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Microstructural Parameter Estimation In Vivo Using
Diffusion MRI and Structured Prior Information
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Purpose: Diffusion MRI has recently been used with detailed
models to probe tissue microstructure. Much of this work has
been performed ex vivo with powerful scanner hardware, to
gain sensitivity to parameters such as axon radius. By contrast,
performing microstructure imaging on clinical scanners is
extremely challenging.

Methods: We use an optimized dual spin-echo diffusion pro-
tocol, and a Bayesian fitting approach, to obtain reproducible
contrast (histogram overlap of up to 92%) in estimated maps
of axon radius index in healthy adults at a modest, widely-
available gradient strength (35 mT m~"). A key innovation is
the use of influential priors.

Results: We demonstrate that our priors can improve precision
in axon radius estimates—a 7-fold reduction in voxelwise coeffi-
cient of variation in vivo—without significant bias. Our results
may reflect true axon radius differences between white matter
regions, but this interpretation should be treated with caution
due to the complexity of the tissue relative to our model.
Conclusions: Some sensitivity to relatively large axons (3-15
wm) may be available at clinical field and gradient strengths.
Future applications at higher gradient strength will benefit
from the favorable eddy current properties of the dual spin-
echo sequence, and greater precision available with suitable
priors. Magn Reson Med 75:1787-1796, 2016. © 2015 The
Authors. Magnetic Resonance in Medicine published by
Wiley Periodicals, Inc. on behalf of International Society for
Magnetic Resonance.
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INTRODUCTION

Diffusion-weighted magnetic resonance imaging uses the
random self-diffusion of water molecules as the basis for
an endogenous contrast in biological tissues (1). A
greater diffusivity is associated with greater attenuation
in the MR signal due to the dispersion of “labeled” mole-
cules during the course of an imaging experiment. Diffu-
sion tensor imaging takes advantage of the orientational
dependence of diffusivity in tissue to infer the arrange-
ment of structures such as white matter tracts (2), and
varying the time during which molecules are allowed to
diffuse allows further properties of tissue architecture to
be inferred (3).

A recent trend has been to use diffusion-weighted mag-
netic resonance imaging in combination with detailed
models of tissue microstructure to try to estimate charac-
teristics which are generally more associated with inva-
sive histology than clinical imaging, such as axon radius.
The tissue models are typically built up from simple geo-
metric shapes such as cylinders and spheres, but despite
their simplicity they may be able to provide more direct
tissue microstructure parameters than can be obtained
from traditional diffusion-weighted magnetic resonance
imaging analysis (4-6). These model parameters may in
turn offer greater interpretability and sensitivity as bio-
markers. In addition to the pioneering work by Stanisz
et al., the “AxCaliber” technique has demonstrated the
feasibility of recovering axon radius information from MR
images of nervous tissue (7). Subsequently, the
“ActiveAx” approach has developed the area toward feasi-
bility in vivo using orientationally invariant protocols, to
allow axon radii to be estimated throughout the brain, and
optimized pulses sequences, to make acquisition times
feasible (4). The strength of the magnetic gradients avail-
able has been shown to be a key limiting factor for these
applications (8,9), and the lack of strong gradients at most
sites is a major barrier to their widespread uptake.

The best choice of diffusion-weighted pulse sequence
for these applications is the focus of ongoing discussion
in the literature. In addition to the original pulsed-
gradient spin-echo sequence developed by Stejskal and
Tanner (10), other diffusion-weighted sequences have
been suggested as candidates for more effective tissue
microstructure imaging. For example, oscillating gradient
sequences allow very short diffusion times to be
achieved, and therefore, may have better sensitivity to
small axon radii (11,12). Multiple wave-vector protocols
can help to distinguish between signals from

1787


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

1788

90° 180°

pm

0 20 40 60 80 00
FIG. 1. Pulse timing diagram for the standard dual spin-echo
sequence. Only RF pulses and the four diffusion-weighting gradi-
ent pulses are shown for simplicity. Time zero is the earliest time
at which a diffusion gradient can first be applied, allowing for the

time required for the 90 excitation RF pulse and other preparatory
gradient pulses.

compartments with different shapes (13), and several
authors have proposed that they may provide additional
sensitivity, beyond that of pulsed-gradient spin-echo, for
axon radius estimation (14-16). One can even use a gen-
eralized gradient waveform, enforcing only realistic slew
rates and balance to ensure that refocussing and a main
echo occur (17,18).

For routine diffusion-weighted imaging on clinical
scanners, the dual spin-echo sequence (DSE; Refs. 19
and 20) is very popular because it reduces eddy currents
at the time of readout, and hence, the image distortions
caused by them. It differs from the standard Stejskal-
Tanner sequence in that refocussing is applied twice,
with four diffusion-sensitizing gradients appearing
around the refocussing pulses (see Fig. 1). It may offer
additional benefits for microstructural imaging in terms
of sensitivity, due to its allowance for gradient pulses
placed next to each other, which produces relatively
short effective diffusion times. (With pulsed-gradient
spin-echo on clinical hardware, by contrast, a lower
bound is imposed by the time required for the radiofre-
quency refocussing pulse.) The tradeoff is that a longer
echo time is needed for DSE, reducing the available sig-
nal. We have previously derived an expression for the
signal expected from this sequence within impermeable
cylinders (21), using the Gaussian phase distribution
approximation (22). We further adapted the experimental
design optimization from Ref. 23 for the DSE sequence
using this signal model, and demonstrated the sequen-
ce’s potential advantages for estimating small axon radii,
in particular, using simulations (21).

In this study, our aim is to investigate whether
meaningful axon radius information can be obtained in
practice using standard scanner hardware and a widely
available pulse sequence. Specifically, we apply an
optimized DSE sequence on a standard 3 T clinical
scanner, using a maximum gradient strength of 35 mT
m~!. We consider the corpus callosum in the human
brain, where the distribution of axon radii is well char-
acterized by postmortem histology (24). This structure
has been well studied in the broader imaging literature,
as damage to it has been shown to have a role in a
number of disease processes. However, microstructural
measurements at the modest gradient strength applied
here are sensitive to radii only at the very upper limit
of those observed in human callosal tissue. To improve
precision we use a standard model together with a new
parameter estimation algorithm that incorporates prior
information about plausible radii. We use simulations
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to demonstrate that the algorithm provides contrast
between large and small radii, without substantial bias,
under idealized conditions. In brain data acquired from
adult volunteers, axon radius index maps consistently
indicate the presence of large axons in the same
regions suggested by histology, in particular in the
anterior mid-body of the corpus callosum.

METHODS

We begin by outlining our signal model, and the proc-
esses we applied for optimizing the DSE sequence,
acquiring data and fitting tissue model parameters.

Signal Model

The diffusion-weighted signal in white matter, S, is mod-
eled as a weighted sum of signal contributions from three
compartments: an isotropic compartment representing cer-
ebrospinal fluid contamination, a restricted “intracellular”
compartment, and a hindered “extracellular” compart-
ment (cf. Refs. 4 and 25). We denote the isotropic volume
fraction with f; and the restricted volume fraction with f;,
subjectto 0 < f; + f; < 1. Then,

S(@)S;{:f) = /iSi(0) +/;S5:(®) + (1 = fi — f;) Su(®), (1]

where S;, S,, and S), are the signals from the isotropic,
restricted, and hindered compartments respectively, S,
is the signal without diffusion weighting, and O is a set
of additional parameters. The isotropic signal compo-
nent is a simple function of the standard diffusion
b-value and the diffusivity, D;, of free water, viz.
S; = exp(—bDy).

The white matter tissue of interest is modeled as a
coherent bundle of parallel, impermeable, hollow cylin-
ders of fixed radius, R. The extracellular, hindered com-
partment is assumed to be homogeneous, and diffusion
is assumed to follow a cylindrically symmetric 3D Gaus-
sian distribution, viz.

Sn(®) = exp(—b(cos’a (D; — D.) + D.)), [2]

where o is the angle between the gradient direction and
the orientation of the white matter bundle, D is the dif-
fusivity parallel to the cylinders, and D, is the diffusiv-
ity perpendicular to them.

Following Neuman and van Gelderen et al. (26,27), we
have previously derived an expression for the restricted
diffusion signal within cylinders for the DSE sequence
(21), using the Gaussian phase distribution approxima-
tion (22). That result is used here for S,, unmodified. It
depends on the cylinder radius, R; the intracellular dif-
fusivity, which we take as equal to D|; and the orienta-
tion of the cylinder, which we parameterize using the
spherical coordinate angles, 6 and &.

The full parameter set is therefore, ® = {Sy,f;, f;, Di,
D;,D.,R,0,b}.

We note that this model does not take into account dif-
ferences in T, or T, relaxation times in the different
compartments, whereas in practice such differences will
exist. However, the isotropic volume fraction is expected
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FIG. 2. Optimized series of five pulse arrangements, with b-values
of 0, 422, 620, 422, and 2378 s mm~2. Note that all four standard
pulses do not actually exist in any one arrangement, but all are

properly balanced. The second and fourth arrangements are in
fact identical.
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to be very small in most voxels, and so the influence of
this limitation on parameter estimates will be minimal.
Moreover, f; and D; are treated as nuisance parameters of
little interest in this study.

Sequence Optimization

The experiment design optimization framework devel-
oped by Alexander (23) was used to optimize a DSE
imaging protocol for estimating the tissue parameters of
interest. This framework aims to identify combinations
of pulse arrangements, within the constraints imposed
by the sequence and the performance of the scanner,
which will maximize the expected precision of the tissue
parameters, using the formalism of the Cramér—Rao
lower bound.

The generative parameters used for the optimization
were: So=1, =0, =07, D=3x10"° m? s, D =
1.7 x 107 m? s71, and D, =1.2 x 1079 m? s, following
Ref. 21. Generative radii were R € {5,10,20} pm, as in
Ref. 4, with the optimization seeking a combination of
pulse arrangements that jointly minimize average
expected variance in the model parameters across these
three values (although large relative to the expected radii
in most tissue, they represent the domain where we expect
some sensitivity at low gradient strength). No assumptions
were made about the orientations of the axon bundles
within the voxel, and gradient directions for each arrange-
ment were therefore uniformly spread over the sphere. For
the purposes of estimating the noise properties of the pro-
tocol, the spin—spin relaxation constant, T,, was taken to
be 0.07 s. The number of separate diffusion-weighted
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pulse arrangements was fixed to four, and the number of
gradient directions per arrangement was fixed to 90. A
b =0 arrangement was also included.

Eddy currents with a time constant of 0.7/T were
nulled, with T the maximal sum of all diffusion-
encoding gradient pulse lengths across the five arrange-
ments, as proposed by Heid (28). Off-design eddy current
effects are also reduced by this process, which removes
one degree of freedom from the optimization.

The optimized pulse arrangements are shown in Fig-
ure 2, and precise gradient timings are given in Table 1.
The diffusion b-values corresponding to the five pulse
arrangements were 0, 422, 620, 422, and 2378 s mm 2.
Gradient amplitude in each case, except where b=0,
was the maximum allowed, at 35 mT m~'. The echo
time was included in the optimization but not allowed
to vary across arrangements; its final value was 118.54
ms. In general, the DSE sequence has no specific diffu-
sion time associated with it, but for the simple arrange-
ments in Figure 2, we can compute an effective diffusion
time in a similar way to the pulsed-gradient spin-echo
sequence. On this basis, arrangements 2, 4, and 5 have
long diffusion times (80-92 ms), while arrangement 3
has a short diffusion time (22 ms).

Synthetic Data

Synthetic data were obtained using Monte Carlo simula-
tion, as implemented in Camino (29,30). The simulation
tracks the phase of 10,000 spins over 1000 time steps
during the optimized pulse arrangement, to calculate the
final signal. The simulated tissue geometry consisted of
hexagonally packed impermeable cylinders of fixed
radius, with a universal diffusivity of 1.7 x 1079 m? s~1.
Run time was approximately 5 min on a standard iMac
desktop computer.

The simulation was carried out for axon radii of 1, 3,
5, 10, 15 and 20 pm, with the center-to-center cylinder
separation fixed at 2.3 times the radius, to maintain an

Table 1
Pulse Timings, in Milliseconds, as Implemented in the Final Proto-
col Shown in Figure 2.

Pulse arrangement

1 2 3 4 5

Onset 1 0.00 0.00 0.00
Length 1 7.34 7.34 13.01
Onset 2 24.47 20.60
Length 2 21.97 6.83
Onset 3 46.45

Length 3 21.97

Onset 4 91.76 91.76 79.86
Length 4 7.34 7.34 19.84
b-value, 0 422 620 422 2378

s mm—2

Time zero is the earliest time at which a diffusion gradient can first
be applied, allowing for the time required for the 90" excitation RF
pulse and other preparatory gradient pulses. Missing values corre-
spond to omitted pulses. Echo time is 118.54 ms in all five pulse
arrangements. The time required for a 90" RF pulse was 2.56 ms,
and 7.56 ms was required for a 180 pulse and its associated
crusher gradients
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intracellular volume fraction of 0.69 in all cases. Ten dif-
ferent axon orientations were used for each radius,
equally distributed on the sphere. Rician noise was
added to the simulated signals, based on an SNR of 19 at
b=0 with the optimized echo time, matching the esti-
mated noise characteristics of the scanner.

In addition, synthetic substrates containing a range of
axon radii, distributed according to gamma distributions
with means of 3, 5, and 8 pm and variances of 2.5 pm
were also generated and fitted using our model. In this
case, cylinders were placed at random, but intracellular
volume fractions were always between 0.65 and 0.70.
This experiment was intended to test the influence of a
particular type of mismatch between the data and the
model.

Finally, to investigate axon radius estimation at differ-
ent gradient strengths, the protocol was reoptimized
using a maximum gradient strength of 300 mT m™, in
line with the top end of what is currently available on
human scanners (31). In this case, synthetic data were
generated using a single axon radius of 3 pm.

Data Acquisition and Preprocessing

Although the gradient strength capabilities of the scan-
ner, as well as the time needed for RF pulses, prepara-
tion pulses, and readout are taken into account by the
optimization, it does not incorporate slew rate informa-
tion. It was therefore necessary to remove some very
short pulses from the optimized arrangements to make
them realizable in practice. The other pulse lengths were
adjusted as necessary to restore balance, and the pulse
diagrams in Figure 2 incorporate these edits.

Three individuals—a 23 year-old female, a 32 year-old
male, and a 31 year-old female—were each scanned on
two separate occasions on a Siemens Trio 3 T clinical
scanner, using a body transmit coil and vendor-supplied
32 channel receive-only head coil, as well as a standard
gradient coil set (Gmax = 35 mT m~1). The optimized pro-
tocol was applied, consisting of ten b=0 images fol-
lowed by sets of 90 identical diffusion sensitizing
directions for each of pulse arrangements 2—5, shown in
Figure 2. Data were acquired from a series of contiguous
axial slices covering the corpus callosum, at 2.3 mm iso-
tropic resolution. Scan time was approximately 1 h, but
cardiac pulse triggering was used, and so the exact time
depended on each subject’s heart rate. Three slices were
imaged per heartbeat.

DICOM files were converted to NIfTI format using the
TractoR software package (32). The first b=0 volume
was treated as a dummy and removed from each data
set. Due to the favorable eddy current properties of the
DSE sequence, and a high degree of cooperation from
scan subjects, the image volumes were observed to be
well aligned. Therefore no coregistration was performed,
to avoid introducing spurious motion and blurring in the
data. Diffusion tensors were fitted to the data using ordi-
nary least squares and a mask of the corpus callosum
was drawn by hand by a single observer on one midsa-
gittal slice in each data set, using the fractional anisot-
ropy map as a guide. Parameter fits were then performed
within this mask.

Clayden et al.

Parameter Fitting

Equation [1] gives an expression for the expected signal
from our simple tissue substrate given known tissue
parameters. Given a set of measured signal values, we
need to solve the inverse problem, finding the set of
parameters, &, which best explain the measurements.
As we have some expectations regarding the regime of
values for many of the parameters, we would also like
to make use of that information. We therefore take a
Bayesian approach, estimating a posterior distribution
over the parameters using Markov chain Monte Carlo
(MCMQ).

We assume that measurements of the signal, x, are
drawn from a Rician distribution around the modelled
value from Eq. [1], S, viz.

X, —(XG +S0y) X(k) Sk
,c>=§exp( S Io<<;z“), [3]

where ¢ controls the noise level. Iy(:) is the modified
Bessel function of the first kind, order zero. If the noise
associated with each measurement can be considered to
be independent and identically distributed, then we can
write down the joint distribution of the full set of meas-
urements, X = (X)), as

P(X(k)|q3

PX|®,0)

HP

Bayes’ rule then allows us to calculate a posterior dis-
tribution over the parameters as

vl|P,0) (4]

P(®, 0[X) = P(X|®, 0)P(P)P(0) 7 (5]

P(X|®, 5)P(d)P(c)

where P(®) represents the prior information available
regarding @, and P(o) likewise for ¢. (We assume prior
independence of ® and o.)

At this point, we could simply choose “uninformative”
priors for each parameter, ensuring only that physical
requirements such as positivity are met by the estimates.
However, estimating our tissue model parameters using
data from a scanner with clinical gradient strengths is
expected to yield relatively low precision, and by choos-
ing more influential priors we regularize the problem. To
this end, the following informative priors were used
across all model fits:

fi ~ Beta(1.2,1.2),

Je
1-f
DH ~ Log-./\/'(fzo.69, 1) s
D, ~Log-N(-21.04,1),

~ Beta(5,5),
[6]

R ~ Gamma(3.562,1.404 x 107°).

These values are based on SI length and time units,
that is, meters and seconds. We use f./(1— f;) rather
than f. directly to give the parameter fixed bounds of
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FIG. 3. Histograms of sampled posterior axon radius values from
our synthetic data, using a single fixed cylinder radius (top) or a
gamma distribution of radii (bottom). For the former, samples
cover ten axon orientations at each radius. For the latter, the gen-
erative distributions (shown) have means of 3, 5, and 8 um, and
variances of 2.5 pm.

0 to 1. The two volume fractions have nonuniform
distributions to regularize the posterior away from the
extremes. The log-normal distribution has been used
before as a prior for diffusivity parameters, for exam-
ple by Andersson (33), and the means of the distribu-
tions given above correspond to the values used for
optimization, that is, 1.7 x 107 m? s~! for D; and 1.2
x107% m? s7! for D,. The gamma distribution—para-
meterized here using shape and scale parameters—has
likewise been used to represent distributions over
axon radii (e.g. Ref. 7), and our values are chosen to
give the distribution a mean of 5 pm, approximately
4-5 times the mean observed across the corpus cal-
losum in histological studies such as Ref. 24, in line
with previous findings of overestimation of the histo-
logical mean axon radius by the estimated axon
radius index from diffusion-weighted magnetic reso-
nance imaging (4,8).

Despite our use of informative prior distributions for
the parameters described above, we do not explicitly
impose any distributional assumptions on the posterior
distributions. These are represented by the empirical dis-
tributions of the values sampled from the MCMC
algorithm.

A series of samples were drawn from the posterior
distribution, Eq. [5], using a blocked Metropolis—Hast-
ings algorithm, with a tuned multivariate Gaussian pro-
posal distribution for each block. The parameter blocks
in this case were (So), (fi, fi), (D},D1,R), (8,4), and
(o). The isotropic diffusivity, D;, was fixed at 3.0
x107® m? s ! to represent free water, and not
sampled. For the synthetic data only, f; was also fixed
at zero.
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A least-squares tensor fit was first performed for each
voxel, vyielding principal diffusivities X\; >Ny > A3.
MCMC chains were then initialized according to

- )\g - -
= =0.7(1-,
fi 7\1)\2 fr (1-15)
- Ny - N -
DL:% R=5 pm.

Dj=n

(7]

An iterative process was then used to tune the covari-
ance matrix for each proposal distribution, bringing each
block acceptance rate close to the theoretical optimum of
around 23% so that the parameter space would be
explored efficiently (cf. Ref. 34). Afterward, the chain
was run for a burn-in period of 50,000 steps, followed by
a sampling phase gathering 50 samples of each parame-
ter, with each sample separated by 100 steps. In practice,
samples were actually of the logit or logarithm of param-
eters with bounds, to ensure that the sample space was
infinite.

The algorithm was implemented on the TractoR plat-
foorm in R and C++, using the “Rcpp” and
“RcppArmadillo” libraries for the R statistical language
and environment (32,35-37).

The consistency of the MCMC over multiple chains
was assessed, and samples were checked visually in sev-
eral voxels for evidence of good mixing and convergence
to the stationary posterior distribution.
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FIG. 4. Histograms of sampled posterior axon radius from syn-
thetic data, based on scan protocols optimized for maximum gra-
dient strengths of 35 mT m~' (top) and 300 mT m~' (bottom). In
each case, samples are shown from fits performed both with
(blue) and without (red) applying the gamma prior distribution on
R. The true generative axon radius was 3 pm, and samples cover
ten axon orientations. Only samples below 8 pm are shown. Note
that the y-axis in the upper plot is broken to accommodate a very
tall bar.
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Rescan

FIG. 5. Maps of axon radius index, estimated as the median of the posterior sampled values in each voxel. An area of relatively large
axons is consistently observed in the anterior mid-body of the corpus callosum (green arrows). Subjects are in rows, and scans in col-
umns. The underlying greyscale map is fractional anisotropy, and the color scale is the same in all subfigures.

Histogram Similarity

The histogram intersection measure introduced by Swain
& Ballard (38) was used to quantify the similarity of
axon radius distributions across scans. This normalized
measure is based on the observed probability density in
each bin, j, of the two histograms, h,; and h,.
Specifically,

Zmin{hj,hj}
H:j 1,11 | "

> b
j

Intuitively, H represents the proportion of the histo-
gram which is common to both data sets, and it therefore
has a range of 0 to 1. As the denominator will evaluate
to the inverse of the bin width, this measure is symmet-
ric as long as the bins are the same in each histogram.

RESULTS

Figure 3 shows histograms of sampled axon radii from
the synthetic data. At the low end of the scale, precision
is too poor to distinguish radii of 1 and 3 wm (H=0.84,
using bins of width 0.25 pwm); and at the high end, the
influence of the prior forces underestimation of very
large radii of above 15 pm. However, radii of 3, 5, 10,
and 15 pm are clearly discriminable, with sample
medians closely approximating the true, generative
radius in each of these cases (H=0.41 between 3 and 5
pm; H=0.12 between 5 and 10 pm; H=0.44 between 10
and 15 pm). When the synthetic substrate contains a
gamma distribution of radii, as shown in the bottom part

of the figure, there is a bias in the posterior distributions,
but it remains possible to distinguish larger radii from
smaller ones. Figure 4 demonstrates that much greater
precision is available at 3 pm when gradient strengths
increase to 300 mT m™!, but it improves still further
when prior information is used.

Maps of axon radius index, the median sampled value
of R in each voxel, are shown for in vivo data in Figure
5. A fair degree of consistency was observed, both

T T
Subject 2 Subject 3

T
Subject 1

FIG. 6. Boxplots of sampled posterior axon radius index in five
subregions of the corpus callosum, across both scans, in each
subject. In each case median axon radius index was highest in
the anterior mid-body (blue). Filled circles represent outliers more
than 1.5 interquartile ranges above the third quartile.
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FIG. 7. Histograms of sampled posterior axon radius index values
across the entire corpus callosum, in the first scan of the first sub-
ject. Samples are shown from fits performed both with (blue) and
without (red) applying the gamma prior distribution (black curve).
The upper figure uses a standard x-axis and shows just those
samples below 20 um, while the bottom figure shows all samples
on a logarithmic x-axis. Note that both y-axes are broken to
accommodate very tall bars.

between the first and second scans for each subject, and
between subjects. The maximal radius index was gener-
ally observed in the anterior mid-body region and, in
subjects 2 and 3, the splenium. Histograms across the
whole corpus callosum showed substantial overlap
between each pair of scans (H=0.92 for subject 1, 0.89
for subject 2, and 0.76 for subject 3, using bins of width
0.5 pm), and a similar level of overlap between subjects
(H between 0.78 and 0.91).

To further examine variation along the corpus cal-
losum, we divided each subject’s segmented region of
interest into five subregions, separated by equally spaced
coronal planes, similar to Aboitiz et al. (24). Boxplots of
sampled axon radius index in each subregion for each
subject are shown in Figure 6. The anterior mid-body
subregion (shown in blue) has the highest radii on aver-
age in every subject, although the degree of variation
across subregions is small in subject 1. The scan-rescan
relative absolute difference, viz. |a — b|/(a+ b), in the
median axon radius on a subregion-by-subregion basis
varied from 11% (posterior mid-body) to 24% (anterior
mid-body).

The model was a good fit to the acquired data, in
terms of the proportion of total signal variance
explained. Voxelwise coefficients of determination (R?)
averaged between 0.84 and 0.93 for each of the six scans.

To illustrate the influence of the priors used in our fit,
Eq. [6], we show in Figure 7 all of the sampled values
for the axon radius parameter for one scan, both with
and without the prior in use (priors on all other parame-
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ters were retained in the latter case). We can observe
that the prior is strongly influential, as there is an
extremely wide range of sampled radii in its absence.
The influence of the data, encapsulated in the Bayesian
likelihood term, may therefore be considered to be rela-
tively weak, which is to be expected at clinical gradient
strengths. However, Figure 8 shows that in regions of
substantial probability mass with respect to f, and D/,
the likelihood does show a substantial peak in the
micron range of axon radius. It also illustrates that the
prior influences the chains away from the very small
radii observed without it, in Figure 7.

Marginal posterior distributions for all other parame-
ters with priors are shown in Figure 9, and in each case
there are substantial differences between the prior and
posterior distributions, indicating the influence of the
data.

Axon radius index maps obtained without use of the
prior on R are shown in Supporting Information Figure
S1. Although some of the same areas of higher radius are
still just about visible, the maps appear more noisy and
demonstrate less consistency and smoothness. Reprodu-
cibility is also substantially lower in this case: in subject
1, for example, H decreases from 0.92 to 0.69. Voxelwise
coefficients of variation averaged 311% without the
prior, across all subjects, compared with 42% with the
prior.

DISCUSSION

Our key contribution in this article has been to demon-
strate that structured prior information can improve
precision in microstructural parameter estimates. Using
this platform, we have explored the application of the
ActiveAx approach to in vivo axon radius imaging
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FIG. 8. Joint histogram of the marginal posterior distribution over
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radius, over the range 0.02 to 20 wm, conditioned on the values
of f, and D, corresponding the relevant location in the histogram.
These overlaid plots are not to scale with one another, and are
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strating the influence of the data.

using the popular DSE pulse sequence on a clinical
scanner. Such a standard MRI system is suboptimal for
this kind of work, but commonly available, and our
results inform the feasibility of “histological” imaging
on typical hardware and with a standard pulse
sequence, albeit one which has been optimized for the
task. We used Bayesian MCMC simulation to estimate
the tissue model parameters of interest, formally
accounting for both prior expectations and the informa-
tion available in the data.

Given the challenges associated with microstructure
imaging on this platform, we found that it was necessary
to regularize the problem by using informative prior dis-
tributions for several parameters, and particularly for the
axon radius itself. We showed that this information
improves precision at intermediate values of axon radius
index (Fig. 7), without introducing significant bias when
the assumption of a single radius holds (Fig. 3). Syn-
thetic data based on a substrate containing a distribution
of radii did lead to bias, most likely because of the
greater signal contribution from within wider cylinders.
Nevertheless, it was still possible to tell distributions

with different means apart a posteriori, with their order-
ing preserved.

Because of the strong influence of the priors, it cannot
be said that we are truly estimating axon radius, as the
range of acceptable values is effectively imposed by the
prior. Moreover, we cannot demonstrate any improve-
ment in accuracy, as ground-truth data are not available
in vivo. Nevertheless, it is reasonable to interpret the rel-
ative differences from voxel to voxel as corresponding to
meaningful variation across, in this case, the corpus cal-
losum—and likewise, results are comparable across sub-
jects since the priors are the same in each case. Scan—
rescan consistency was seen to be reasonable, both visu-
ally and in terms of a quantitative histogram intersection
measure. Subject 3 was the least consistent, possibly due
to small within-volume movements during scanning or
other external factors.

Our experiment with synthetic data suggested that our
fitting process should provide sensitivity to axon radii of
around 3-15 pm (Fig. 3). The contrast in the in vivo
results may therefore reflect the detection of relatively
large axon radii in certain parts of the corpus callosum—
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although our fits from substrates containing gamma dis-
tributions of radii suggest that while qualitatively mean-
ingful, our axon radius index values are likely to be
overestimates. Nevertheless, while Alexander et al. (4)
and Dyrby et al. (8) have suggested that only very weak
sensitivity to axon radius index is available at clinical
gradient strengths, we have shown that using suitable
priors can ameliorate the situation.

This advantage applies even at the upper end of what
is currently achievable on human systems (cf. Fig. 4,
where precision is shown to be higher with the prior
than without it). Moreover, as eddy current distortions
are worse at higher gradient strengths, the favorable
eddy current properties of the DSE sequence will also be
particularly useful in this regime. The combination of
the DSE sequence and informed fitting process may
therefore be a powerful one for future microstructural
imaging studies on the next generation of scanner hard-
ware—although there are other practical challenges to
overcome, such as signal loss due to the greater influ-
ence of concomitant fields (39). It will also be important
for future work to compare DSE against oscillating gradi-
ent sequences and other alternatives, in combination
with suitable priors, to fully evaluate their relative
merits.

Although the trends we observe suggest that our tech-
nique may act as a detector for voxels containing larger
axons, the results must be interpreted with caution
because of the simplicity of the tissue model used. The
three compartment model described by Eq. [1] ignores a
great deal of the complexity in real tissue, even in rela-
tively coherent and homogeneous areas of white matter
such as the corpus callosum. There has been recent work
adding characteristics such as membrane permeability
and fiber dispersion and crossing to similar models
(40—42), and distributions of axon radii were included in
the AxCaliber model (7). Other factors which may need
to be taken into account include the possibility of differ-
ent T, relaxation constants in different tissue compart-
ments (cf. Refs. 43 and 44). Hence, further investigation
using more complex models will be required to clarify
the source of the contrast observed in our axon radius
index maps (Fig. 5). There are also some limitations to
our sequence parameterization, such as the assumption
of rectangular—rather than trapezoidal—pulses, which
were not addressed so as to keep the theoretical signal
model analytically tractable. The latter may, however,
have only a small influence (45). Finally, we optimized
the sequence for axon radii larger than those actually
expected in tissue, to make the optimization stable—
although it is unlikely that sensitivity to smaller radii
could be improved substantially using the same scanner
hardware.

In conclusion, we have found that some sensitivity to
relatively large axons may be available using the stand-
ard DSE pulse sequence at clinical field and gradient
strengths, if the scan is well set up and parameter esti-
mation is performed carefully, with the use of suitable
prior information. We have demonstrated a consistent
trend in axon radius parameter maps which is broadly in
keeping with known tissue characteristics, although cau-
tion is required in the interpretation of this finding. It
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may be that contrast arises from large axons of radius
around 3 pm and above, although it may also arise from
variations in microscopic or macroscopic fiber dispersion
(cf. Ref. 46), axonal undulation (47), or from differences
in other tissue properties such as membrane permeabil-
ity. In vivo axon radius imaging on clinical scanners
should therefore be treated cautiously at present, but as
stronger gradients become available on these scanners—a
tendency which is beginning to become reality—results
will improve, and inferring tissue characteristics should
become more practical.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Figure S1. Maps of axon radius index, estimated in the absence of the
prior on R. Compared to Fig. 5, the maps are noisier and show less scan-
rescan consistency.
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