it will also be important to unravel the diverse functional roles of cAMP
signaling and ERV gene regulations during cell fusion in different cellular types including mus-
cle cell progenitors.

Supporting Information

S1 Fig. Inhibition of primary myoblasts fusion after treatment with anti-Syncytin-1. Panel
shows fluorescence imaging of human primary myoblasts cultured in DM, without or treated
with anti-Syncytin-1 (Ab) for 4 days and then analysed using a fluorescent microscope and
computer software. Merged images show nuclei (Hoechst 33342, blue) and cell membrane
(wheat germ agglutinin Alexa594, red). White arrows represent multinucleated myofibres in
DM with no antibody.
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S1 Table. ERV env gene expression in muscle biopsies from cyclists.
(DOCX)

$2 Table. Muscle specific gene expression of primary muscle cell cultures with and without
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