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Abstract

Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and
cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several
heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus–
amygdala complex in medication-naïve patients with first-episode MDD.

Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve,
and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural
covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions;
the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for
age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups.

Results Compared with HCs, the SCN within the hippocampus–amygdala complex in patients with MDD showed a shortened mean
characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail
showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures
of centrality, segregation, and integration in patients with MDD compared with HCs.

Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus–amygdala complex in
patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying
neuropathologic process in MDD.

Keywords: Major depressive disorder; hippocampus–amygdala complex; structural covariance network; global network metrics; local
network metrics

Introduction
Major depressive disorder (MDD) is one of the most prevalent,
debilitating affective disorders and is characterized by depressed
mood, diminished interest, impaired cognitive function, and veg-
etative symptoms (Otte et al., 2016). Psychoradiological evidence
accumulated in recent decades has emphasized the importance
of the hippocampus and the amygdala in the neuropathology of
MDD (Chen et al., 2021). The hippocampus and amygdala are heav-
ily interconnected structures that subserve integrated cognitive
and affective functions; in this capacity, they are commonly re-
ferred to as the hippocampus–amygdala complex (Fudge et al.,
2012; Terranova et al., 2022). The Enhancing Neuroimaging Ge-
netics through Meta-Analysis (ENIGMA) MDD working group de-
tected significantly lower overall hippocampal volumes in MDD
patients than in healthy control (HC) participants, especially
in patients with recurrent MDD or with an early age of onset

(Schmaal et al., 2016). While multi-site studies with large sample
size found no differences in the whole amygdala volume, several
single-site studies with clinically homogeneous samples found
an overall decrease in amygdala volume in patients with MDD
(Zavorotnyy et al., 2018; Weissman et al., 2020; Kim et al., 2021).

Since both of the hippocampus and amygdala consist of his-
tologically and functionally heterogeneous subfields/subregions,
apart from total volumes of these structures, studies have shown
selective alterations in hippocampal subfields and amygdala sub-
regions in relation to MDD (Boll et al., 2013; Iglesias et al., 2015;
Whelan et al., 2016). The ENIGMA working group also reported that
patients with MDD had reduced thickness and surface area in the
subiculum and CA2/3 areas of the hippocampus and basolateral
amygdala, and these effects were primarily driven by MDD with
an adolescent age of onset (Ho et al., 2022). Recurrence of MDD
was associated with reduced surface area and thickness in the
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basolateral amygdala and in the CA1 region of the hippocam-
pus (Ho et al., 2022). Our previous study reported a larger bilat-
eral subiculum, CA1 and left CA2/3, CA4/dentate gyrus (DG) in
MDD patients who did not show an early effective response to
antidepressants than in HCs or patients with an early treatment
response (Hu et al., 2019). Regional amygdala volume alterations
were also reported (Yao et al., 2020; Kim et al., 2021; Roddy et al.,
2021).

These reports point that multiple but no single subfields of the
hippocampus and subregions of the amygdala were affected in
MDD. However, it remains unknown whether volume alterations
in these subfields or subregions in the hippocampus–amygdala
complex can be described with higher, network-level patterns, and
whether these patterns would be atypical in patients with depres-
sion. Indeed, a number of studies found covariation in morphol-
ogy of different brain areas (structural covariance) showed net-
work properties and were atypical in patients with MDD, but all of
them reported whole-brain structural covariance abnormalities
and no study to date has focused on the structural covariance
network (SCN) within the hippocampus–amygdala complex (Yee
et al., 2018; Watanabe et al., 2020; Li et al., 2021; Xiong et al., 2021).
Although the neurobiology meaning of the SCN was yet to be
known, some have studies pointed to common neural substrates
that influence multiple brain regions simultaneously—genetic
and environmental factors that influences trajectories in brain de-
velopment and maturation, or continuously reshaping the brain
during the lifespan (Zielinski et al., 2010; Yee et al., 2018; Qi et al.,
2019; Plachti et al., 2020). Interestingly, SCN were found similar to
patterns of functional connectivity than the architecture of white
matter connections, and graph theory metrics were commonly
used to describe the characteristics of SCN in psychoradiology
studies (Yun et al., 2020). Studies on atypical SCN in psychiatric
disorders are important as they provide clues for future studies
to find underlying neural substrates or subserve as a candidate
for transdiagnosis biomarkers (Liu et al., 2021; Han et al., 2022) (Li
et al., 2015; Yun et al., 2020).

In the current study, we recruited a relatively large sam-
ple of first-episode, medication-naïve, and noncomorbid patients
with MDD to build a SCN based on the volumes of hippocam-
pal subfields and amygdala subregions. We aimed to identify
MDD-related covariance patterns in the localized SCN within
the hippocampus–amygdala complex, which would shed light on
common neural substrates that influence multiple sites in the
complex.

Method
Participants
This study was approved by the Research Ethics Committee of
Sichuan University, and written informed consent was obtained
from all participants. We recruited 123 first-episode, medication-
naïve MDD patients and 81 age- and sex-matched HCs for the
present study. All participants were recruited consecutively from
the outpatient or inpatient psychiatric units of local hospitals. The
diagnosis of first-episode depression was made according to the
Structured Clinical Interview for the DSM-IV. Acute illness severity
was assessed using the 17-item Hamilton Rating Scale for Depres-
sion (HAMD) and the 14-item Hamilton Rating Scale for Anxiety
(HAMA).

The inclusion criteria for patients were as follows: (i)
medication-naïve with no previous episodes of depression and (ii)
currently experiencing an episode of depression with a HAMD to-

tal score ≥18. The exclusion criteria included the following: (i)
presence of other Axis I psychiatric disorders, including anxiety
disorders, obsessive compulsive disorder, and substance use dis-
orders (excluding nicotine); (ii) history of neurological or cardio-
vascular disease; (iii) pregnancy or systemic physical illness; and
(iv) any contraindication to magnetic resonance imaging (MRI).

HC participants were screened for a current or lifetime history
of Axis I mental disorder using the Structured Clinical Interview
for the DSM-IV. Neurological and other medical disorders were
identified based on personal histories and physical examinations.
None of the participants had any gross neuroanatomic abnormal-
ities or image distortion related to head motion evident on T1-
weighted scans reviewed by two experienced neuroradiologists.

MRI data acquisition and processing
High-resolution T1-weighted images were obtained using
a magnetization-prepared rapid gradient-echo sequence
(TR/TE = 1900/2.2 ms; inversion time = 900 ms; flip angle = 9◦)
via a 3.0-T MRI system (Trio, Siemens, Erlangen, Germany). The
matrix (256 × 256), the field of view (256 × 256 mm), and the
section thickness (1 mm) together yielded an isotropic voxel size
of 1 mm3. Foam padding and earplugs were used to reduce head
motion and scanner noise.

Images were automatically preprocessed using FreeSurfer soft-
ware (v.6.0) (http://surfer.nmr.mgh.harvard.edu/) with the stan-
dard recon-all process. Briefly, T1-weighted images were trans-
formed into Talairach space, and signal intensity normalization
and skull-stripping procedures were performed (Sled et al., 1998;
Fischl et al., 2002; Reuter et al., 2010; Whelan et al., 2016). A mea-
surement of intracranial volume (ICV) was extracted.

The segmentation of hippocampal subfields and amygdala
subregions was performed using a special module in FreeSurfer
that employs a tetrahedral mesh-based probabilistic atlas built
from manually delineated hippocampus and amygdala maps
based on in vivo and ex vivo data (Iglesias et al., 2015; Saygin
et al., 2017). Using this algorithm, nine subregions in the amyg-
dala were obtained, comprising seven nuclei [lateral nucleus (La),
basal nucleus (Ba), accessory basal nucleus (AB), CeA, medial nu-
cleus (Me), cortical nucleus (Co) and paralaminar nucleus] and
two transition areas [anterior amygdaloid area (AAA) and cor-
ticoamygdaloid transition area (CAT)]. Additionally, 12 subfields
in the hippocampus were obtained, including the CA1, the CA3
(which contains the CA2), the CA4, the molecular and granule cell
layers of the dentate gyrus, the molecular layer, the subiculum,
the presubiculum, the parasubiculum, the fimbria, the fissure,
hippocampal-amygdala transition area, and the tail. An example
of the segmentation for a healthy participant is shown in Fig. 1. All
segmentations were visually inspected according to the ENIGMA
control protocol (http://enigma.ini.usc.edu/). In brief, the segmen-
tation of each participant was independently visually checked by
two coauthors (L.Z. and X.H.), and participants with segmenta-
tion results judged to be incorrect (e.g. most of the hippocam-
pus/amygdala was cut off, or the mask was shifted with respect
to the structure) were excluded. None of the participants showed
segmentation failure.

Analysis of the intrinsic hippocampus–amygdala
complex global and local networks
We performed a volume-based analysis of the intrinsic
hippocampus–amygdala complex network with Brain Analysis
using Graph Theory (BRAPH; v.1.00; http://braph.org/) (Mijalkov
et al., 2017). Networks were built for each group as collections
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Figure 1: An example of amygdala (A) and hippocampal (B) segmentation in a healthy participant. Abbreviations: CeA, central nucleus; HATA,
hippocampus–amygdala transition area; GC-ML-DG, granule cell and molecular layers of the dentate gyrus; CA, cornu ammonis.

of nodes representing individual volumes of the hippocampal
subfields and amygdala subregions connected by edges corre-
sponding to the interconnections. We used the volumes of the
18 subregions of the amygdala and the 24 subfields of the hip-
pocampus. The edges were calculated as the partial correlation
coefficients between each pair of subfields while controlling for
the effects of age, sex, education level, and ICV. A structurally
weighted, undirected connectivity matrix was built for each
group.

Measures of brain networks
To determine the differences between groups in the intrinsic
global hippocampus–amygdala complex network, we calculated
graphical metrics that reflect network segregation, integration,
network resilience, and centrality for the whole network and for
each node, while Supplementary Table S1 contains mathematical
definitions of all topological metrics. The small-worldness index
is defined as the normalized clustering coefficient/characteristic
path length (Bassett and Bullmore, 2006). When the minimum
density of the small-worldness index is >1, a network is consid-
ered to have small-world organization (Amaral et al., 2000).

Measures of segregation include clustering coefficient, tran-
sitivity, local efficiency, strength and modularity. The clustering
coefficient is defined as the fraction of triangles around an indi-
vidual node (Watts and Strogatz, 1998). The nodal clustering coef-
ficient is defined as the fraction of triangles present around a node
(Watts and Strogatz, 1998). Transitivity is defined as the ratio of the
total number of triangles to the number of (unordered) triplets in
the graph (Newman, 2003). Local efficiency is defined as the av-
erage of the local efficiencies of all nodes (Latora and Marchiori,
2001). Nodal local efficiency is defined as the global efficiency of

a node calculated on the subgraph formed by the neighbors of
the node (Latora and Marchiori, 2001). Strength is defined as the
average of the strengths of all nodes (Rubinov and Sporns, 2010).
Nodal strength is defined as the sum of the weights of all edges
connected to a node (Barrat et al., 2004). Modularity is defined as
the extent to which a graph can be divided into clearly separated
communities (Newman, 2006).

Measures of integration include characteristic path length,
global efficiency, and triangles. The characteristic path length is
defined as the average shortest path length between all pairs of
nodes in Network (Watts and Strogatz, 1998). Global efficiency is
defined as the average inverse shortest path length (Latora and
Marchiori, 2001). Nodal global efficiency is defined as the average
of the inverse shortest path length from a node to all other nodes
(Latora and Marchiori, 2001). A triangle is defined as being present
when two neighbors of a node are also neighbors to each other
(Onnela et al., 2005).

Resilience of the network can be measured by the assortativity
coefficient. The assortativity coefficient is the correlation coeffi-
cient between the degrees of all nodes on two opposite ends of a
link (Newman, 2002).

Measures of centrality include degree, average eccentricity, be-
tweenness centrality, and closeness centrality. Degree is defined as
the average of the degrees of all nodes (Rubinov and Sporns, 2010).
Nodal degree is defined as the total number of edges connected
to a node (Achard and Bullmore, 2007). Eccentricity is defined as
the average of the eccentricities of all nodes (Harris et al., 2008).
Betweenness centrality is defined as the fraction of all shortest
paths in the network that pass through a given node (Brandes,
2001). Closeness centrality is defined as the inverse of the aver-
age shortest path length from one node to all other nodes in the
network (Freeman, 1978).
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Statistical analysis
Statistical analysis of demographic data was conducted using the
Statistical Package for the Social Sciences (v.19.0) software. Differ-
ences between the MDD and HC groups were examined using a
two-sample t-test for continuous variables and a chi-square test
for categorical variables.

The global and local hippocampus–amygdala complex network
measures were compared on the network sparsity of 50% by test-
ing the statistical significance of the differences using nonpara-
metric permutation tests with 1000 permutations. Then, we cal-
culated abnormal global metrics at different sparsity thresholds
(20–50%, at intervals of 5%) between groups to explore how
thresholds influence the results. A false discovery rate (FDR) cor-
rection was applied to correct for multiple comparisons in the
analysis of the intrinsic local hippocampus–amygdala complex
network.

Results
Demographic and clinical features
The demographic and clinical features of the 123 treatment-naïve
individuals with MDD and 81 HCs are presented in Table 1. There
were no significant differences between patients with MDD and
HCs in terms of age, sex, education level, or ICV. In the patients
with MDD, the mean HAMD and HAMA scores were 25.8 and 24.5,
respectively.

The global topological characteristics of the
intrinsic hippocampus–amygdala complex
network
There were significant differences in the global network between
patients with MDD and HCs (Table 2). The small-worldness in-
dex was significantly increased in patients with MDD compared
to HCs (0.924 vs. 0.747, P < 0.001). However, the small-worldness
index in both groups was <1, suggesting that the hippocampus–
amygdala complex network in both the MDD and HC groups failed
to present small-world organization.

The modularity was significantly decreased in patients with
MDD compared to HCs (0.046 vs. 0.136, P = 0.004), while most
measures of segregation (including average strength, local effi-
ciency, mean clustering coefficient, and transitivity) were slightly
increased in patients with MDD compared to HCs. The character-
istic path length (a measure of integration) was significantly de-
creased in patients with MDD compared to HCs (2.721 vs. 3.490,
P = 0.029). No significant differences were found in measures of
centrality between groups. As shown in Fig. 2, alterations of in-
dex for the small-worldness, modularity, and characteristic path
length remained the same trend between groups.

The nodal topological characteristics of the
intrinsic hippocampus–amygdala complex
network
Significant differences in local networks were mainly found in
multiple subregions in the left amygdala and left hippocampal
tail between patients with MDD and HCs (Fig. 3, see Supplemen-
tary Tables S2–S10 for details on the full group comparison of local
network measures).

Measures of segregation
The nodal clustering coefficients of the left CAT, La, Ba, and par-
alaminar nucleus were significantly decreased in patients with
MDD compared to HCs (FDR-corrected P < 0.05), while the nodal

clustering coefficient of the left hippocampal tail was significantly
increased in patients with MDD compared to HCs (FDR-corrected
P < 0.05). The nodal local efficiency of the left hippocampal tail
was significantly increased in patients with MDD compared to
HCs (FDR-corrected P < 0.05). Moreover, the nodal strength of the
left CAT, AB, La, Me, right fissure, and molecular layer were signif-
icantly decreased in patients with MDD compared to HCs (FDR-
corrected P < 0.05), while the nodal strength of the left CA4 was
significantly increased in patients with MDD compared to HCs
(FDR-corrected P < 0.05).

Measures of integration
The nodal global efficiency of the left CAT, Ba, AB, AAA, and par-
alaminar nucleus was significantly decreased in patients with
MDD compared to HCs (FDR-corrected P < 0.05), while the nodal
global efficiency of the left hippocampal tail was significantly in-
creased in patients with MDD compared to HCs (FDR-corrected
P < 0.05). The nodal path length of the left CAT, Ba, and La was
significantly increased in patients with MDD compared to HCs
(FDR-corrected P < 0.05). Moreover, the triangles of the left CAT,
La, AB, Ba, and paralaminar nuclei were significantly decreased in
patients with MDD compared to HCs (FDR-corrected P < 0.05).

Measures of centrality
The betweenness centrality of the left Co was significantly in-
creased in patients with MDD compared to HCs (FDR-corrected
P < 0.05), while the closeness centrality of the left CAT, La, Ba,
AB, AAA, and paralaminar nucleus were significantly decreased
in patients with MDD compared to HCs (FDR-corrected P < 0.05).
Moreover, the nodal degrees of the left CAT, La, parasubiculum,
and presubiculum were significantly decreased in patients with
MDD compared to HCs (FDR-corrected P < 0.05).

Discussion
In the current study, with a relatively large sample of first-episode,
never-treated patients with MDD, we demonstrated for the first
time the alterations of topological properties for the SCN in
the hippocampus–amygdala complex in this population. Patients
with MDD showed decreased characteristic path length, modu-
larity, and small-worldness, suggesting higher network integra-
tion within the hippocampus–amygdala complex in patients than
in HCs. The left hippocampal tail showed higher centrality, while
nodes within the left amygdala showed lower centrality except for
the left cortical nucleus of the amygdala. These findings add to
previous work that reported MDD-related subregional-level neu-
roanatomical alterations in the hippocampus and amygdala, and
highlighted potential common neural substrates underlying MDD
influence multiple sites in the hippocampus–amygdala complex
simultaneously.

Interestingly, we found that patients with MDD had higher net-
work integration (as suggested by decreased characteristic path
length) and lowered functional segregation (as suggested by de-
creased modularity) within the hippocampus–amygdala complex,
as compared with HCs. Findings from whole-brain network or-
ganization studies commonly suggest increased or comparable
characteristic path length (Ye et al., 2015; Liu et al., 2020; Yu
et al., 2020), and higher modularity of brain networks in patients
with MDD than in HCs (Chen et al., 2017). Our findings suggest
that the pattern of structural network organization within the
hippocampus–amygdala complex is distinct from the pattern of
global network organization in MDD.
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Table 1: Demographic: and clinical features of the treatment-naïve patients with MDD and HCs.

MDD (N = 123) HC (N = 81) P values

Age (years) 32.4 (11.3) 33.6 (10.8) 0.440
Sex (female/male) 78/45 51/30 0.948
ICV (cm3) 1476.8 (139.2) 1470.5 (131.2) 0.742
Age of onset (years) 30.8 (11.5) NA -
Illness duration (weeks) 29.7 (28.8) NA -
HAMD score 25.8 (5.4) NA -
HAMA score 24.5 (9.1) NA -

Notes: Data are presented as the means (standard deviation). Abbreviation: NA, not applicable.

Table 2: Differences: in the intrinsic hippocampus–amygdala global network between patients with MDD and healthy controls.

Measures Patients with MDD HCs Differences CI lower CI upper P value

Small-worldness index 0.924 0.747 − 0.177 − 0.066 0.054 <0.001∗∗∗

Measures of segregation
Average strength 16.964 13.997 − 2.967 − 3.727 3.865 0.244
Local efficiency 1.262 1.043 − 0.218 − 0.365 0.441 0.405
Mean clustering coefficient 0.394 0.304 − 0.090 − 0.100 0.097 0.143
Transitivity 0.601 0.465 − 0.137 − 0.140 0.152 0.136
Modularity 0.046 0.136 0.090 − 0.047 0.052 0.004∗∗

Measures of integration
Characteristic path length 2.721 3.490 0.768 − 0.691 0.600 0.029∗

Global efficiency 0.436 0.384 − 0.052 − 0.071 0.090 0.308
Measures of centrality

Average degree 39.762 38.143 − 1.619 − 1.713 0.955 0.097
Average eccentricity 5.746 6.443 0.698 − 1.115 1.017 0.274

Measures of resilience
Assortativity coefficient − 0.074 − 0.070 0.004 − 0.034 0.028 0.739

Notes: Data are presented as the means. CI, 95% confidence interval of the difference between the groups. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

Figure 2: Small-worldness index (A), modularity (B), and characteristic path length (C) values of the patients with MDD and HCs at the network
sparsity of 20–50% at intervals of 5%. ∗ represents significance between groups.

Decreased modularity suggests that the network examined
could be less clearly separated into a collection of communities
(Rubinov and Sporns, 2010). Together with higher network integra-
tion, our findings may suggest that patients with MDD had a less
organized network structure within the hippocampus–amygdala
anatomical network. An abnormal hippocampus–amygdala com-
plex network could be the neuroanatomical basis disrupted feed-
back and/or feedforward systems between the hippocampus and
amygdala, which in turn leads to dysregulated emotional mem-
ory that could contribute to MDD. Indeed, in animal models, acti-
vation of projections from the anterior basolateral amygdala nu-
cleus to CA1 induces anxiety and social deficits, while activation
of projections from the posterior basolateral amygdala nucleus
to CA1 mediates learned hopeful or positive motivation in the
face of pressure-facilitated spatial memory (Yang et al., 2016; Yang

and Wang, 2017). Hippocampus-dependent, episodic representa-
tion of emotionally significant content can influence the amyg-
dala in functional MRI studies in human participants (Funayama
et al., 2001; Ochsner et al., 2002; Schaefer et al., 2002).

We found the small-worldness index is significantly dif-
ferent between patients with MDD and HCs. However, the
small-worldness indexes in both groups were smaller than 1, indi-
cating that the network within the hippocampus–amygdala com-
plex does not preserve a small-world organization (Humphries
and Gurney, 2008). As the small-worldness index is calculated
as the proportion of the clustering coefficient and characteris-
tic path length of the graph compared to random graphs and we
found that the characteristic path length was significantly shorter
in patients than in HCs; our finding of a significantly increased
small-worldness index in patients with MDD is likely driven by a
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Figure 3: The group differences in the topological properties of each node within the SCN of the hippocampus–amygdala complex between MDD
patients and HCs. Abbreviations: L, left; R, right; HATA, hippocampus–amygdala transition area; GC-ML-DG, granule cell and molecular layers of the
dentate gyrus; CA, cornu ammonis. ∗ indicates FDR-corrected P < 0.05.

reduced characteristic path length in patients (Humphries and
Gurney, 2008).

Analyses of nodal graph metrics highlights the distinct role
of the left hippocampal tail in the hippocampus–amygdala com-
plex. Specifically, the left hippocampal tail in patients with MDD
showed higher measures of centrality (higher closeness centrality,
clustering coefficient, degree, global/local efficiency, and triangles
but lower path length), while other subfields/subregions showed
an opposite direction of change when compared with HCs. These
alterations in graph metrics indicate that the left hippocampal
tail could be an abnormal hub in the hippocampus–amygdala
network in patients with MDD. The hippocampal tail was pre-
viously shown to have anatomical differences in patients with
MDD, and our study further identified its important role in the
abnormal hippocampus–amygdala structural network related to
MDD (Maller et al., 2017; Nogovitsyn et al., 2020). Anatomical evi-
dence from rodents demonstrates that reciprocal connectivity be-
tween the amygdala and the hippocampus is largely confined to
the ventral two-thirds (corresponding to the hippocampal head
and tail), and a study reported that the dorsal-most portion of the
hippocampus (corresponding to the hippocampal tail) does not

innervate the amygdala (Pikkarainen et al., 1999; Pitkänen et al.,
2000; Petrovich et al., 2001). In primates, hippocampus–amygdala
topographical projections are more restricted to the most ante-
rior CA1 and presubiculum (Fudge et al., 2012). SCNs do not nec-
essarily correspond to white matter projections; however, they are
more similar to patterns of functional connectivity than the archi-
tecture of white matter connections. Further studies are needed
to clarify why and how the alteration pattern of SCN metrics in
the hippocampal tail stands out from other subfields of the hip-
pocampus or subregions of the amygdala.

Nodes within the left amygdala (except for the left Co) showed
lower measures of centrality, significantly lower degree, close-
ness centrality, clustering coefficients, degree, triangle, strength
and global/local efficiency, and longer path length. These find-
ings suggested that subregions within the left amygdala were
less connected with other nodes in the hippocampus–amygdala
network. The amygdala shows significant lateralized activation
during emotion processing, with more frequent activation on
the left than on the right (Baas et al., 2004). A previous study
reported lower resting-state functional connectivity of the left
amygdala with the cognitive control network in a population with
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subthreshold depression (Peng et al., 2020). Moreover, a study
found that each individual with depression had lateralized amyg-
dala activity, and the direction of asymmetry persisted even after
treatment (Chen et al., 2014). Our findings further demonstrated
lateralized amygdala abnormalities in terms of topological char-
acteristics within the hippocampus–amygdala complex.

There are certain limitations in the present study. First, our
sample included only first-episode, comorbidity-free patients.
While including this clinically homogeneous sample provides
an advantage in identifying MDD-specific alterations unrelated
to treatment and illness course, our result may not general-
ize to MDD patients with comorbid disorders or with a history
of multiple episodes. Longitudinal studies and cross-sectional
comparison studies are needed to resolve these factors. Sec-
ond, we investigated the intrinsic SCN within the hippocampus–
amygdala complex but could not locate anatomical projec-
tions or functional connectivity alterations. Further studies
are warranted to determine the underlying biological mecha-
nisms of topological changes within the hippocampus-amygdala
network.

Conclusions
The current study presented the first evidence of atypical topo-
logical characteristics within the hippocampus–amygdala com-
plex in patients with MDD using volumetric SCN analyses. The
intrinsic hippocampus–amygdala network showed increased net-
work integration but decreased segregation in patients with MDD
compared to HCs. While the left hippocampal tail showed abnor-
mally increased measures of centrality, nodes in the left amygdala
showed reduced measures of centrality. These patterns of alter-
ation may be a consequence of common neural substrates that
influence multiple sites in the hippocampus and amygdala that
underlying neuropathology of MDD. Future studies are needed to
clarify the cause of altered topology, the affective/functional con-
sequences of atypical topologic properties of the hippocampus–
amygdala network that could contribute to the clinical presenta-
tion of MDD, and the degree to which the topologic properties are
a risk factor for MDD or are reduced by antidepressant therapy
over the course of illness.
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