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Abstract

Motivation: Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due
to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to
simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various
structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to
represent key elements of the folding space.

Method: We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of
RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guid-
ing potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled struc-
tures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure
space.

Results: We developed and applied different measures to benchmark our sampling methods against its competitors.
Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations
that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the
landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subse-
quently compute better approximations of RNA folding kinetics.

Availabilityand implementation: https://github.com/ViennaRNA/RNAxplorer/.

Contact: andrea.tanzer@meduniwien.ac.at or ronny@tbi.univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past two decades, our understanding of the roles and
functions of RNAs has fundamentally changed. With the advent
of next-generation sequencing a plethora of non-coding RNAs
were discovered, along with specific expression patterns that
support a diversity of functions within cellular compartments
and molecular mechanisms (Djebali et al., 2012; ENCODE
Project Consortium, 2012). Accordingly, genome-wide bioinfor-
matics studies (Eddy, 1999; Saito et al., 2009) have confirmed
the dense population of the intergenic space with transcripts,
and comparative genomics approaches have revealed evolution-
ary conservation of structured ncRNAs. Even protein coding
mRNAs often rely on specific structural arrangements to control

their own splicing, transcription, translation or degradation,
where structure elements often serve as recognition sites for
binding partners such as proteins. Modeling the structure(s) of
RNA is therefore an important step toward understanding their
function.

At the secondary structure level, efficient dynamic programming
(DP) algorithms enable the computation of various RNA structural
properties at thermodynamic equilibrium. Software suits such as
RNAstructure (Reuter and Mathews, 2010), UNAFold
(Markham and Zuker, 2008) or the ViennaRNA package (Lorenz
et al., 2011), enable the computation of minimum free energy
(MFE), base pairing probabilities, consensus structures, RNA-RNA
interactions and beyond using the Turner nearest neighbor model
(Turner and Mathews, 2010).
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However, RNA folding is a dynamic process that already starts
during transcription. While an RNA molecule tends to adopt a sta-
ble structural conformation, i.e. one that decreases its free energy,
along the way it may be trapped in local minima. Depending on the
height of (energy) barriers to escape such local minima, an RNA
may only explore a negligible fraction of its conformation space,
and never reach its ground state within its life time. Concrete instan-
ces of kinetics, where the thermodynamic ground state is not the
final state, notoriously include RNAs whose function is mediated by
co-transcriptional folding, e.g. transcriptional riboswitches.
Examples of such riboswitches are discussed in Breaker (2012) and
most of our benchmark sequences (see Supplementary Table S1) be-
long to this class. Since experimental methods are limited in the
number of alternative structures they can verify, computational
models are essential for studying riboswitches in detail. For instance,
experimentally derived NMR structures (Helmling et al., 2017) have
been used to model concentration-dependent metabolite binding/
unbinding kinetics (Wolfinger et al., 2018). Furthermore, kinetic
methods are invoked in rational design of artificial riboswitches
(Günzel et al., 2020). Folding dynamics can also be modeled on the
level of tertiary structures, e.g. for G-Quadruplexes (Stadlbauer
et al., 2016). Due to its computational complexity, however, only
small substructures can be analyzed on a coarse grained level.

A general framework for studying kinetics relies on an abstrac-
tion of the folding process as a Continuous-Time Markov Chain
(CTMC) over a discrete conformational space. Properties of the
CTMC can be derived from stochastic simulations of single trajecto-
ries within the folding landscape (Flamm et al., 2000). However,
many trajectories are then needed to estimate population densities,
i.e. the probabilities/concentrations associated with most relevant
conformations, hindering the kinetics analysis for RNAs beyond
modest lengths. For these reasons, recent popular methods rely on a
coarse-graining of the folding landscape, in which a subset of repre-
sentative conformations is first identified, followed by the numerical
resolution of the differential equation describing the time-resolved
evolution of the population densities.Figure 1 illustrates the general
principle of such a prediction workflow. The choice of a suitable
coarse-graining is critical in order to allow for the omission of large
parts of the conformational space, while at the same time maintain-
ing key states in the RNA landscape for subsequent accurate ap-
proximation of RNA folding kinetics. Available approaches for
coarse-graining include flooding strategies (Entzian and Raden,
2019; Wolfinger et al., 2004), whose enumerative nature makes
them unsuitable for RNAs beyond 100 nt. For longer RNAs, meth-
ods combining sampling with a reconstruction of the CTMC, such
as the Basin Hopping Graph (Kucharı́k et al., 2014), currently repre-
sent the only realistic option.

To identify important (meta) stable secondary structures within
folding landscapes, the dominant approach usually resorts to struc-
ture sampling followed by a clustering step, as introduced by Ding
et al. (2005). However, classified DP approaches have been proven
useful to yield structure representatives from partitions of the en-
semble that share a common feature, for instance their abstract
shape (Giegerich et al., 2004) or their base-pair distance to one or
two reference structures (Freyhult et al., 2007; Lorenz et al., 2009).

Other DP algorithms reduce the state space ab initio to draw (ran-
dom) samples that constitute locally optimal structures, i.e. where
no structural neighbor has lower free energy (Kucharı́k et al., 2014;
Li and Zhang, 2011; Lorenz and Clote, 2011; Michálik et al.,
2017).

However, the accuracy of virtually all the aforementioned meth-
ods is hindered by a strong bias toward low-free energy structures.
This situation leaves such methods to overlook important regions of
the folding landscapes, or induces unreasonable computational costs
due to precomputations (Michálik et al., 2017), lack of diversity,
forcing further rounds of sampling (Kucharı́k et al., 2014) or the
downstream reconstruction of the coarse-grained CTMC model.
Indeed, the clustering of structures, and computation of (pairwise)
transition rates between the structures are the computationally most
demanding steps. Computing such pairwise transition rates requires
approximating the energy barrier between two secondary structures,
a NP-hard problem even under simplistic assumptions (Ma�nuch
et al., 2011). Consequently, the structure sampling step is the most
crucial, as a good balance between the size of the sample set and the
coverage of important parts of the energy landscape are required.

In this work, we present a novel method to construct accurate
approximations of kinetics landscapes. To this end, we iteratively
utilize an efficient DP algorithm to compute the partition function
(McCaskill, 1990) including pseudo-energies (Lorenz et al., 2016),
subsequently draw random samples using stochastic backtracking
(Ding and Lawrence, 2003) and, iteratively, refine guiding potentials
to (dis-)favor particular substructures, similar to the local elevation
ideas introduced in metadynamics (Huber et al., 1994). In the con-
text of RNA secondary structures guiding potentials have previously
been used in path finding (Dotu et al., 2010). Our strategy provides
a fast and effective means to discover local minima that may be far
away from the ground state in terms of free energy but represent im-
portant landmarks of the energy landscape due to their impact on
folding dynamics.

2 Materials and methods

Formally, given an RNA sequence r of length n, a secondary struc-
ture sðrÞ ¼ fði; jÞjðr½i�; r½j�Þ 2 BPÞg is a set of base pairs (i, j) compat-
ible with r. Interacting nucleotides are usually restricted to the
canonical Watson-Crick pairs (A;U) and (G;C) and the Wobble
pair (G;U), i.e. BP¼fðA;UÞ;ðU;AÞ;ðG;CÞ;ðC;GÞ;ðG;UÞ;ðU;GÞg.
The generally accepted definition of secondary structures also
excludes pseudo-knots and assumes a minimum of three unpaired
bases between any two pairing bases due to sterical reasons. A
detailed definition is given in Supplementary Section S1.1.

The ensemble of all secondary structures compatible with an
RNA r defines its conformation space XðrÞ ¼ fsðrÞg. Note, that in
the following, we always assume a fixed sequence r and will there-
fore only use X instead of XðrÞ for the sake of convenience. In con-
junction with (i) a move setM that specifies elementary transitions
to transform one structure si into one of its neighbors sj, and (ii) the
energy function E : s!R that assigns each structure s 2 X a real
numbered value, one obtains the notion of the energy landscape
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‘ ¼ fX;M;Eg. Over the past decades, different move sets M have
been used (Flamm et al., 2000; Xayaphoummine et al., 2003), most-
ly to restrict the size of their induced neighborhood. The most com-
monly utilized move set is the difference of exactly one base pair
between neighboring structures.

Local minima are defined via steepest descent trajectories c1ðsÞ
of subsequent single base pair moves. These trajectories are called
gradient walks and always end in a local minimum. Structures for
which a gradient walk ends in the same local minimum belong to
the same gradient basin of attraction BðsÞ. Performing gradient
walks for all structures results in a unique partitioning of the state
space. This is often used as a most natural coarse graining in RNA
folding kinetics simulations (Wolfinger et al., 2004). Definitions of
gradient walks can slightly differ in resolving ambiguity. We refer to
the definition used by Entzian and Raden (2019), which employs
lexicographical order to break ties between structures with equal en-
ergy, such that the mapping of a structure to its basin representative
structure becomes unique.

Moreover, gradient basins and the minimal saddle points con-
necting them can be used to conveniently visualize and compare
high-dimensional energy landscapes as barrier trees or disconnectiv-
ity graphs (DG) (Becker and Karplus, 1997; Flamm et al., 2002).
However, computing the barrier tree for a particular RNA sequence
typically relies on exhaustive enumeration of X which becomes im-
practical for sequence lengths of about 100 nt or longer, as X grows
exponentially with the length (Waterman, 1978).

Equilibrium ensemble properties. Most RNA secondary struc-
ture prediction methods borrow a key concept of statistical mechan-
ics, namely that structures s in thermodynamic equilibrium are
Boltzmann distributed, hence pðsÞ / expð�bEðsÞÞ with b :¼ 1=kT
for k the Boltzmann constant and T the temperature. For a particu-
lar RNA sequence this immediately suggests an obvious structure
representative: the one with minimal free energy (MFE), i.e. sMFE ¼
argmins2XEðsÞ since it has the highest probability among all other
structures of the conformation space. Efficient DP algorithms exist
that compute sMFE in Oðn3Þ time and Oðn2Þ memory for sequences
of length n (Zuker and Stiegler, 1981). A small change in this DP
concept leads to an efficient method to compute the partition func-
tion Z ¼

P
s2X exp ð�bEðsÞÞ, with the same asymptotic complex-

ities (McCaskill, 1990). Using Z many thermodynamic equilibrium
properties can be derived, e.g. probabilities

pðsÞ ¼ e�bEðsÞ

Z
(1)

for any structure s or pij ¼
P

sjði;jÞ2s pðsÞ for base pairs (i, j). The DP
algorithm to compute Z can also be adapted to perform Boltzmann
sampling, i.e. to draw structures s randomly from the ensemble
according to their probability p(s). This can be regarded as (random)
backtracing in the DP matrices with worst case time complexity of
Oðn logðnÞÞ per sample (Ding and Lawrence, 2003; Ponty, 2007).

2.1 The RNAxplorer method
The RNAxplorer method approximates RNA energy landscapes
using an iterative scheme which samples random structures using
guiding potentials. To mitigate oversampling, we introduce a
focused approach based on (directed) guiding potentials, i.e.
pseudo-energy terms that supplement the free-energy, and steer the
sampling away from a (set of) structure(s). Pseudo energy terms are
accumulated after each iteration to avoid a concentration of samples
within low free-energy basins, thus ensuring maximal coverage of
the landscape. This allows a finer level of control over the redistribu-
tion of the emission probabilities than previous alternatives, such as
the temperature elevation method introduced by Kucharı́k et al.
(2014) (see Supplementary Material S1.3).

Sampling with base pairs-associated guiding potentials. Given a
pseudo energy EWðsÞ, our sampling procedure considers a pseudo-
energy function ÊðsÞ ¼ EðsÞ þ EWðsÞ where E(s) is the classic Turner
free-energy and EWðsÞ is a guiding potential defined below. Our goal
is then to sample from the distribution

p̂ðsÞ ¼ e�bÊðsÞ

Ẑ
with Ẑ ¼

X
s2X

e�bÊðsÞ: (2)

Boltzmann sampling requires the precomputation of the
(pseudo) partition function Ẑ, not through exhaustive summation
due to the combinatorial explosion of X, but rather by using a re-
cursive DP scheme. Thus, in order to benefit from efficient algo-
rithms, we restrict our attention to guiding potentials EW such
that, for any structure s, EWðsÞ can be written as a sum of contri-
butions associated with derivations of the underlying folding
grammar. Sampling under such guiding potentials is generically
supported by the soft constraints framework introduced by Lorenz
et al. (2016).

In particular, let us consider simple, base pairs-associated poten-
tials, which can be decomposed into energy terms Ei;j 2 R, each
associated to a base pair (i, j). For any structure s, one has

EWðsÞ ¼
X

ði;jÞ2½1;n�2
di;jðsÞ � Ei;j (3)

where di;jðsÞ is the indicator function, taking value 1 if ði; jÞ 2 s and
0 otherwise. Despite their simplicity, EW terms can be used to steer
the sampling toward/away from one or several reference
structure(s).

For instance, the base pairs of a reference structure s0 can be
individually penalized/promoted by setting Ei;j ¼ di;jðs0Þ � a, for
some arbitrary real a, leading to EWðsÞ ¼ js \ s0j � a: Setting a <
0 will decrease the expected distance between sampled structures
to s0, while a > 0 will increase it. Note that more elaborate
guiding potentials can be supported, e.g. through variations of
the energy values a and/or a combination of using individual
base pairs and structures as targets (see Supplementary Sections
S2.2 and S2.3).

Defining guiding potentials to avoid recurrent structures. In
order to steer sampling away from a given structure s0 that has al-
ready been sampled repeatedly, we consider a guiding potential

Ecðs0; sÞ :¼ a � js \ s0j
js0j (4)

that for each structure s 2 X adds individual pseudo-energy penal-
ties, depending on the number of base pairs s shares with s0.

Moderate penalties arise if the weight factor a is chosen close to
thermal fluctuations, which is why our method defaults to a ¼ kT
unless stated otherwise. Such potentials could also be used to attract
subsequent sampling toward a region of interest within the kinetics
landscape, by simply changing the sign of a.

Finally, guiding potentials can be modified to capture the base
pair distance between s0 and s, i.e. the minimum number of base
pairs to insert/remove to transform s0 structure into s (see
Supplementary Equations 9 and 12). This alternative definition
yields comparable, yet slightly inferior results as shown in the
Supplementary Material S2.1.

Overall iterative strategy. For each structure s, the pseudo-
energy EWðsÞ is initially set to 0 and incrementally updated to accu-
mulate contributions from the dominant structures encountered
over the course of sampling.

At each round m, a multiset Sm � X of structures is sampled
from a (distorted) Boltzmann distribution. Through gradient des-
cent, each structure s 2 Sm is mapped to its local minimum c1ðsÞ,
used as a representative ŝ for its energy basin. The resulting set of
local minima is then analyzed to identify the most over-represented
structure, denoted as

s0m ¼ argmaxŝ̂2X jBSm
ðŝ^Þj; with BSð̂s^Þ :¼ fs 2 Sjc1ðsÞ ¼ ŝ^g:

In other words, s0m is the local minimum that attracts the most
samples in Sm. In the (unlikely) case of ties, one of the most highly
represented structure is chosen arbitrarily and returned.

The method then updates the pseudo-energy term EW for the
next iteration, based on the structural features of s0m, by setting:
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EWmþ1
ðsÞ ¼ EWm

ðsÞ þ Ecðs0m; sÞ ¼
Xm
‘¼1

Ecðs0‘; sÞ: (5)

This can be expressed at level of individual base pairs (i, j) by set-
ting

Emþ1
i;j :¼ a

Xm
‘¼1

di;jðs0‘Þ
js0‘j

where di;jðs0‘Þ denotes the presence (1) or absence (0) of (i, j) in s0‘.
Then, any structure s inherits a total pseudo-potential of:

X
ði;jÞ2s

Emþ1
i;j ¼

X
ði;jÞ

di;jðsÞa
Xm
‘¼1

di;jðs0‘Þ
ij

js0‘j

¼ a
Xm
‘¼1

js \ s0‘j
js0‘j

¼
Xm
‘¼1

Ecðs0‘; sÞ ¼ EWmþ1
ðsÞ

in which one recognizes the intended guiding potential after m
updates.

The total number of iterations mmax ¼ N
g is governed by the frac-

tion of the requested sample size N and a user-adjustable granularity
g that determines the number of samples drawn at once in each

round. Unless stated otherwise, we use default values N ¼ 105 and
g¼100.

Additionally, we use a strategy which determines whether EW

needs an update after each iteration. This avoids unnecessary recom-
putation of the rather costly partition function (see Section 2.1). The

general idea is that the depth of a sampling is sufficient if collisions
pervasively occur, i.e. most structures are observed multiple times

(Sahoo and Albrecht, 2012). Therefore we compare the set M1 of
local minima that are observed only once over all iterations, against
M>1, those observed multiple times. Our algorithm then only

updates EW if the ratio jM1j=jM>1j does not exceed a saturation
threshold l, set by default to l ¼ 0:1 by analogy to Kucharı́k et al.
(2014).

2.2 Quality assessment
Whether or not a landscape ‘ is adequately approximated by a set of
structures strongly depends on the requirements of downstream ana-

lysis and thus is difficult to generalize. In the following we discuss
the use of general measures for structure diversity, distance class

based diversity measures and the coverage of basins and energy bar-
riers in ‘. The approximated shape of ‘ is important for the overall
dynamical behavior of subsequent folding simulations. We, there-

fore, also analyze sample sets for the presence of certain key
structures.

General measures. Typical measures that express the diversity of
a set of structures are the number of unique local minima, the
Density of States (DOS) (Cupal et al., 1997) and the weighted mean

base pair distance. Density of States is simply the number of struc-
tures per energy level. The weighted mean pairwise distance is

defined as the sum over all base pair distances between structures s
and t multiplied by their probabilities p(s) and p(t). For details we
refer to Supplementary Material S5.1.

Distance classes. The partitioning of X into distance classes
with respect to one or many reference structures leads to a pro-

jection of the high-dimensional state space. Such a projection
still captures the structural diversity of the ensemble, but can

now be easily visualized and characterized. Following the lines
of Lorenz et al. (2009), with two fixed references ŝ1; ŝ2, each
structure s 2 X is assigned to its corresponding class Cd1 ;d2 where

d1 ¼ dBPðs; ŝ1Þ and d2 ¼ dBPðs; ŝ2Þ. Each class can then be repre-
sented by

MFEd1 ;d2 ¼ mins2Cd1 ;d2 EðsÞ; (6)

or the corresponding ensemble free energy

Gd1 ;d2 ¼ �blnZd1 ;d2 ; with Zd1 ;d2 ¼
X

s2Cd1 ;d2

e�bEðsÞ: (7)

Finally, the resulting projections can be conveniently visualized
in Cartesian coordinates and dimensions d1 and d2, for instance in
the form of a heat map (see Fig. 2 or Fig. 5).

As a proxy of diversity, we count the number of distance classes
Cd1 ;d2 that are adequately covered by a sample set S. We assume a
class to be covered, if any sampled structure s mapped to Cd1 ;d2 is
within an energy margin # around MFEd1 ;d2 of the full ensemble, i.e.
mins2S\Cd1 ;d2 EðsÞ �MFEd1 ;d2 � #, cf. Supplementary Section S5.5.

Energy barriers. Comparing folding simulations produced by dif-
ferent tools can be challenging, because the inherently different
coarse graining of each sampling method results in different repre-
sentations of both fast fluctuations at the beginning of the simula-
tion and slow folding components close to thermodynamic
equilibrium. To assess the quality of our sampling strategies within
the RNA folding kinetics workflow (Fig. 1) we need to evaluate our
samples in terms of providing a basis for calculating folding rates.
For this, samples must not only cover the lowest energy states of ‘,
but also refolding events with large energy barriers, i.e. those associ-
ated with slow rates that effectively determine the long time behav-
ior of folding dynamics (Becker and Karplus, 1997; Flamm et al.,
2002). For that purpose, structures of a sample set can be mapped
into a barrier tree representation of the full ensemble. We then com-
pute the fraction of leaves covered by, and the highest energy bar-
riers associated with the structures within each sample set. For
details, we refer to Supplementary Section S5.3.

2.3 Implementation
From the implementation perspective, we use the constraint frame-
work of the ViennaRNA Package that allows us to specify guiding
potentials EW as separate functions which are then integrated into
the prediction algorithms (Lorenz et al., 2016). This allows us to dy-
namically adapt EW without the need to re-implement the computa-
tion of Ẑ and the subsequent Boltzmann sampling. We implemented
the novel guiding potential-based sampling approach described in
Section 2.1 using the programming language C, as part of the exe-
cutable program RNAxplorer. For the iterative sampling method,
the user can choose between two guiding potentials, the base pair
associated potential, described in Section 2.1, or an alternative based
on base pair distance, described in Supplementary Section S2.1. To
deviate from the default parameters, the granularity g, the total sam-
ple size N, the saturation threshold l, as well as the weighting factor
a are user-adjustable. The RNAxplorer program offers additional
guiding potential-based structure sampling modes, e.g. one that
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explicitly penalizes or rewards a pre-defined set of reference struc-
tures and structures in its vicinity. Furthermore, it implements differ-
ent heuristics to compute (optimal) transition paths to eventually
determine saddle points required to assess transition rates, and final-
ly, provides gradient walk methods to coarsen the sampled state
space. The program also comes with a Python script that enables
hierarchical clustering of secondary structures, see Supplementary
Section S2.3.

3 Results

In the following we assess the quality and applicability of our novel
sampling method by comparing its results against other widely used
RNA secondary structure sampling methods. For that purpose, we
first collected a set of 9 benchmark sequences for which landscape
approximations were made. They have a minimum length of 110 nt,
a maximum length of 233 nt and a median length of 130 nt. The
exact sequences can be found in Supplementary Table S1 of
Supplementary Material. The methods and tools we compare our
approach against are (i) uniform sampling with RNAsubopt
achieved using Boltzmann sampling at extremely high temperatures
(106 � ), (ii) regular Boltzmann sampling with RNAsubopt (-p com-
mand line option), (iii) Boltzmann sampling of locally optimal struc-
tures with RNAlocopt (Lorenz and Clote, 2011), (iv) non-
redundant sampling of saturated structures with RNANR (Michálik
et al., 2017), (v) the temperature elevation scheme of RNAlocmin
(Kucharı́k et al., 2014) and (vi) a set of locally stable structures, gen-
erated by RNASLOpt (Li and Zhang, 2011). Note, that RNASLOpt
differs from all the others in that it is deterministic and always ex-
haustively enumerates locally optimal structures (LOpts) in a pre-
defined energy band above the MFE. The width e of this band can
be specified in discrete steps of kcal/mol or percentages. This, unfor-
tunately, prohibits one to explicitly set the number of output struc-
tures in advance. Therefore, in some of the analysis below, we either
determined the minimal width e that results in at least the number of
required samples in a pre-processing step, or we simply omit its use
altogether. All programs were used with default parameters unless
stated otherwise.

3.1 Time and memory consumption
First, we prepared a set of artificially generated random sequences
with equal probabilities for each of the four RNA nucleotides to as-
sess the runtime and memory requirements for all programs in our
comparison. To that end, we generated 10 sequences with lengths of
50–300 nt in steps of 50 nt. For each of the resulting 60 sequences
the 6 different tools were instructed to (randomly) draw 1, 000
structures from the respective ensembles. For the iterative methods
implemented in RNAlocmin and RNAxplorer, the number of itera-
tions was set to 100. Programs were compiled with GCC 8.2.1 and
all computations were performed on a Linux workstation with
IntelV

R

CoreTM i7-7700K CPU running at 4.20 GHz and 32 GB of
RAM.

As expected, the standard Boltzmann sampling strategies of
RNAsubopt with default parameters as well as uniform sampling
were the fastest methods tested (Fig. 3) and required the least
amount of memory. The next best tool in terms of both, runtime
and memory requirements, is our new heuristic RNAxplorer, fol-
lowed by RNAlocopt and RNAlocmin. While runtimes of
RNAxplorer and RNAsubopt are within the same order of

Fig. 5. 2D projections of local minima as obtained from different methods for the riboswitch SV-11 Q beta replicase template (Biebricher and Luce, 1992). Reference structures

for the projection are the MFE and metastable structure. The left most column depicts the ground truth as computed by RNA2Dfold, chosen here as a reference for compari-

son. The remaining panels show the results for Boltzmann sampling (RNAsubopt -p), local optima sampling (RNAlocopt), RNASLOpt, variable temperature sampling

(RNAlocmin), non-redundant sampling (RNANR) and repellant sampling (RNAxplorer), which required 6.75, 21.81, 115.99, 487.73, 4285.81 and 27.87 s to produce the

sample sets, respectively. The sample size for each tool is 106 (except for RNASLOpt which always yields less structures even with exhaustive enumeration, i.e. artificially high
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Fig. 3. Runtime comparison. Runtimes observed for a sample of 1000 structures for
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1000 structures. For RNAxplorer and RNAlocmin the number of iterations was
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magnitude, RNAlocopt and RNAlocmin are by two orders of mag-
nitude slower. The exponential runtime asymptotics of RNANR and
RNASLOpt render them the slowest for longer sequences. Note, that
we were not able to produce results (within 3 days) for sequence lon-
ger than 150 nt (RNANR) and 200 nt (RNASLOpt) due to the limited
memory of our testing machine. However, for shorter RNA sequen-
ces up to 150 nt, these two programs are still faster than
RNAlocmin (Fig. 3). Further runtime and memory benchmarking
results are available in Supplementary Section S4.

3.2 Structure sample diversity
For each method we assessed sampling quality in terms of diversity
of structures obtained. First we calculated standard measures to pro-
vide an overall description of the samples produced. Sampling re-
dundancy in terms of (i) number of unique local minima and (ii)
mean base pair distance both turn out favorable for RNAxplorer
and RNANR (see Supplementary Section S5.1 and Supplementary Fig.
S5). The energy spectrum of the samples expressed as Density of
States shows that most methods are prone to over-sample the low
free energy regime, while RNAxplorer also captures structures at
higher energy levels, e.g. structures around the meta-stable state of
SV-11 appear as second peak (Supplementary Fig. S6). However,
these results are not sufficient to evaluate the methods regarding
their suitability within the folding kinetics workflow. In the follow-
ing we therefore focus on a newly developed measure to investigate
the spatial resolution of the sample sets based on distance classes.

Coverage of distance classes. Our main question was whether (i)
the samples spread over a large number of representative structures
with fundamentally different base pair patterns, or (ii) the samples
mainly reflect representatives of structurally similar clusters. For
that purpose, we use distance classes Cd1 ;d2 (cf. Fig. 2), where we par-
titioned the sample sets according to their distance to (i) the MFE
structure and (ii) the most stable structure that does not share any
base pair with the MFE structure. Note, that the latter can be
obtained from a constrained MFE prediction where all base pairs of
the actual MFE structure are prohibited. For each class we com-
puted the MFE and ensemble free energy to compare them against
exact values as computed with RNA2Dfold (Lorenz et al., 2009).

Such projections into lower dimensions provide easy to assess
visual impressions of the sample diversity, as shown in Figure 5.
However, here we use them to count how many Cd1 ;d2 were covered
by the different sampling methods. To alleviate the impact of ran-
domness during the sample generating process, we averaged the
results for each experiment over 10 independent runs. Figure 4 sum-
marizes the results over all benchmark sequences as a function of
sample size and two thresholds #1 ¼ 0 kcal/mol and #2 ¼ 5 kcal/
mol.

RNAxplorer clearly outperforms the other methods even for
small sample sizes. With increasing sample size the coverage quickly
rises and is always higher compared to the other methods. Only for
RNAlocmin the coverage rises similarly fast with increasing sample
size. The next best tools are RNAsubopt and RNAlocopt (#1) and
RNANR (#2). As expected, uniform sampling covers just a tiny, al-
most constant fraction even for very large sample sizes of 106

structures. For RNANR the diversity is very sequence dependent
which is depicted in Supplementary Figure S16. Since RNANR could
not be applied to 3 of the 9 benchmark sequences (SAM riboswitch
of metE, lysine riboswitch of lysC and TPP riboswitch of thia-
mine gene) due to its demanding memory requirements (more than
200GB), the average for this tool as shown in Figure 4 only consists
of the remaining 6 sequences. Results for the individual benchmark
sequences can be found in Supplementary Figure S16. The analog
measure based on partition functions is shown in Supplementary
Figure S18 for individual sequences and in Supplementary Figure
S19 as average over all sequences. For more details on the coverage
measure see Supplementary Section S5.5.

3.3 Suitability for RNA folding kinetics
Using the barriers program (Flamm et al., 2002) we generated
barrier trees for our benchmark set of random sequences using ex-
haustive structure enumeration up to 15 kcal/mol above the MFE
with RNAsubopt. Coarse graining of the barrier tree was set to a
minimal energy barrier of 3 kcal/mol between neighboring basins.
We then mapped the local minima generated by each sampling
method into the respective barrier trees to determine how many of
the 100 largest energy barriers could be found based on the samples.
The results were further averaged over 10 rounds of sampling to al-
leviate the impact of randomness in the sample sets.

As shown in Table 1, for 100 nt long sequences all tools already
find a large amount of the highest energy barriers even for small
sample sizes such as 103. At the same time, the number of recovered
basins is as low as 1� 2%. RNANR in general recovers more basins
than the other tools for sequence lengths of 70 nt or longer. For sam-
ple sizes of 105 structures, the tools RNAxplorer, RNAlocmin,
RNAlocopt and RNAsubopt perform equally good in finding the
highest energy barriers. In contrast, both RNAxplorer and
RNAlocmin stand out in the number of recovered basins with
22.25% and 15.48%, respectively, compared to less than 10%
achieved by the other methods. In terms of run time, RNAxplorer is
much faster than RNAlocmin with an average of just 3.72 s com-
pared to 73.61 s. Details and remaining results for this analysis are
available in Supplementary Section S5.3.

4 Conclusion and discussion

In this paper we have introduced RNAxplorer, a tool based on an
RNA secondary structure sampling method with guiding potentials
to approximate the underlying energy landscape. Its very small foot
print in terms of memory and computation time requirements ena-
bles it to be applied to RNAs with sequence lengths beyond those
that can be handled with other, comparable approaches. Our tool
creates diverse structure samples with low as well as high free en-
ergy, that seem to nicely encompass those relevant for subsequent

Fig. 4. Distance class coverage as a function of sample size. Shown are the fractions

of distance classes Cd1 ;d2 covered by at least one local minimum. The local minima

are derived from the sample set and have to be energetically close to the respective

MFEd1 ;d2 . The data averages over all 9 benchmark sequences, 10 independent runs

per tool and margins #1 ¼ 0 kcal/mol (left plot) and #2 ¼ 5 kcal/mol (right plot)

Table 1. Coverage of barrier trees for ten 100 nt long sequences,

using sample sizes of 103 and 105, respectively

Note: Values in ’barriers’ columns show coverage of the 100 highest saddle

points associated to the deepest left and right minima in the barriers tree. For

columns ’basin’ the percentage of total basins covered is shown. t columns re-

port average runtime in seconds. The highest coverage for barriers and basins

is shown in bold.
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folding kinetics simulations. This has been shown in a benchmark
analysis for biologically relevant and randomly generated RNAs
using various quality measures. Thus, our novel sampling method
may enable the investigation of the folding dynamics of longer
RNAs than possible with state-of-the-art tools.

Efficient implementation, simple strategy and utilization of fea-
tures of the ViennaRNA Package in general and soft constraints in
particular make RNAxplorer one of the fastest structure sampling
methods available. Memory consumption is minimal and mostly
attributed to storing the list of structures obtained and the DP matri-
ces of the partition function computations. As a consequence, unlike
other tools in our benchmark, RNAxplorer yields representative
samples within reasonable time frames even for RNAs with lengths
of 300 nt or beyond.

The main contribution to the asymptotic time complexity of our
new approach is the number of times new guiding potentials are
added, as they each require additional Oðn3Þ time to re-compute the
partition function. For sequences of length n and a total number of
structures N to sample, the upper limit on the runtime becomes
O N

g n3 þNn2Þ
�

. Choosing g � n ensures that the folding and sam-
pling part of the program have approximately equal costs, leading
to a worst-case asymptotic complexity in OðNn2Þ. Moreover, most
sampling rounds do not satisfy the saturation criterion, so a typical
run of RNAxplorer requires much less than N

g recomputations of
the partition function, further reducing its practical computational
demand.

While RNAxplorer has a number of tunable parameters, these
parameters have default values that should work well for almost any
application. Users can adjust these parameters manually, but are
invited to proceed with caution. Indeed, setting the weight factor a
to a low value, yields structures that are approximately Boltzmann
distributed, and mainly populates the MFE basin. On the other
hand, a should not be much larger than kT to ensure that the
Boltzmann distributions of consecutive iterations have sufficient
overlap.

Coverage of distance classes. The coverage of distance classes is
a combined measure which consists of important local minima and
structural diversity based on 2D projections. For small sample sizes
(less than 104), RNANR, RNAlocmin and RNAlocopt, could be al-
ternative methods with comparable quality. For larger sample sizes
(105–106), RNAxplorer clearly outperforms the other methods.
Although only at most 35% of local minima are uniquely sampled,
the samples are diverse and RNAxplorer covers more than 70% of
the projected landscapes with low energy structures, for 20% of the
landscape we even identify the local minimum (Fig. 4).

Studying the topology of a landscape projection can help to
choose the most efficient sampling strategy for a given problem. If,
for instance, only one local minimum is present, simple Boltzmann
sampling might suffice. In cases with additional metastable states,
guiding potentials are the method of choice, because they steer the
sampling procedure directly to structures far away of the MFE struc-
ture. This scenario is exemplified by our data for riboswitch SV-11,
(Fig. 5), where only RNAxplorer identified the two functional
states of the switch. RNANR produces a projection with a similar cell
coverage, however, it does not find as many local minima as
RNAxplorer, which is shown by the less intense coloring of cells
compared to the reference 2D plot (Fig. 5), the lower coverage of
distance classes (Supplementary Fig. S16) and the DOS
(Supplementary Fig. S6). RNAlocmin could not find the metastable
state, because at later stages, i.e. at higher temperatures, it turns into
uniform sampling, which results in mostly high free energy struc-
tures and thus misses potentially important local minima. In the 2D
projection this can be seen as separate spots in the higher energy
areas (Fig. 5).

Coverage of energy landscapes. The coverage of distance classes
already indicates whether important local minima have been
sampled. Using barriers we test for support of important transi-
tions over high energy barriers by comparing all samples to a ground
truth calculated by exhaustive enumeration. Unfortunately, bar-
riers is limited to RNAs smaller than 100 nt due to time and mem-
ory constraints. For this reason we cannot use our benchmarking set

of natural RNAs, but created random sequences in the range of 50
to 100 nt.

RNAxplorer covers the largest energy barriers much better than
other tools, even for small sample sizes. Although, RNAlocmin,
RNAlocopt and RNAsubopt produce a comparable high number
of largest barriers, they cover a much smaller fraction of basins
(Table 1). RNAxplorer covers much more basins and thus provides
in addition to the major transitions more detailed information on
fast refolding processes. With growing sequence length,
RNAxplorer outperforms the other methods in terms of covered
barriers and basins, as well as run time. Thus, we show that
RNAxplorer yields a very good approximation of the actual state
space and is better suited for fast and efficient sampling of long
sequences.

Relationship to continuous energy landscapes. It should be
noted, that the application of penalizing pseudo-energy potentials is
similar to the concept of meta dynamics simulations on continuous
energy landscapes (Laio and Parrinello, 2002), in particular the
Local Elevation (LE) method, as used for Monte Carlo protein fold-
ing simulations (Huber et al., 1994). However, for the discrete en-
ergy landscapes of RNA secondary structures, we can use efficient
methods to compute the partition function and to sample from the
entire Boltzmann distributed ensemble. Thus, approximations of the
landscape can be directly obtained from the samples rather than
from time-consuming Monte Carlo simulations. Furthermore, the
RNA folding grammar does not allow for the application of
Gaussian potentials as required for the LE method, but is rather lim-
ited to potentials that linearly depend on particular structural
features.

RNAxplorer in the folding kinetics workflow. To summarize our
benchmark study, we have demonstrated that RNAxplorer is well
suited to serve as sampling tool within the RNA folding kinetics
workflow (see Fig. 1). It creates both diverse and low free energy
structures much faster than other tools. As a result, it covers most of
the basins and largest barriers which are crucial to model the long
term folding behavior. Thus, the samples produced by RNAxplorer
sufficiently capture the relevant areas of the structure space and we
think that RNAxplorer sets a mile stone in computing the folding
kinetics for RNAs of 300 nt and beyond.
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