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ABSTRACT: A general method for the catalytic asymmetric α-
selenenylation of simple carbonyl compounds is lacking. Herein, a
copper(I)-catalyzed enantioselective α-selenenylation of 2-acylimi-
dazoles with electrophilic selenosulfonates is uncovered. The
reaction enjoys the advantages of mild conditions, easy reaction
protocol, and broad substrate scopes on both 2-acylimidazoles and
selenosulfonates. Mechanistic studies reveal a pincer Cu(I)-(S,S)-
Ph-BOPA complex as the active catalyst. Some traditional
electrophilic selenenylation reagents, such as PhSeCl, PhSeSePh, and 2-(phenylselanyl)isoindoline-1,3-dione lead to inferior results
in terms of both yield and enantioselectivity, highlighting the superiority of selenosulfonates. Finally, several transformations based
on both the 2-acylimidazole group and the selenoether group are successfully carried out, demonstrating the synthetic utilities of the
present methodology.
KEYWORDS: copper(I) catalysis, asymmetric catalysis, selenenylation, 2-acylimidazoles, selenosulfonates

Chiral organoselenium compounds, especially α-seleno
carbonyl compounds, serve as versatile intermediates in

organic synthesis.1 Furthermore, some chiral seleno-bearing
organic molecules have been found as powerful organo-
catalysts2−7 and bioactive molecules8 (Scheme 1(a). Classi-
cally, chiral organoselenium compounds were built heavily on
“chiral−pool” strategy,9 which suffered from some drawbacks,
such as poor both chirality economy and step economy. With
the flourishing of asymmetric catalysis, catalytic asymmetric
synthesis of these compounds serves as an alternative, powerful
strategy. However, such methodologies remain limited.
Evidently, limited synthetic methods led to limited seleno-
compounds, resulting in limited application in various fields,
such as asymmetric catalysis and medicinal chemistry.
Therefore, it is highly demanding to develop efficient synthetic
methods.10

Available methods based on asymmetric catalysis could be
divided into two types, including asymmetric transformations
with seleno-containing building blocks9,10 and asymmetric
introduction of seleno-segments to starting molecules through
C−Se bond formation.11−18 In the latter case, common
methods include bifunctionalization of olefins,11 monofunc-
tionalization of olefins,12 nucleophilic selenenylation,13 and
electrophilic selenenylation.14−17 The representative method
for nucleophilic selenenylation is the asymmetric addition of
selenols to α,β-unsaturated compounds. In 2022, Huang and
co-workers reported a highly enantioselective Michael addition
of selenols to α,β-unsaturated ketones under organocataly-
sis.13e Later, our group disclosed a copper(I)-catalyzed
asymmetric addition of selenols to α,β-unsaturated thioamides
with high to excellent enantioselectivity.13f The most
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straightforward method for electrophilic selenenylation is the
catalytic asymmetric α-selenenylation of carbonyl compounds
with certain electrophilic seleno-reagent. However, most of
such reported reactions were enabled by organocatalysis with
aldehydes, ketones, and cyclic carbonyl compounds as
pronucleophiles.14−16 Obviously, the produced chiral α-seleno
aldehydes or ketones are labile to racemization, as the
reduction of the carbonyl group was usually required for
easy manipulation. In 2020, Chen and co-workers disclosed a
Ni-catalyzed asymmetric selenocyanation of β-ketoesters with
N-selenocyanatosaccharin in good to high enantioselectivity
(Scheme 1b), which served as the leading example under
transition metal catalysis.17 Evidently, a general method for the
catalytic asymmetric α-selenenylation of simple carboxylic acid
derivatives (not cyclic ones) is still lacking.
2-Acylimidazoles are a type of synthetic equivalent of esters

and broadly employed in asymmetric catalysis.19 Obviously,
stabilized copper(I) enolates would be generated in the
presence of 2-acylimidazoles, a chiral copper(I) complex, and
a mild base. If there was a suitable seleno-bearing electrophile
(XSeR), nucleophilic attack of the stabilized chiral copper(I)
enolates on it would furnish chiral α-seleno 2-acylimidazoles
(Scheme 1c). However, challenges exist, such as suspicious
oxidative ability of XSeR, doubtful racemization of the α-
stereogenic carbon centers, potential poisoning of the
copper(I) catalyst by the products, and difficulty in subsequent
acylimidazole transformations in the presence of a seleno-ether
moiety.
The α-selenenylation of N-Me-2-butyrylimidazole (2a) with

selenosulfonate 1a-1, which was identified as an excellent
electrophilic seleno-reagent,20 was initially investigated as a
model reaction for the optimization of reaction conditions at 0
°C (Table 1). In the presence of 10 mol % CuI, 10 mol % (R)-
TOL-BINAP, and 1.0 equiv of Et3N, 3aa was generated in 18%

yield with 1% ee in 12 h (entry 1). Switching the ligand to
some other commercially available chiral phosphines did not
lead to improved enantioselectivity (12%−50%, −1%−1% ee,
entries 2−4). Fortunately, the selenenylation with (S,S)-Ph-
PYBOX afforded 3aa in 52% yield with 51% ee (entry 5). By
using (S,S)-iPr-BOPA, another typical chiral tridentate nitro-
gen ligand, 3aa was generated in 24% yield with 67% ee (entry
6). Increasing the steric hindrance of the ligand resulted in
enhanced both yield and enantioselectivity (42%, 90% ee,
entry 7). The commonly used copper(I) salt Cu(CH3CN)4PF6
did not lead to superior results (52%, 89% ee, entry 8).
Cu(OAc)2 was also tested as the copper source. However,
inferior enantioselectivity was obtained (54%, 79% ee). By
increasing the amounts of both 1a and Et3N to 2.0 equiv and
the concentration of 2a from 0.2 to 0.5 M, 3aa was delivered in
86% yield with 90% ee (entry 9). Then four selenosulfonates
with different electronic effects (1a-2-1a-5) were prepared and
thus screened (entries 10−13). Reagent 1a-3 outperformed as
3aa was generated in the highest enantioselectivity (66%, 93%
ee, entry 11). By extending the reaction time from 12 to 24 h,
3aa was produced in elevated yield and maintained
enantioselectivity (89%, 92% ee, entry 14). It was noted that
the variation of N-CH3 to N-Ph did not help to improve the
enantioselectivity further.
Under the optimized reaction conditions, the substrate

scope of selenosulfonates (1) was first studied with 2a as a
model pronucleophile (Table 2). As for the selenosulfonates of
aryl selenols, both the yields and the enantioselectivity were
not significantly impacted by the electronic nature of the aryl
groups (3ba-3ia, 80%−99%, 82%−92% ee). Furthermore, the
substitution patterns, including ortho-, meta-, and para-
substitutions, did not disturb the reaction results. Both 1-
naphthyl and 2-naphthyl were well accepted at the R position
(3ja-3ka, 81%−82%, 93%−94% ee). 2-Thienyl was also well

Table 1. Optimization of the Reaction Conditionsa

entry ArSO2SePh Copper source ligand yield/%b ee/%c

1 1a-1 (Ar = C6H5) CuI (R)-TOL-BINAP 18 1
2 1a-1 (Ar = C6H5) CuI (R,R)-Ph-BPE 50 −1
3 1a-1 (Ar = C6H5) CuI (R,RP)-TANIAPHOS 14 1
4 1a-1 (Ar = C6H5) CuI (S,S)-Ph-FOXAP 12 1
5 1a-1 (Ar = C6H5) CuI (S,S)-Ph-PYBOX 52 51
6 1a-1 (Ar = C6H5) CuI (S,S)-iPr-BOPA 24 67
7 1a-1 (Ar = C6H5) CuI (S,S)-Ph-BOPA 42 90
8 1a-1 (Ar = C6H5) Cu(CH3CN)4PF6 (S,S)-Ph-BOPA 52 89
9d 1a-1 (Ar = C6H5) CuI (S,S)-Ph-BOPA 86 90
10d 1a-2 (Ar = 4−F-C6H4) CuI (S,S)-Ph-BOPA 78 91
11d 1a-3 (Ar = 4−Cl-C6H4) CuI (S,S)-Ph-BOPA 66 93
12d 1a-4 (Ar = 4−Br-C6H4) CuI (S,S)-Ph-BOPA 74 92
13d 1a-5 (Ar = 4-Me-C6H4) CuI (S,S)-Ph-BOPA 80 87
14d,e 1a-3 (Ar = 4−Cl-C6H4) CuI (S,S)-Ph-BOPA 89 92

a1a: 0.10 mmol, 2a: 0.10 mmol. bDetermined by 1H NMR analysis of reaction crude mixture using CH2Br2 as an internal standard.
cDetermined

by chiral-stationary-phase HPLC analysis. d1a: 0.10 mmol, 2a: 0.20 mmol, Et3N: 0.20 mmol, THF (0.5 M).
e24 h.
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tolerated, and the corresponding product was isolated with
satisfactory results (3la, 88%, 91% ee). As for the
selenosulfonates of aliphatic selenols, simple alkyls as well as
functionalized alkyls served as wonderful R substituents (3ma-
3ta, 71%−89%, 88%−95% ee). The presence of some
functional groups, such as ether, free alcohol, alkyl chloride,
ester, and cyanide did not interrupt the reaction process.
Thio(4-chlorobenzene)sulfonates were also studied as the
electrophile instead of 1a-3. The corresponding product was
furnished in 66% yield with 63% ee, indicating the similarity of
thiosulfonates to selenosulfonates.
Then the substrate scope of 2-acylimidazoles (2) was

investigated with 1a-3 as a model electrophile (Table 3).
Simple alkyls, including methyl, nbutyl, ipropyl, cyclopropyl, 2-
methyl-propyl, benzyl, phenylethyl, and allyl worked as suitable
R′ substituents as the corresponding products were isolated in
satisfying results (3ab-3ai, 76%−97%, 81%−90% ee). Alkyls
bearing a functional group, such as silylether, ester,
selenoether, thioether, alkyl chloride, internal alkyne, and
amine, were found to be appropriate R′ substituents too (3aj-
3ap, 70%−99%, 80%−90% ee). It should be noted that several
reactions (3ak, 3al, 3am, and 3an) were performed at −20 °C
for higher enantioselectivity and 20 mol % copper catalyst
loading was required for good yield in the case of 3an. Finally,
the present catalytic system was successfully applied to chiral
2-acylimidazoles. Three chiral seleno-ethers (3aq, 3ar and 3as)
were prepared in synthetically useful yields with excellent dr
(73%−77%, > 20/1 dr), indicating that the asymmetric

induction was mainly controlled by the chiral copper catalyst.
2-Phenylacetylimidazole was also tested, which provided the
corresponding product in 90% yield with 5% ee. The very low
ee might be caused by the racemization under the basic
reaction conditions. It was noted that the reaction of α-methyl-
α-phenyl-2-acetylimidazole did not occur at all.
Subsequently, some control experiments were carried out.

As shown in Figure 1a, the presence of TEMPO, BHT, or 1,1-
diphenylethylene did not prohibit the reaction, indicating that
the α-selenenylation might not proceed in a radical process.
The N-H moiety in (S,S)-Ph-BOPA was found to be
indispensable as the reaction with (S,S)-N-Me-Ph-BOPA
occurred in low yield and 3aa was generated in nearly racemic
form (Scheme 2b). The reaction with mesitylcopper(I) as the
copper source afforded 3aa in nearly the same results as the
one with CuI and Et3N, indicating that the copper(I) enolate
would be the real nucleophile (Scheme 2c). Finally, the
reactions with other electrophilic seleno-reagents were
examined. As shown in Scheme 2d, the α-selenenylation with
PhSeCl afforded 3aa in moderate yield with moderate
enantioselectivity (64%, 61% ee). The reaction with PhSeSePh
was even worse as 3aa was generated in 18% yield with 60% ee.
2-(Phenylselanyl)isoindoline-1,3-dione was also not a suitable
electrophile as 3aa was produced in 44% yield with 68% ee.
These experimental facts demonstrated that selenosulfonates
were a type of efficient electrophilic seleno-reagents.
Next, some experiments were performed to grow single

crystals of the active copper catalyst. After extensive trials,
some crystals were obtained from the THF solution of the
complex formed by MesCu and (S,S)-Ph-BOPA in open air
(Figure 1a). However, the X-ray analysis indicated a structure

Table 2. Substrate Scope of Selenosulfonates (1)a

a1−3: 0.20 mmol, 2a: 0.40 mmol. Isolated yield. The enantiose-
lectivity was determined by chiral-stationary phase HPLC analysis.

Table 3. Substrate Scope of 2-Acylimidazoles (2)a

a1a-3: 0.20 mmol, 2: 0.40 mmol. Isolated yield. The enantioselectivity
was determined by chiral-stationary-phase HPLC analysis b24 h. c96
h. d36 h. e−20 oC. f20 mol % copper catalyst.
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of copper(II) complex 7.21 At this moment, it was believed
that copper(II) complex 7 was generated through the
oxidation of the corresponding labile Cu(I) complex by air.
In order to further get information on the active catalyst, XPS
analysis of the reaction mixture was performed. By comparing
the sample spectrum with known spectra of Cu(0), Cu2O and
CuO (Figure 1b), it was concluded that the active catalyst
would not be the Cu(II) species. Furthermore, the α-
selenenylation of 2a catalyzed by 7 afforded 3aa in very low
yield, suggesting that 7 was not the active catalyst (Figure 1c).
Surprisingly, the reaction with copper powder as a copper
source proceeded, providing 3aa in 26% yield with 91% ee
(Figure 1d). Certain copper(I) species would be generated
from copper powder in the presence of 1a-3 as 1a-3 was
reported as a potential oxidant in the literature.20 Actually, it
was difficult to generate copper enolate from copper power and
2a directly. Based on all of the above experimental facts, it was
believed at this stage that complex 8 was the real active chiral

catalyst. Furthermore, a mechanism based on copper(I)/
hydrogen-bonding cooperative bifunctional catalysis was
proposed based on the important role of the N-H moiety in
(S,S)-Ph-BOPA,22 which was indispensable for the success of
the reaction (Figure 1e).
Finally, several transformations of 3aa were employed to

demonstrate the synthetic utilities of the method as given in
Scheme 3. The removal of the imidazole group was proved
easy as carboxylic acid 9 was prepared from 3aa in 86% yield
with 90% ee for two steps. Acid 9 successfully coupled with L-
alanine methyl ester to give peptide 10 in 74% yield with >20/
1 dr. The exact stereochemistry of 10 was established by X-ray
crystallographic analysis of its single crystals.23 The absolute
configurations of 3aa and other products (3) in the α-
selenenylation were assigned analogically. The reduction of
acid 9 with BH3·SMe2 worked very well, furnishing alcohol 11
in 96% yield with 91% ee. The transformation of 3aa to ketone
was successfully carried out with 12 generated in 70% yield
with 91% ee. Ester 13 was synthesized in 83% yield with 85%
ee from 3aa under methanolysis condition. The slight decrease
of ee was caused by the strong basic conditions. The
transformation of the seleno-ether moiety was exerted
successfully by following a literature report on the trans-
formation of the thioether group,24 affording chiral α-Cl-2-
acylimidazole 14 in 88% yield with 90% ee.
In summary, a general method for the asymmetric α-

selenenylation of simple carbonyl compounds was developed
under copper catalysis. Both electrophilic selenosulfonates and

Figure 1. Investigation of some copper complexes.

Scheme 2. Control Experiments
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2-acylimidazoles enjoyed broad substrate scopes. In the
characterization of the active copper catalyst, the pincer
Cu(II)Cl-(S,S)-Ph-BOPA complex formed in the open air was
obtained instead of the pincer Cu(I)-(S,S)-Ph-BOPA complex.
In light of the XPS analysis, it was concluded that the pincer
Cu(I)-(S,S)-Ph-BOPA complex was the active chiral catalyst.
The free N-H moiety in (S,S)-Ph-BOPA was found to be
pivotal for both a high yield and high enantioselectivity, leading
to the proposed copper(I)/hydrogen-bonding cooperative
catalysis. Studies on the electrophilic seleno-reagents revealed
that selenosulfonate was superior to PhSeCl, PhSeSePh, and 2-
(phenylselanyl)isoindoline-1,3-dione. Finally, diversified trans-
formations of 3aa demonstrated the synthetic utilities of the
present method. Further combined applications of selenosul-
fonates and copper catalysis are currently on going in our
laboratory.
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