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ABSTRACT Candida albicans is among the most prevalent opportunistic human
fungal pathogens. The ability to mask the immunogenic polysaccharide � (1,3)-
glucan from immune detection via a layer of mannosylated proteins is a key viru-
lence factor of C. albicans. We previously reported that hyperactivation of the Cek1
mitogen-activated protein (MAP) kinase pathway promotes � (1,3)-glucan exposure.
In this communication, we report a novel upstream regulator of Cek1 activation and
characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-
activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We
found that disruption of LRG1 causes Cek1 hyperactivation and � (1,3)-glucan un-
masking. However, when GTPase activation was measured for a panel of GTPases,
the lrg1�� mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1
or Rac1. Unmasking and Cek1 activation in the lrg1�� mutant can be blocked by in-
hibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1��

mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine
how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible
hyperactive STE11�N467 allele was expressed in C. albicans. In the absence of doxycy-
cline, this allele overexpressed STE11�N467, which induced production of proinflam-
matory tumor necrosis factor alpha (TNF-�) from murine macrophages. This in vitro
phenotype correlates with decreased colonization and virulence in a mouse model
of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was
explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467

caused upregulation of the Cph1 transcription factor and of a group of cell wall-
modifying proteins which are predicted to impact cell wall architecture.

IMPORTANCE Candida albicans is an important source of systemic infections in hu-
mans. The ability to mask the immunogenic cell wall polymer � (1,3)-glucan from
host immune surveillance contributes to fungal virulence. We previously reported
that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall un-
masking, thus increasing strain immunogenicity. In this study, we identified a novel
regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating
protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and
its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal vir-
ulence in the mouse model of infection, and this correlates with increased cytokine
responses from macrophages. We also analyzed the transcriptional profile deter-
mined during � (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report
provides a model where Cek1 hyperactivation causes � (1,3)-glucan exposure by up-
regulation of cell wall proteins and leads to more robust immune detection in vivo,
promoting more effective clearance.
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Candida species are the fourth most common cause of bloodstream infections in
hospitalized patients in the United States (1). Despite the availability of several

effective antifungals, the mortality rate of these infections still exceeds 40% (1). Current
antifungal drugs for treatment of Candida infections include polyenes, azoles, and
echinocandins; however, mortality rates are unacceptably high even after accounting
for limitations such as drug resistance or toxicity. This suggests that other therapeutic
approaches need to be used in conjunction with anti-infectives. One approach is to
improve the residual immune response of patients to these pathogens (2–4). The
immune response could be enhanced by making fungal pathogens more visible to
the immune system’s sensory cells. The fungal cell wall is a major focus for this as it is
the main interface between the immune system and the fungus (5).

The C. albicans cell wall is composed of two major layers, where the outer layer is
enriched for glycosylated proteins (mannan), and the inner layer consists of chitin, �

(1,6)-glucan, and the highly immunogenic � (1,3)-glucan. Fungal pathogens have a
diversity of mechanisms to manipulate cell wall architecture to mask proinflammatory
� (1,3)-glucan epitopes from host recognition. In Histoplasma capsulatum, �-glucan
serves a masking function by concealing the �-glucan, while the Eng1 exoglucanase
hydrolyzes �-(1,3)-glycosyl bonds and removes exposed �-glucans not covered by
�– glucan (6, 7). Aspergillus fumigatus Uge3 regulates the biosynthesis of galactosami-
nogalactan, a polymer that protects hyphal �-glucan from immune detection (8). In C.
albicans, � (1,3)-glucan is masked by the outer layer of mannan. Certain genetic
mutations, treatment with the cell wall inhibitor caspofungin, or damage by neutrophils
can expose C. albicans � (1,3)-glucan (9–11). This exposure facilitates recognition by
host immune cells through receptors such as Dectin-1 and therefore launches immune
responses more efficiently and rapidly, including induction of proinflammatory cyto-
kines such as tumor necrosis factor alpha (TNF-�), which promotes fungal clearance
(12). The importance of � (1,3)-glucan exposure and the resultant enhancing of immune
detection are becoming better appreciated in medical mycology, and could lead to
discoveries that will improve adjunctive therapy approaches (9, 11, 13–16).

We reported previously that the hyperactivated GTPase mutation RHO1Q67L causes
� (1,3)-glucan unmasking in C. albicans (17). The most well-known contribution of Rho1
in this organism is that of maintaining cell wall architecture by regulating several
downstream effectors, including the �(1,3)-glucan synthase catalytic subunit Fks1, the
protein kinase C homolog Pkc1, and the downstream cell wall integrity mitogen-
activated protein kinase (MAPK) cascade containing Mkc1 (18–21). Rho1 serves as a
molecular switch that cycles between an active GTP-bound state and an inactive
GDP-bound state (22). Two main types of regulatory proteins control the GTP/GDP state
of GTPases. These include guanine nucleotide exchange factors (GEFs), which stimulate
GTP to be loaded onto the enzyme and keep it in the active GTP-bound state, and
GTPase-activating proteins (GAPs), which promote the hydrolysis of GTP and convert
the enzyme into the inactive GDP-bound state (23). In C. albicans, Lrg1 is proposed to
act as the Rho1 GAP based on the evidence that the lrg1�� mutant and hyperactivated
RHO1Q67L mutant each induce hyphal formation, and a mutation of the PKC1 gene,
which acts downstream of Rho1, blocks lrg1ΔΔ hyperfilamentation. These data suggest
that Lrg1 could negatively regulate Rho1 activity (24, 25), but the GAP activity of Lrg1
for Rho1 has not been measured in C. albicans (24).

Like Rho1, Cdc42 is an essential GTPase in C. albicans. Cdc42 is required for cell
viability, polarized growth, and yeast-to-hypha morphogenesis (26–28). Like that of
other GTPases, Cdc42 activity is regulated by GAPs negatively and GEFs positively (29,
30). Activated Cdc42 turns on downstream effectors, including p21-activated kinase
(PAK) Cst20, which further initiates signaling through the Cek1 MAPK cascade (17, 26).
The Cek1 MAPK cascade, comprised of Ste11-Hst7-Cek1, is primarily responsible for
gene transcription involved in morphogenesis, cell wall stress adaption, and cell growth
(17, 31–34). In C. albicans, Cek1 has been reported to respond to several GTPases,
including Cdc42, Rho1, Ras1, and Rac1, although most of these data are genetic in
nature (17, 35–37). Here, we demonstrate for the first time that in C. albicans, the Lrg1
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GAP protein negatively controls Cdc42 and Ras1 activity in vivo but not the activity of
Rho1 or Rac1. Moreover, Cek1 is activated downstream of a lrg1ΔΔ mutant by a
pathway(s) that utilizes the canonical Ste11 MAP kinase kinase kinase (MAPKKK).
Furthermore, we reveal that hyperactivation of Cek1 by a STE11�N467 allele compro-
mises fungal virulence in the mouse model of systemic infection. Finally, we show that
upregulated Cek1 likely activates unmasking through the activity of the downstream
transcription factor Cph1 and some of its cell wall-related transcriptional targets.

RESULTS
The lrg1�� mutation causes � (1,3)-glucan exposure in C. albicans. Lrg1 ho-

mologs impact several cell wall-related functions in fungi (e.g., cell wall integrity, cell
fusion, and morphogenesis) (24, 25, 38, 39). In S. cerevisiae, Lrg1 stimulates the intrinsic
GTPase activity of Rho1 and therefore converts Rho1 to its inactive, GDP-bound state
(25, 38). We previously showed that hyperactive Rho1 (Rho1Q67L) exposed � (1,3)-
glucan in the cell wall but appeared to act through the Cek1 MAPK rather than Mkc1
(17). Since Lrg1 has been described as the Rho1 GAP in C. albicans, we hypothesized
that disruption of LRG1 would cause � (1,3)-glucan exposure. To this end, we performed
immunofluorescence staining with anti-� (1,3)-glucan antibody (Ab) on a lrg1��

mutant (40). As shown in Fig. 1A, � (1,3)-glucan is noticeably more exposed in lrg1��

cells than in wild-type cells or the complemented strain, where LRG1 expression is
under the regulation of constitutive promoter PENO1. Flow cytometry confirmed that the
lrg1�� mutant has significantly increased levels of � (1,3)-glucan unmasking compared
to control strains (Fig. 1B). This reveals that Lrg1 acts as a repressor of cell wall �

(1,3)-glucan unmasking in C. albicans.
LRG1 disruption upregulates the Cek1 MAPK activity. Several MAPK pathways

are involved in the regulation of cell wall architecture in C. albicans (31, 34, 41), and
improper activation of the Cek1 MAPK by upstream GTPases such as Cdc42 or Rho1
causes �(1,3)-glucan exposure (17). Lrg1 is a proposed Rho1 GAP in C. albicans (24) and
should upregulate Mkc1 and possibly Cek1. To evaluate this, we performed Western
blotting to detect the activated (phosphorylated) forms of Cek1 and Mkc1 in C. albicans.
As shown in Fig. 2, the lrg1�� mutant did not visibly increase the intensity of
phosphorylated Mkc1; instead, Cek1 was hyperphosphorylated at a level up to 15-fold

FIG 1 Lrg1 represses � (1,3)-glucan unmasking in C. albicans. (A) Cells were cultured overnight in YPD medium and stained
with anti-� (1,3)-glucan antibody and Cy3-conjugated secondary antibody. Cells were imaged by epifluorescence micros-
copy. The scale bar represents 10 �m. (B) Cells were stained with anti-� (1,3)-glucan antibody and phycoerythrin
(PE)– conjugated secondary antibody. Flow cytometry was performed to quantify � (1,3)-glucan exposure in different
Candida cells. The statistical analysis was performed using one-way ANOVA. ****, P � 0.0001. MFI, mean fluorescent
intensity; WT, wild type.
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higher than that seen with the wild type. This indicates that Lrg1 represses the activity
of Cek1 instead of Mkc1 in C. albicans and that this might be responsible for the cell
wall exposure in the lrg1�� mutant.

Disruption of the LRG1 gene hyperactivates the small GTPases Cdc42 and Ras1.
The small GTPase Cdc42 sits upstream of Cek1 and is essential for many cellular
functions, including cellular polarized growth and bud emergence in C. albicans (26, 37,
42). Regulation of the GTP/GDP-binding state controls the Cdc42 activation state (26,
27). Given that Cdc42 is known to control Cek1 MAPK activity in C. albicans, we
hypothesized that LRG1 disruption activates Cek1 through Cdc42. To test this, we
measured Cdc42 activity by quantifying the amount of GTP-bound active Cdc42 in vivo.
As shown in Fig. 3A and B, the concentration of GTP-bound Cdc42 was clearly
upregulated compared to that of wild-type DAY286 and the reintegrated strain. Thus,
this suggests that Lrg1 controls Cdc42 activity negatively in C. albicans. Cdc42 has been
shown to control Cek1 phosphorylation in this organism (17), so Cek1 hyperactivation
in the lrg1�� mutant may be mediated by Cdc42.

There is a possibility that Lrg1 impacts other Cek1-associated GTPases. To address
this, we measured the activity of the GTPase Rac1, which has been suggested to
function upstream of Cek1 (36). Using a strain expressing Rac1 with a green fluores-
cence protein (GFP) tag, Rac1 activity was assessed by pulling down the GTP-bound
GFP-Rac1. The Cdc42/Rac1 interactive binding (CRIB) protein used in the Cdc42 pull-

FIG 2 The Cek1 MAPK is hyperphosphorylated in lrg1�� cells compared to wild type. (A) Proteins were
isolated from Candida cells in log phase. Western blotting was performed with anti-phospho-p44/42
antibody (stains phosphorylated Mkc1 and Cek1), as well as anti-Mkc1 and-Cek1 antibodies (stain total
Mkc1 and Cek1 proteins, respectively). (B) The phospho-Mkc1 bands were quantified and normalized
based on the total Mkc1 bands and tubulin. (C) The phospho-Cek1 bands were quantified and normal-
ized based on the total Cek1 bands and tubulin. The graphs in both cases were based on quantification
of 3 blots, and statistical analysis was performed using one-way ANOVA. ****, P � 0.0001; ns, not
significant.
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down assay was used as the probe to isolate GTP-bound GFP-Rac1, while GFP antibody
was utilized to detect the amount of GFP-Rac1 specifically. As shown in Fig. S1 in the
supplemental material, the level of GTP-bound GFP-Rac1 in the lrg1�� mutant is
reduced compared to that of wild type. This suggests that Rac1 and Cdc42 might work
antagonistically when Lrg1 is disrupted in C. albicans.

Ras1 is an important GTPase for filamentation and controls the cyclic AMP signaling
cascade and protein kinase A. It has been suggested to act upstream of Cek1 in C.
albicans (35). Since Cek1 is hyperactive in the lrg1�� mutant (Fig. 2), it is reasonable to
evaluate whether Ras1 activity would be upregulated when the LRG1 gene was
disrupted. We performed a pulldown assay to isolate active GTP-Ras1 by using its
downstream effector Raf1 as a probe. The ratio of GTP-Ras1 to total Ras1 was signifi-
cantly higher in the lrg1�� mutant than in control strains, indicating that LRG1
disruption induced Ras1 activity albeit modestly, which is similar to results from Xie
et al. (24) (Fig. 3C and D). To biochemically test if Ras1 can cause Cek1 hyperactivation,
we performed Western blotting on a PMAL-RAS1G13V mutant (43) (hyperactive allele)
with the phospho-p44/42 antibody that recognizes phosphorylated Cek1 and Mkc1.
Unexpectedly, hyperactivated Ras1G13V (expressed from the maltose promoter PMAL)

FIG 3 Lrg1 inhibits the activity of GTPases Cdc42 and Ras1, but not Rho1. (A) GTP-Cdc42 was pulled down by glutathione beads
conjugated with glutathione S-transferase (GST)-PAK1, which specifically binds active GTP-Cdc42/Rac1. Western blotting was performed
on the isolated GTP-Cdc42 portion with anti-Cdc42 antibody, and tubulin was used as a loading control. (B) The ratio of GTP-bound
Cdc42/Total-Cdc42 to the WT level was calculated. The densitometries of the active GTP-Cdc42 band and total Cdc42 band were
quantified by Image J based on 2 blots. *, P � 0.0261. (C) Active GTP-Ras1 was pulled down by using the Ras1 binding domain (RBD) within
Raf1 as a probe, followed by Western blotting using anti-Ras1 antibody to evaluate the amount of active Ras1. (D) The ratio of GTP-bound
Ras1/Total-Ras1 to the WT level was calculated as described for panel B. ***, P � 0.0006. (E) Western blotting was performed with
anti-phospho-p44/42 antibody to assess the phosphorylation of Cek1 in the hyperactive RAS1G13V mutant. The RAS1G13V mutant was in the
CAI-4 background, and the allele was expressed from the maltose promoter PMAL, so strains were compared in media with maltose or
glucose. (F) The active GTP-bound c-myc-tagged Rho1 was isolated by incubating with the purified GST-RID protein. The mixture was
incubated with glutathione beads. Western blotting was performed with anti-c-myc antibody to measure the amount of GTP-bound Rho1
in the pulldowns. Total Rho1 was determined by performing Western blotting on the total protein extract. (G) The ratio of GTP-bound
Rho1/Total-Rho1 to the WT levels was calculated as described for panel B. NS, no significance. lrg1��::R or lrg1���R � reintegrant strain.
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did not induce Cek1 activation (Fig. 3E). Similar results were seen when the RAS1G13V

allele was expressed from a constitutive PENO1 promoter (Fig. S2). These results indicate
that Ras1 does not activate Cek1 downstream of the lrg1�� mutation in C. albicans.

Lrg1 does not act as the Rho1 GAP in C. albicans. In S. cerevisiae, Lrg1 represses
Rho1, and this has been supported by genetic data in C. albicans; therefore, we
measured Rho1 activity in the lrg1�� mutant. Due to lack of a commercial reagent to
pull down active GTP-Rho1, we expressed and purified a glutathione S-transferase
(GST)-tagged Rho1 interactive domain (RID) protein specific for C. albicans GTP-Rho1
(44). In addition, CaRho1 was tagged with the c-myc epitope for Western blotting due
to lack of available commercial CaRho1 antibody (45). However, as shown in Fig. 3F and
G, the lrg1�� mutant did not contain a higher concentration of GTP-Rho1 than the wild
type. The last lane in Fig. 3F includes wild-type extract incubated with GTP�S, which is
a nonhydrolyzable substrate for GTPases whose use results in a strong signal and which
acts as a positive control for GTP-myc-Rho1. The lack of an induction of Rho1 activity in
the lrg1�� mutant suggests that Lrg1 does not act as the Rho1 GAP in C. albicans.

Inhibition of Ste11 signaling blocks Cek1 hyperphosphorylation and � (1,3)-
glucan exposure in the lrg1�� mutant. Our results indicate that Lrg1 negatively
controls Cek1 phosphorylation through Cdc42 (Fig. 3), but it is not clear if the pathway
acts through the canonical Cek1 MAPK cascade. Therefore, we next elucidated which
upstream kinase cascade participates in this signal transduction pathway. The Ste11
MAPKKK sits at the top of the Cek1 MAPK module; therefore, we disrupted the STE11
gene in the lrg1�� mutant to determine if this would prevent Cek1 activation.
One STE11 allele was deleted in the lrg1�� mutant by the use of SAT1-flipper (46).
However, we could not disrupt the second STE11 allele in the heterozygous mutant.
Thus, we replaced the second allele with the hyperactive STE11�N467 allele under the
regulation of the tetracycline-repressible promoter (PtetOFF-STE11�N467). This resulted in
a lrg1��ste11��::PtetOFF-STE11�N467 strain, indicating that STE11 is not essential in the
lrg1�� background but that it may be difficult to recover under transformation
conditions. The lrg1��ste11��::PtetOFF-STE11�N467 mutant was treated with 0.5 �g/ml
of doxycycline overnight to repress STE11�N467 expression, followed by subculturing in
fresh yeast extract-peptone-dextrose (YPD) medium with or without doxycycline for
3 h. Western blotting was performed to measure levels of Cek1 and Mkc1 activation. As
shown in Fig. 4A, failure to express Ste11 in the lrg1�� mutant (lrg1��ste11��::PtetOFF-
STE11�N467 plus doxycycline) blocked Cek1 phosphorylation. This result indicates that
Lrg1 negatively controls Cek1 activity through the Ste11 MAPKKK.

We next investigated if � (1,3)-glucan exposure would also be suppressed in the lrg1��

mutant when Ste11 expression was repressed, as we expected. Overnight cultures of
Candida cells (with or without doxycycline) were stained with anti-� (1,3)-glucan antibody
and then assessed by flow cytometry to quantify unmasking. As shown in Fig. 4B, inhibition
of Ste11 expression by addition of doxycycline (lrg1��ste11��::PtetOFF-STE11�N467 plus
doxycycline) completely blocked � (1,3)-glucan unmasking. This indicates that hyper-
activation of the Cek1 MAPK pathway was responsible for exposing � (1,3)-glucan in the
lrg1�� mutant.

Cells with a lrg1�� mutation or expressing the hyperactive STE11�N467 allele
induce TNF-� secretion from RAW264.7 macrophages. The relationship between
greater � (1,3)-glucan exposure and increased TNF-� secretion has been studied
intensively (9, 11, 13, 15, 17, 32). Due to the strong � (1,3)-glucan exposure exhibited
by the lrg1�� mutant (Fig. 1), we performed enzyme-linked immunosorbent assays
(ELISAs) to study if unmasking in the lrg1�� strain correlates with increased TNF-�
production. As shown in Fig. 5A, loss of LRG1 significantly upregulates TNF-� secretion
from RAW264.7 murine macrophages. The cho1�� mutant represented in Fig. 5A
served as a positive control, as it has been shown to cause upregulation of TNF-�
production compared to the wild-type SC5314 strain (11, 15, 17).

Overexpression of the hyperactive STE11�N467 allele reduces virulence in mice.
Cek1 has been shown previously to undergo hyperactivation under multiple conditions
associated with � (1,3)-glucan exposure, including caspofungin treatment (37), CHO1
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disruption (11), hyperactivation of Cdc42 and hyperactivation of Rho1 (17), and LRG1
disruption (Fig. 1; see also Fig. 2). Furthermore, hyperactivation of Cek1 via an activated
allele of STE11 (STE11�N467) causes unmasking (17). We suspect that hyperactivation of
the Cek1 MAPK pathway would lead to decreased virulence. Many of the mutants we
have described such as the hyperactive Cdc42 or Rho1, lrg1��, or cho1�� mutants are
very pleiotropic, which prevents us from assessing the specific impact of hyperactiva-
tion of the Cek1 MAPK on virulence. However, the STE11�N467 mutation causes a more
specific upregulation of Cek1 activation (17). Thus, to test this in vivo, we overexpressed
Ste11ΔN467 from the doxycycline-repressible promoter (PtetOFF) (47) so we could then

FIG 4 Disruption of LRG1 causes increased Cek1 activation through the Ste11 MAPKKK. (A) One STE11 allele was deleted
in the lrg1�� mutant using the well-established SAT1-flipper method. The second STE11 allele was replaced by the
PtetOFF-STE11�N467 allele through homologous recombination. The Candida cells were treated with 0.5 �g/ml of doxycycline
overnight at 30°C, followed by subculturing in fresh YPD medium for 3 h at 30°C and growth to the log phase with or
without doxycycline. Western blotting was performed with anti-phospho-p44/42 antibody for phosphorylated Cek1 and
Mkc1. Anti-tubulin antibody was used to detect tubulin, and anti-Cek1 antibody was used to detect total Cek1. (B) The
Candida cells were cultured overnight with or without doxycycline, followed by immunofluorescent staining with anti-�
(1,3)-glucan antibody and PE-conjugated secondary antibody. The stained cells were measured by flow cytometry to
quantify � (1,3)-glucan exposure. Strains were tested three times with 2 technical replicates each time, and statistical
analysis was performed using one-way ANOVA. ****, P � 0.0001; *, P � 0.0142. Statistical comparisons between the
lrg1��ste11��::PtetOFF-STE11�N467 strain and the wild-type strain with or without doxycycline were done by ANOVA in the
absence of the lrg1�� strain.

FIG 5 Conditions that hyperactivate the Cek1 pathway cause a significant increase in TNF-� secretion
from macrophages compared to wild-type cells. (A) C. albicans cells were grown in YPD overnight at 30°C,
subjected to UV inactivation, and then cocultured with RAW264.7 macrophages for 4 h. The RAW264.7
macrophage supernatant was collected and filtered through a 0.22-�m-pore-size syringe filter to remove
cell debris. The filtrates were assayed by ELISA to quantify the TNF-� production. Samples were tested
in triplicate three times (n � 9). The statistical analysis was done by one-way ANOVA. ****, P � 0.0001.
(B) C. albicans wild-type and PtetOFF-STE11�N467 strains were cultured overnight in YPD medium at 30°C
(with or without doxycycline) and were then subjected to UV killing and incubated with RAW264.7
macrophages as described for panel A. ****, P � 0.0001. lrg1��::R � reintegrated strain.
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use this in the mouse model of infection and turn the gene on or off in the host after
infection. The PtetOFF-STE11�N467 construct should show strong overexpression of the
gene in the absence of doxycycline but should repress it in the presence of doxycycline
(48). To test this, we transformed the PtetOFF-STE11�N467 allele into wild-type Candida
strain DAY286 and confirmed that Cek1 was hyperactivated in the absence of doxycy-
cline (Fig. S3). Previous overexpression experiments performed with STE11�N467 using
the PMAL2-STE11�N467 construct showed hyperactivation of Cek1 but not Mkc1. How-
ever, when we upregulated STE11�N467 with the PtetOFF-STE11�N467 construct, we ob-
served strong hyperactivation of Cek1 and Mkc1. This may have occurred because a
strong enough activation of Cek1 causes a compensatory activation of Mkc1 (17),
although this is not certain.

Immunofluorescent staining of the PtetOFF-STE11�N467 strain for � (1,3)-glucan expo-
sure indicates that under conditions of culture in YPD medium overnight without
doxycycline, the mutant exhibited significantly increased � (1,3)-glucan exposure
(Fig. S4). We also observed a modest increase in (1,3)-glucan exposure in the PtetOFF-
STE11�N467 strain with doxycycline, which may have been due to basal expression of
the PtetOFF-STE11�N467 allele even in the presence of the drug. To evaluate the corre-
lation between � (1,3)-glucan exposure and TNF-� secretion in the PtetOFF-STE11�N467

strain, we performed ELISAs on macrophages exposed to overnight cultures of wild-
type DAY286 and the PtetOFF-STE11�N467 strain in the presence or absence of doxycy-
cline. As shown in Fig. 5B, when Ste11ΔN467 was induced in the PtetOFF-STE11�N467 strain
(without doxycycline), TNF-� production was significantly upregulated in RAW246.7
macrophages. TNF-� levels were also slightly elevated in the doxycycline-treated
PtetOFF-STE11�N467 strain, suggesting that the STE11�N467 gene was basally expressed
under this condition.

Hyperactivation of Cek1 results in decreased fungal virulence in vivo. We
predicted that strong expression of the STE11�N467 allele in mice would lead to a loss
of virulence, due to increased unmasking. To test this, the wild-type and PtetOFF-
STE11�N467 strains were cultured in YPD overnight with doxycycline to repress
Ste11ΔN467 expression and were then injected into the tail vein of outbred ICR mice. The
mice that were injected with the PtetOFF-STE11�N467 strain and provided with doxycy-
cline succumbed to fungal infection in �10 days. This is similar to the results seen with
mice injected with the wild-type strain with or without doxycycline. However, the mice
that were infected with the PtetOFF-STE11�N467 strain and that did not receive doxycy-
cline (where STE11�N467 is strongly expressed and induces activation of Cek1) (Fig. S3)
survived significantly longer than mice in the other groups (Fig. 6).

Furthermore, when mice were sacrificed at 4 days postinfection, mice infected with
the PtetOFF-STE11�N467 strain that did not receive doxycycline exhibited (2.43 � 1.07)
�102 CFU g	1 kidney, while the mice infected with the same strain that did receive

FIG 6 Hyperactivation of Cek1 leads to attenuated fungal virulence in a mouse model of systemic
infection. C. albicans strains that were wild type (DAY286) or carried the PtetOFF-STE11�N467 allele were
cultured overnight at 30°C with doxycycline to repress Ste11ΔN467 expression. The overnight cultures
were diluted to 106 cells/ml, and 100-�l volumes of the suspensions were injected into the lateral tail
veins of outbred ICR mice. Mice were given 5% sucrose in their drinking water either without doxycycline
or with 2 mg/ml of doxycycline to repress Ste11ΔN467 expression in vivo. The symptoms of illness were
monitored over 21 days. Each group had 10 mice. *, P � 0.016.
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doxycycline exhibited (2.51 � 0.65) �104 CFU g	1 kidney (Fig. 7). Thus, there was a
decrease of �2 log (P � 0.0006) in kidney fungal burden when the gene was expressed.
The growth of a strain expressing the STE11�N467 allele from the maltose promoter is
not affected under those conditions (17), but we wanted to determine if growth of the
mutant might be strongly attenuated by activating expression of STE11�N467 from the
PtetOFF-promoter. Therefore, a growth curve was measured in vitro (Fig. S5A). This
demonstrated that the PtetOFF-STE11�N467 strain showed an increase in its doubling time
between 6 and 8 h of the growth curve in the absence of doxycycline versus in the
presence of the drug (90 versus �103 min). Between 8 and 10 h, the doubling times
seem to have been similar, at around 95 to 100 min for both strains, and the strains
grew to similar densities by 24 h. The PtetOFF-STE11�N467 strain grew slower than the
wild-type strain, and the differences were stronger under conditions lacking doxycy-
cline. Altogether, it appears from the growth curves that growth was slower following
induction of the gene but that the strain might have begun to recover over time. The
impact of growth on virulence is difficult to assess in comparisons of results determined
under in vitro conditions to those seen under in vivo conditions since mutants that
show stronger growth defects in vitro, such as the psd1��psd2�� mutant, have been
shown to have no defects in virulence (49).

Another concern is that the expression of the Ste11ΔN467 allele might cause overall
cell wall damage. To test this, we examined if expression of the STE11�N467 gene
(without doxycycline) correlated with hypersensitivity to cell wall stress. We tested
strains for growth in the presence of the cell wall stressors calcofluor white, SDS, and
Congo red. However, the PtetOFF-STE11�N467 strain did not show differential sensitivity
to any of these compounds (Fig. S5B). Thus, we suspect that activation of the PtetOFF-
STE11�N467 allele decreases virulence by activating the host immune response, al-
though this remains to be tested more carefully.

� (1,3)-Glucan exposure induced by hyperactivation of the Cek1 cascade
correlates with upregulation of cell wall synthesis genes. A full model to describe
how � (1,3)-glucan exposure is mediated at the molecular level within the cell wall has
not yet been developed, although a growing body of evidence indicates that it
correlates with activation of cell wall repair processes (10, 16, 17). To investigate how
Cek1 activation could contribute to this, the gene expression profile resulting from
hyperactivated Cek1 was measured. The PtetOFF-STE11�N467 strain with or without

FIG 7 Ste11 hyperactivation causes decreased kidney fungal burden in the mouse model of systemic
infection. C. albicans DAY286 (wild-type) and PtetOFF-STE11�N467 strains were cultured overnight at 30°C
with doxycycline to repress Ste11ΔN467 expression. The overnight culture was diluted to 106 cells/ml, and
100 �l of the suspension was injected to the lateral tail vein of outbred ICR mice. Mice were given
drinking water mixed with 5% sucrose with 2 mg/ml of doxycycline to repress Ste11ΔN467 expression in
vivo or without doxycycline to promote Ste11ΔN467 expression. The mice were sacrificed 4 days postin-
fection, and the kidneys were removed from each mouse and homogenized. The homogenates were
diluted to 10	3 by performing serial dilutions. The diluted homogenates (1 ml) from each dilution were
plated on the YPD plates and cultured at 30°C for 2 days. The CFU were counted on each plate. Eight
mice were tested for each strain. ***, P � 0.0006; ****, P � 0.0001.
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doxycycline was compared to the isogenic wild-type strain under identical conditions.
To determine the time point when the PtetOFF-STE11�N467 strain would start to display
� (1,3)-glucan exposure, we cultured the Candida cells overnight with doxycycline to
repress Ste11ΔN467 expression, followed by subculturing in fresh YPD medium without
doxycycline to switch on the Ste11ΔN467 expression for up to 6 h. The Candida cells
were then subjected to immunofluorescence staining using the anti-� (1,3)-glucan
antibody, and flow cytometry to quantify the exposure level over time. As shown in
Fig. 8A, the PtetOFF-STE11�N467 strain began to display significant unmasking compared
to the wild-type strain at 4 h after doxycycline was removed from the medium. Both
strains exhibited unmasking at 2 h, but the level diminished over the next 2 h more
quickly in the wild-type strain than in the PtetOFF-STE11�N467 strain. Interestingly, the
earliest time point at which unmasking was significantly different between the PtetOFF-
STE11�N467 strain and wild type was 4 h, which correlates well with Western blotting
results revealing that Cek1 began to display clearly increased phosphorylation 4 h after
doxycycline was removed (Fig. 8B).

Based on these timing parameters, we grew cells overnight with doxycycline and
then extracted total RNA from the wild-type and PtetOFF-STE11�N467 strains 4 h after
subculture under conditions with or without doxycycline, with each condition repre-
sented by three biological replicates (12 total samples). RNA sequencing was performed
using an Illumina MiSeq platform, which generated a total of 59 million 75-bp paired-

FIG 8 The PtetOFF-STE11�N467 strain exhibited � (1,3)-glucan exposure in a time-dependent manner in the
absence of doxycycline. (A) The wild-type and PtetOFF-STE11�N467 strains were cultured overnight in YPD
medium at 30°C in the presence or absence of doxycycline. Aliquots of the overnight cultures (O/N� and
O/N–) were taken as 0 time point controls and stained with mouse anti-� (1,3)-glucan antibody and
goat-anti-mouse PE-conjugated secondary antibody. Aliquots of the overnight cultures of both wild-type
and PtetOFF-STE11�N467 strains that had been grown with doxycycline were washed three times with PBS
and diluted to an OD600 of 0.2 in fresh YPD without doxycycline (to switch on Ste11ΔN467 expression) and
then grown for 1 h, 2 h, 4 h, and 6 h. Cells were collected at the indicated time points and stained as
described above. All the stained cells were analyzed using the flow cytometer to quantify the �
(1,3)-glucan exposure level. Samples were tested three times with 2 replicates each time. **, P � 0.008.
(B) Cells of wild type (WT) and the PtetOFF-STE11�N467 strain (STE11) were grown overnight with doxycy-
cline, diluted as described for panel A without doxycycline, and grown to specific time points, and then
total protein was isolated. Western blotting was performed on the isolated protein to evaluate MAPK
phosphorylation by using anti-phospho-p44/42 antibody and Cek1 and tubulin antibodies as controls.
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end reads from 12 libraries. A principal-component-analysis (PCA) plot was created by
using the RNA Analysis Package in CLC Genomics Workbench software to determine
the variability between replicates and different treatment samples. As shown in
Fig. S6A, the two wild-type groups (with or without doxycycline) clustered tightly,
suggesting that doxycycline does not cause detectable effects on the wild-type strain.
The PtetOFF-STE11�N467 strain was found in two distinct clusters based on the presence
and absence of doxycycline, but both were separated from the wild type. The PtetOFF-
STE11�N467 strain assayed in the presence of doxycycline grouped away from the
wild-type strain, and this might have been because of basal expression of Ste11ΔN467,
which would explain the modest increase in unmasking and levels of TNF-� elicited
from macrophages by these cells compared to the wild-type results, even in the
presence of doxycycline (Fig. 5B; see also Fig. S4). The PtetOFF-STE11�N467 strain assayed
in the absence of doxycycline grouped even further away from the wild-type strain but
was also separated from the PtetOFF-STE11�N467 strain assayed in the presence of
doxycycline, indicating that the presence or absence of doxycycline strongly influenced
gene expression in this strain. To be certain that the expression levels of genes were
consistent overall between the strains and that the PCA differences were not due to
anomalies associated with overall sample preparation, we examined 5 housekeeping
genes of known expression levels and found that they were highly consistent between
the samples (Fig. S6B).

Under the STE11�N467-inducing conditions (in the absence of doxycycline), there
were 109 genes that were differentially regulated as shown by a 
2-fold change in
expression value compared to the other three conditions (wild-type strain with or
without doxycycline and STE11�N467 strain with doxycycline) (Fig. 9A). Among the 109
genes, 16 genes were downregulated and 93 genes were upregulated, and these genes
are listed in Table S1 in the supplemental material. Although Cek1 activation is
associated with hyphal formation under some conditions (50), there are only a few
genes that encode conventional hyphal-specific proteins. A number of genes com-
monly associated with hyphal formation, such as members of the Als family and Ece1,
were not upregulated. However, 13 genes that are involved in cell wall construction
were upregulated (Fig. 9B; see also Table 1). The 93 upregulated genes are enriched for
cell wall or extracellular genes. For example, 14% of the upregulated genes in our data
set encode secreted proteins, whereas only 5% of the genes in the total Candida
genome encode secreted proteins. This indicates that there is an �2-fold enrichment
in cell wall genes in our data set. A total of 26 genes, including OPY2 and RBT4, are
responsive to chemicals and stress, and 10 genes encode signal transduction proteins
(CPP1, BUD5, RGA2, HAC1, WSC2, CPH1, etc.). In the category of downregulated genes,
it is noteworthy that Eng1 expression was decreased �2-fold under conditions of
STE11�N467 induction. Eng1 is an endo-� (1,3)-glucanase and has been reported to keep
glucan masked by removing the exposed � (1,3)-glucan in the fungal pathogen
Histoplasma capsulatum. Taken together, these data suggest that � (1,3)-glucan un-
masking could be caused by Cek1 hyperactivation through inappropriate expression of
cell wall repair machinery.

In addition, our data suggest that Cph1 is likely responsible for these effects. Cph1
is known to act downstream of Cek1 and is upregulated 8.4-fold under STE11�N467

induction conditions compared to that of the wild type (Fig. 9B). Cph1 is important for
C. albicans filament development on certain solid media (51) and is involved in
switching from white cells to mating-competent opaque cells (52). Thus, Cph1 may be
a target through which Cek1 acts to cause unmasking. Alternatively, the transcription
factor Ace2, which is involved in cell wall glycosylation, morphogenesis, and virulence
(53, 54), could be a target through which Cek1 acts to cause unmasking. Ace2 does not
display altered transcripts when Cek1 is hyperactivated, but this does not mean that it
is not playing a role in unmasking. In fact, both transcription factors could potentially
play a role in this phenotype.
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DISCUSSION

Previously, our laboratory determined that hyperactivation of Cek1 promotes �

(1,3)-glucan exposure in response to loss of phosphatidylserine synthase (17). This
process involves the activation of the GTPase Cdc42, which positively regulates Cek1

FIG 9 Genes that were differentially expressed under STE11�N467-inducing condition were enriched for cell wall repair genes. (A) Venn diagram showing that
109 genes were differentially expressed in the PtetOFF-STE11�N467 strain when Cek1 is induced (STE11 without [	] doxycycline) compared to the other three
control groups (the wild-type strain with or without doxycycline and STE11 with doxycycline). Genes with a false-discovery rate (FDR) adjusted P value of �0.05
were considered differentially expressed. (B) Heat maps were generated for genes with expression values exceeding a factor of 2 (fold change) under STE11�N467

induction conditions (STE11– doxycycline) compared to the other three controls.

TABLE 1 Cell wall and stress genes induced by STE11�N467 mutant without doxycycline versus the wild-type strain with or without
doxycycline and STE11�N467 with doxycycline

Gene ontology term Names

Function
Cell wall organization CEK1, CHS2, CPH1, CRH11, ENG1,a HAC1, HWP1, KRE6, PGA13, PGA31, RLM1, WSC2, XOG1
Stress/chemical response BRG1, C1_03870C_A, C1_10710C_A,a C3_02290W_A, CEK1, CPH1, CPP1, DDR48, FGR41,a GPX1, HAC1,

MDR1,a MEP1, OPY2, PMS1, RLM1, STE11, WSC2, C7_01170C_A,a DAG7, GFA1, PGA23, PGA31, RBT4,
RLM1, TNA1a

Component
Cell wall and extracellular regions CRH11, CSH1, DDR48, ENG1,a HWP1, IFF11, KRE1, PGA13, PGA30, PGA31, XOG1, C4_01800W_A,a DAG7,

FGR41,a RBT4, SAP7
aTranscriptionally downregulated gene.
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MAPK activity (17). In this communication, we characterized a novel upstream regulator
of Cek1 by revealing that the Lrg1 GAP negatively regulates Cek1 activity (Fig. 2; see
also Fig. 3). Our data suggest that Lrg1 acts through the GTPase Cdc42, but not the
GTPase Rho1, which has been reported as a target of Lrg1 in the literature. Lrg1
disruption stimulates significantly increased � (1,3)-glucan unmasking, which further
induces a higher level of TNF-� secretion from murine macrophages (Fig. 1; see also
Fig. 5).

The Lrg1-Cdc42 cascade modulates Cek1 MAPK activity via Ste11 in C. albicans.
In S. cerevisiae, Lrg1 has been shown to interact with the activated form of Rho1
(GTP-Rho1) and act as a GAP (25, 55). However, there are discrepancies concerning the
negative regulation of other GTPases by Lrg1 in different studies. Roumanie et al. found
that Lrg1 acts as GAP for two other GTPases, Rho2 and Cdc42 (56). In contrast, Fitch
et al. found that Lrg1 is a Rho1-specific GAP in vitro by measuring the amount of Rho1
bound to [�-32P]-labeled GDP or GTP, after stimulation with purified Lrg1 (25). Regard-
ing the effect of Lrg1 on Rho1-mediated cell wall processes, Lrg1 is reported to
negatively regulate glucan synthase activity, while there is controversy with regard to
its role in activation of the cell wall integrity Mkc1 pathway (38, 55). These opposing
results could have been a consequence of the different backgrounds of S. cerevisiae
strains used. Lrg1 was shown previously to serve as a Rho1-specific GAP and impact
several downstream pathways of Rho1 in Neurospora crassa (39). In C. albicans, the LRG1
disruption was reported to increase hyphal formation and biofilm development, which
are phenotypes shared with a RHO1Q67L gain-of-function mutant. In addition, the
lrg1ΔΔ hyperfilamentation phenotype is blocked by a mutation in the Rho1 effector
PKC1; however, there was no biochemical evidence indicating that Lrg1 acts as Rho1
GAP (24, 57).

In this communication, we provide evidence that loss of Lrg1 in C. albicans increases
� (1,3)-glucan unmasking (Fig. 1) and that this is likely mediated by hyperactivated
Cek1 (Fig. 2). Our results also suggest that Lrg1 does not act as a Rho1 GAP in C.
albicans. Lrg1 does not show Rho1 inhibitory activity in vivo, nor does it inhibit Rac1
activity (Fig. 3; see also Fig. S1). Instead, Lrg1 exhibits repression of the activities of both
Cdc42 and Ras1, as indicated by significant induction of both GTPase activities in vivo
in the lrg1�� mutant (Fig. 3). Previous work showed that Pkc1 is epistatic to Lrg1 (24).
Thus, Pkc1 signaling is necessary for lrg1ΔΔ-driven filamentation, but it is possible that
Pkc1 acts in parallel to the Lrg1 activated pathway(s) rather than directly downstream.
The unexpected results imply that signal rewiring occurs in the pathogenic C. albicans
species versus the nonpathogenic S. cerevisiae species. Ras1 plays pivotal roles in fungal
morphogenesis and, as a result, contributes to virulence (35). Loss of RAS1 causes
defects in the yeast-to-hyphal transition, which nonetheless can be reversed by over-
expression of signaling components in the Cek1 pathway in the ras1�� mutant (35).
Although this suggests that Ras1 might be located upstream of Cek1, we cannot rule
out the possibility that Cek1 and Ras1 act in parallel manners. Our Western blotting
results show that a hyperactive RAS1G13V mutant does not display hyperactivated Cek1
(Fig. 3E; see also Fig. S2), suggesting that hyperactivation of Ras1 is not sufficient to
induce Cek1 phosphorylation and that these two proteins are not in a linear signaling
cascade in these conditions.

The Ste11 MAPKKK is a well-known upstream regulator of Cek1 activity, and the
hyperactivated STE11�N467 mutant causes � (1,3)-glucan exposure in C. albicans (17).
Here we show that Ste11 is also involved in the Lrg1-dependent Cek1 hyperactivation,
given that repression of STE11 expression rescued both � (1,3)-glucan exposure and
Cek1 hyperphosphorylation in the lrg1�� mutant (Fig. 4). Given the established effect
of Cdc42 on Cek1 activation (17), our results indicate that Lrg1 negatively modulates
Cek1 activity via the GTPase Cdc42 which acts through the Ste11 MAPKKK (Fig. 10).

However, the results presented in Fig. 4 did yield a result that was somewhat
difficult to explain. The results of comparisons of the lrg1��ste11��::PtetOFF-STE11�N467

strain with doxycycline to the lrg1�� strain and wild-type strain are clear and reveal
that the lrg1�� strain acts through Ste11. The surprising result was that the
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lrg1��ste11��::PtetOFF-STE11�N467 strain without doxycycline exhibited a much lower
level of Cek1 activation and � (1,3)-glucan exposure than the lrg1�� mutant (Fig. 4).
The reason for this was not clear, but it was hypothesized that the level of STE11 gene
expression might normally be increased during activation of Cek1 MAPK pathway, since
we saw CEK1, STE11, and CPH1 gene expression increased when Cek1 was activated (in
the absence of doxycycline) in a strain that was of the genotype STE11/ste11�::PtetOFF-
STE11�N467 (Fig. 9B). These data indicate that the activated Cek1 pathway normally
activates some of its own components transcriptionally in a positive-feedback loop. But,
given these data, it would also suggest that this loop requires the presence of at least
one wild-type allele of STE11. This is suggested because both the lrg1�� and STE11/
ste11�::PtetOFF-STE11�N467 strains have at least one copy of wild-type STE11, whereas the
lrg1�� ste11��::PtetOFF-STE11�N467 strain has only a truncated copy of STE11. If our
suppositions are correct and STE11 is autoamplified in the presence of a wild-type copy,
then we would expect to see a large increase in STE11 expression in the lrg1�� mutant
compared to the lrg1��ste11��::PtetOFF-STE11�N467 strain with or without doxycycline.
Surprisingly, quantitative reverse transcriptase PCR (qRT-PCR) revealed that the levels of
STE11 expression were not significantly different between the lrg1�� and the wild-type
strain and even the lrg1�� ste11��::PtetOFF-STE11�N467 strain with doxycycline (see
Fig. S7 in the supplemental material). In contrast, in the lrg1��ste11��::PtetOFF-
STE11�N467 strain without doxycycline there was an �3-fold overexpression of STE11
(Fig. S7). The PtetOFF-STE11�N467-plus-doxycycline strain still expressed STE11, and this
was likely because it was leaky in the presence of doxycycline (Fig. 5B; see also Fig. S4
and S6). Thus, the difference in behavior between the lrg1��ste11��::PtetOFF-
STE11�N467 and lrg1�� strains cannot be explained on the basis of STE11 gene
expression. Instead, it may be explained by differences in signaling at the protein level.
The lrg1��ste11��::PtetOFF-STE11�N467 strain exclusively expresses a form of STE11 that

FIG 10 A model for how Lrg1 acts as a molecular switch to regulate Cek1 activity negatively via the
GTPase Cdc42 and the Ste11 MAPKKK. In this model, Lrg1 acts as a GAP for the GTPase Cdc42 and
therefore increases the GDP-bound state to suppress Cek1 phosphorylation (activation). Therefore, Lrg1
disruption increases Cdc42 activity in vivo by increasing the level of GTP-bound Cdc42. This activates the
canonical downstream Ste11-Hst7-Cek1 cascade. Hyperactivated Cek1 was shown in this study to
stimulate � (1,3)-glucan exposure potentially via transcriptional upregulation of transcription factor Cph1
and expression of cell wall genes, and this then compromises fungal virulence.
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is truncated for the inhibitor region which also includes Ste11 regulation sites (58).
Thus, there is likely a positive-feedback loop for signaling that can be driven by
STE11�N467 only if there is a wild-type copy present to mediate the loop. This model is
currently being explored.

Central role of Cek1 activity in controlling � (1,3)-glucan masking. The
STE11�N467 allele causes � (1,3)-glucan exposure when induced. Our RNA sequencing
(RNA-Seq) results reveal that several categories of genes were expressed differentially
when Ste11 and Cek1 were hyperactivated, and they included cell wall genes, signal
transduction genes, and stress/chemical response genes (Fig. 9). Cph1, one of two
well-known downstream transcription factors phosphorylated/activated by Cek1, was
significantly upregulated under STE11�N467 induction conditions (Fig. 9B). Cph1 is
important for C. albicans filament development (51) and for white-to-opaque switching
(52). A mutant strain that overexpresses Cph1 under yeast-inducing conditions induces
pseudohyphal growth and expression of several hyphal-specific genes (59). Lowman
et al. reported that C. albicans hyphal glucan exhibits a novel glucan structure in which
hyphal glucan has a unique cyclical structure which intrinsically displays higher levels
of � (1,3)-glucan exposure and immunogenicity (60). Our data show that CPH1 was
induced �9-fold, and it is possible that the � (1,3)-glucan structure might transition to
a more extensively hyphal glucan structure even under yeast conditions and might
therefore display more glucan exposure. Alternatively, changes in exposure may be
related to aberrantly induced cell wall repair machinery. Cek1 is upregulated in re-
sponse to caspofungin treatment (37, 61), which damages the cell wall; thus, Cek1
activation may contribute to unmasking caused by this drug as it upregulates cell wall
repair genes.

Although Cph1 may be involved, it is also possible that Ace2 plays a role in
Cek1-driven unmasking of � (1,3)-glucan. Ace2 is another downstream transcription
factor of Cek1, and it is required for proper cell wall glycosylation and causes �

(1,3)-glucan exposure when disrupted (53, 62), which is a phenotype shared with a
cek1�� mutant (32). Ace2 is not induced transcriptionally when Cek1 is hyperactivated,
but it may still be activated by Ste11 to contribute to unmasking. It is also possible that
both Ace2 and Cph1 play a role in inducing � (1,3)-glucan exposure.

� (1,3)-Glucan exposure correlates with decreased fungal virulence when Cek1
is hyperactivated. Several cell wall-defective mutants, including cho1��, cek1��,
kre5��, and phr1�� mutants, have been found to exhibit attenuated fungal virulence
in the mouse model of systemic infection (49, 50, 54, 63, 64). However, all of these
mutants display pleotropic phenotypes. Therefore, it is hard to differentiate the effect
of � (1,3)-glucan exposure on virulence in light of their other defects. Also, � (1,3)-
glucan in these mutants is exposed even before the fungal cells are injected into the
mouse. This raises the problem that the mutants with increased � (1,3)-glucan exposure
might be recognized and cleared by the immune systems more rapidly, even before the
systemic infection is established.

In this study, we made a PtetOFF-STE11�N467 strain that addressed some of the
disadvantages mentioned above. Ste11 sits upstream of Cek1 in C. albicans (50), and
overexpression of STE11�N467 causes greater induction of Cek1 activity and a greater
level of � (1,3)-glucan exposure (17) (Fig. S3; see also Fig. S4). The PtetOFF promoter can
be further used to control Ste11ΔN467 expression by adding/removing the inhibitor
doxycycline as needed so that it can be used in animal studies (47, 48, 65). The
STE11�N467 mutant, when induced to hyperactivate Cek1, has decreased virulence in
vivo, reflected by significantly greater mouse survival over 21 days compared to other
control groups, and an �100-fold decrease in fungal burden in mouse kidneys (Fig. 6;
see also Fig. 7). This suggests that the exposed � (1,3)-glucan might contribute to the
attenuated fungal virulence, due to its higher visibility to immune receptors such as
Dectin-1. There are alternative possible explanations as well, such as more-general
defects in the cell wall, although this strain did not reveal hypersensitivity to general
cell wall stressors such as SDS, calcofluor white, or Congo red (Fig. S5B). Regardless
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of the mechanism, virulence is compromised, and thus, hyperactivation of Cek1 may
be useful for improving immune recognition of C. albicans and for adjunctive
therapy.

MATERIALS AND METHODS
Strains and growth media. The medium used to culture strains was yeast extract-peptone-dextrose

(YPD) medium (1% yeast extract, 2% peptone, and 2% dextrose) (Thermo Fisher Scientific).(66) YPM
medium (1% yeast extract, 2% peptone, 2% maltose [Thermo Fisher Scientific]) was used to flip out the
SAT1-flipper cassette (46), which is under the control of maltose (MAL2) promoter. Doxycycline (Sigma-
Aldrich, USA) was added at the working concentration of 0.5 �g/ml as the repressor for the tetracycline-
repressing promoter.

Strain construction. Cloning procedures were performed following standard protocols. Plasmid and
strain construction are described in Text S1 in the supplemental material.

Protein purification. To measure Rho1 activity, we generated a GST-RID-6�His (Rho1 interactive
domain) construct that binds with GTP-Rho1 and expressed it in Escherichia coli strain BL21. The
overnight culture was diluted by 1:100 in fresh LB medium and grown to an optical density at 600 nm
(OD600) of 0.6 to 0.9. Then, IPTG (isopropyl-�-D-thiogalactopyranoside; Sigma-Aldrich) was added to reach
a final concentration of 5 mM to induce GST-RID expression at 20°C for 20 h. The culture was pelleted by
centrifugation and resuspended in cell lysis buffer (50 mM Tris-HCl, 500 mM NaCl, 30 mM imidazole,
400 �l of 0.25 mM phenylmethylsulfonyl fluoride [PMSF], 100 �l of �-mercaptoethanol [BME], 10 mM
MgCl2, and 1 protease inhibitor tablet [Roche Diagnostics GmbH, Mannheim, Germany]). The suspension
was agitated by sonication (Sonic Dismembrator F550 ultrasonic homogenizer; Fisher Scientific). The
liquid was centrifuged for 1 h at 17,000 rpm at 4°C. The protein is soluble and was thus located in the
supernatant. The solution was then slowly run through a nickel-nitrilotriacetic acid (Ni-NTA) column
(Qiagen Inc., Germany) for binding, and the beads were then gently washed with wash buffer (50 mM
Tris-HCl [pH 8.0], 500 mM NaCl, 30 mM imidazole) to remove the nonspecific binding protein. To elute
out the His-tagged protein, 6 rounds of 250 �l of elution buffer (the same as the wash buffer except with
300 mM imidazole) were added. The eluted fractions were then run through a PD-10 column (GE
Healthcare) to remove the imidazole. The product was applied to an Amicon Ultra 0.5-ml centrifugal filter
unit (Merck KGaA, Darmstadt, Germany) to concentrate the protein.

Western blotting. Western blotting was performed as previously described (17). To detect the
phosphorylation of Cek1 and Mkc1 MAPKs, rabbit anti-phospho-p44/42 antibody (Cell Signaling Tech-
nology, Inc., USA) was utilized at a 1:2,000 dilution. The expression of total Mkc1 was detected with the
primary rabbit anti-Mkc1 Ab at a 1:1,000 dilution. The level of expression of total Cek1 was measured with
a rabbit anti-Cek1 Ab at a 1:1,000 dilution. The secondary antibody against phospho-p44/42 Ab, Mkc1 Ab,
and Cek1 Ab was IRye800CW goat anti-rabbit IgG (H�L) conjugate (Li-Cor Biosciences) (green; 1:10,000
dilution). Tubulin was detected as a control with rat anti-tubulin primary antibody (Bio-Rad Laboratories
Inc., USA) (1:1,000 dilution) and IRDye 680RD goat anti-rat IgG (H�L) (Li-Cor Biosciences) (red; 1:10,000
dilution).

Pulldown assay for active GTPases. The GTPase activity assay was performed as previously
described (17). To detect Cdc42 activity, 1,500 �g of total protein was used for the pulldown procedure
following the instructions from an Active Cdc42 pulldown and detection kit (Thermo Fisher Scientific,
USA). The same kit was used to pull down the active GTP-bound GFP-tagged-Rac1 (see “Strain construc-
tion” above), since the GST-Pak1 provided in the kit can also bind active Rac1. GTPase Ras1 activity was
evaluated following the protocol from an Active Ras1 pulldown and detection kit (Thermo Fisher
Scientific, USA). To pull down the active GTP-bound c-myc-tagged Rho1 (see “Strain construction” above),
an Active Rho pulldown and detection kit (Thermo Fisher Scientific, USA) was purchased and the
instructions were followed, except that the purified GST-Rhotekin-RBD peptides provided in the kit were
replaced with the purified GST-RID-6�His peptides that we generated (see “Protein purification” above)
for optimization of binding between GTP-Rho1 and the RID domain.

The antibody used to detect Cdc42 was rabbit polyclonal anti-S. cerevisiae Cdc42 (sent by Doug
Kellogg at the University of California, Santa Cruz.). The antibody to detect Ras1 was mouse monoclonal
anti-Ras1 antibody (anti-Ras, clone RAS10; Millipore Sigma, USA) with the working concentration at
1.5 �g/ml. The antibody for c-myc-Rho1 detection was mouse anti-c-Myc monoclonal antibody (9E10)
(Thermo Fisher Scientific, USA) at a 1:1,000 dilution. The rabbit anti-GFP antibody (Sigma Inc., USA) was
used for the GFP tagged-Rac1 detection. The antibody used to recognize the loading control tubulin was
rat anti-tubulin (Bio-Rad Inc., USA). The secondary antibodies were IRye800CW goat anti-mouse IgG
(H�L) conjugate (Li-Cor Biosciences) (1:10,000), IRye800CW goat anti-rabbit IgG (H�L) conjugate (Li-Cor
Biosciences) (1:10,000), and IRye600RD goat anti-rat IgG(H�L) conjugate (Li-Cor Biosciences) (1:10,000).
Densitometry quantification of active GTP-bound GTPases versus the total GTPase input bands was
performed with ImageJ (National Institutes of Health, Bethesda, MD) from images generated on an
Odyssey Imager (Li-Cor Biosciences).

Immunofluorescent imaging of � (1,3)-glucan exposure. To stain the lrg1�� mutant, Candida cells
were grown overnight in YPD medium at 30°C. The culture was collected and processed for immuno-
staining. The staining protocol was followed as described previously (17).

Flow cytometry. To stain the STE11�N467 strain under the regulation of PtetOFF promoter over time,
overnight cultures in YPD medium with doxycycline were diluted to an OD600 of 0.2, and cells were
collected after growth in fresh YPD medium without doxycycline at 1-h, 2-h, 4-h, and 6-h time points. To
stain the lrg1�� mutant, an overnight culture in YPD was used. The staining protocol and gating strategy
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for all of these samples were followed as described previously (17). Flow cytometry data were obtained
for 100,000 gated events per strain, experiments were performed in triplicate, and the data were
analyzed using the FlowJo software package (version 10.11; FlowJo LLC, OR, USA).

Enzyme-linked immunosorbent assay (ELISA) of TNF-�. To activate Ste11ΔN467 expression under
the PtetOFF regulation, the PtetOFF-STE11�N467 mutant strain was grown in YPD without doxycycline
overnight. Otherwise, strains were grown with doxycycline overnight. RAW264.7 murine macrophages
were in used in this assay. The manufacturer’s instructions for an ELISA kit (R&D Systems, USA) were
followed. Each sample was represented by three individual replicates, and the statistical analysis was
performed by using two-way analysis of variance (ANOVA) (GraphPad Prism, v7.04 software).

Mouse model. Outbred male ICR mice were used in this study. C. albicans wild-type strain
DAY286 and the PtetOFF-STE11�N467 strain were cultured overnight at 30°C in 50 ml of YPD medium
with 0.5 �g/ml of doxycycline to repress Ste11ΔN467 expression. The overnight culture was counted
via hemocytometer and diluted to 106 cells/ml. The diluted fungal cells were plated on YPD media
to test for viability. Mice were injected via the lateral tail vein with 0.1 ml of the fungal cell
suspension. Mice were given either drinking water supplemented with 2 mg/ml doxycycline plus 5%
sucrose to cover the bitter taste of the antibiotics (67) or 5% sucrose water alone as a control. Mice
were monitored closely for 21 days for signs of illness. For the fungal burden counting experiment,
mice were sacrificed 4 days postinfection. Kidneys were harvested, homogenized, serially diluted in
water, and plated on YPD media. The plates were incubated at 30°C for 2 days to determine CFU per
gram of kidney.

Ethics statement. All mouse model experiments in this study were performed under an animal
protocol (1083) that was approved by the University of Tennessee Institutional Animal Care and Use
Committee (IACUC), and we followed the ethical guidelines set forth by the National Institutes of Health
(NIH) for the ethical treatment of animals.

RNA extraction. The RNA extraction protocol was modified from a protocol described previously
(68). A 15-ml volume of yeast overnight culture were collected and washed 3 times with phosphate-
buffered saline (PBS). A 750-�l volume of TES buffer (Tris-Cl [10 mM, pH 7.6], EDTA [10 mM], sodium
dodecyl sulfate [SDS; 0.5% {wt/vol}]), prepared with RNase-free water (RPI Corp., USA) and 750 �l of acid
phenol (Thermo Fisher, USA) (pH 4.5), was added to the pellet, and an equal volume of 150-to-212-�m-
diameter acid-washed glass beads (Millipore-Sigma, USA) was added to each tube. Cells were mechan-
ically disrupted in a Biospec Mini-BeadBeater (BioSpec Products Inc., USA) with 4 rounds of 1 min
homogenization at 4°C and 2-min intervals for each cycle on ice. Samples were placed in a 65°C heat
block for 30 min and subjected to thorough vortex mixing every 10 min. The mixture was centrifuged for
5 min at 13,000 rpm at room temperature, and the aqueous layer was transferred to a fresh tube
containing 700 �l of acid phenol (pH 4.5) and spun for 5 min. The aqueous layer was transferred and
washed twice with 600 �l of neutral pH phenol (Thermo Fisher, USA), followed by washing with 600 �l
of chloroform until the interface was clean. The supernatant was further transferred to the tube
containing 150 �l of 3 M sodium acetate, followed by addition of 1 ml of 100% ethanol, and the mixture
was placed in a freezer and maintained at – 80°C overnight to precipitate the nucleic acid. The pellet was
collected by centrifugation at 13,000 rpm at 4°C for 10 min and further washed with 500 �l of ice-cold
70% ethanol. The pellet was dried at room temperature and resuspended in 100 �l of RNase-free water.
DNA was removed by using a Turbo DNA-free kit (Thermo Fisher, USA) following the manufacturer’s
instructions.

RNA samples were analyzed for quality by the use of a 2100 series bioanalyzer (Agilent Technologies,
USA) at the University of Tennessee Genomics Core, followed by cDNA library preparation and sequenc-
ing. Barcoded cDNA libraries were prepared with an Illumina TruSeq stranded mRNA sample preparation
kit according to the specifications of the manufacturer (Illumina, Inc., USA). The quality of the libraries was
validated by the use of a bioanalyzer (Agilent Technologies, USA), and the contents were then arranged
on a flow cell using MiSeq reagent kit v3 (Illumina, Inc., USA) (150 cycles) and sequenced on an Illumina
MiSeq M04398 machine.

Bioinformatic analysis. All the operations were performed with CLC Genomics Workbench v.12.0
software (Qiagen, Germany). Trimming was performed with the quality score limit set at 0.01 and
ambiguity set at 0. The read length to be discarded was set to below 50. The C. albicans SC5314 reference
genome and corresponding annotations (version A22-s07-m01-r71) were downloaded from the Candida
Genome Database and were converted to a haploid genome and annotation set (A alleles) to avoid issues
with mapping specificity (69). The genome was annotated with the GFF file plugin available on CLC
Genomics Workbench v.12.0 software. The mapping parameters used were as follows: mismatch
cost � 2, insertion cost � 3, deletion cost �3, length fraction � 0.8, and similarity fraction � 0.8. Expres-
sion values for each gene were calculated from unique gene reads (the maximum number of hits for a
read was set to 1) and normalized by gene length and sequencing depth, yielding the expression value
of transcripts per million (TPM). To determine if gene expression values were correct, the TPM reads of
five housekeeping genes (TEF1, ACT1, TUB1, ENO1, and PMA1) were evaluated to calculate the average for
each condition, which was further plotted as described previously (70). To identify genes that were
differentially expressed under treatment and control conditions, the P values calculated for the individual
genes were adjusted for false-discovery rate (FDR), and genes with an FDR-adjusted P value of �0.05 in
the treatment group were considered differentially expressed. Expression values exceeding a factor of 2
(fold change [either higher or lower than that calculated for the control]) were considered to represent
significantly differential expression. The RNA sequence reads have been deposited in the NCBI Sequence
Read Archive under the BioProject number PRJNA559867.
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