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The process of method development for a diagnostic assay based on liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) involves several disparate technologies and 
specialties. Additionally, method development details are typically not disclosed in journal 
publications. Method developers may need to search widely for pertinent information on 
their assay(s). This review summarizes the current practices and procedures in method 
development. Additionally, it probes aspects of method development that are generally not 
discussed, such as how exactly to calibrate an assay or where to place quality controls, 
using examples from the literature. This review intends to provide a comprehensive re-
source and induce critical thinking around the experiments for and execution of develop-
ing a clinically meaningful LC-MS/MS assay.
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INTRODUCTION

The development of liquid chromatography-tandem mass spec-

trometry (LC-MS/MS) clinical assays can be a complex task. 

Challenges span a wide range of chemical, physical, biological, 

and infrastructure issues that must be mitigated to provide a 

meaningful test result. With few exceptions, diagnostic MS test-

ing is fully designed and executed in house [1-3]. The prepara-

tion of most testing materials, from calibration solutions to mobile 

phases, is the responsibility of the laboratory staff. In a develop-

ment setting, control of nearly all steps is advantageous; the 

number of possible pathways to a final assay is only constrained 

by the developer’s imagination and experience and resources. 

The details of each step in a procedure can be optimized to best 

fit the workflow, layout, and assets of the laboratory. 

In general, method development involves an amalgamation of 

tool kits. Some tools are provided by chemical or hardware 

manufacturers, others through learned skills or training, and still 

others from first-principle experimentation. In-depth descrip-

tions of method development are largely absent in publications. 

From the author’s experience of hundreds of assays developed, 

far more experiments in method development fail than pass (for 

good reason). Unsuccessful experiments are not frequently 

published. Rather, a “final method” is described in a “method 

development” section, providing little opportunity for vicarious 

learning. This review sheds light on the scant literature re-

sources that can be utilized in clinical assay development, with 

a focus on small-molecule-based measures. This bias towards 

compounds <1,000 Da is due to the relative dearth of publica-

tions related to the full utilization of peptide/protein measure-
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ment by MS in a clinical assay (i.e., assay data are used to 

make a meaningful clinical decision). However, the fundamental 

principles for many of the processes are consistent for both 

small and large compounds; important distinctions will be iden-

tified where appropriate. Additionally, the majority of measure-

ment procedures focus on the use of chromatographic separa-

tion prior to MS detection; the utility of matrix-assisted laser de-

sorption-ionization-MS in the clinic has been reviewed else-

where [4, 5].

In this review, we provide examples from the landscape of LC-

MS/MS utilized in clinical laboratories, while attempting to eluci-

date the components involved in assay development that are of-

ten not described in publications. Sections are organized ac-

cording to the order in which method development consider-

ations are made. Though this review is linear in presentation, 

the reader is advised to revisit relevant sections during method 

development for continued process refinement until the assay is 

in the final validation stage. 

ANALYTICAL MATERIALS

The development of an MS assay should not begin with any 

equipment but rather with the acquisition of a high-quality stan-

dard material. Few MS assays in clinical practice do not use a 

known amount of the measurand in both development and op-

erations. Notable exceptions to the need for a standard material 

include measurands assayed in newborn screening, such as 

acyl carnitines and urinary organic acids, which depends on 

substantial post-analysis data review [6, 7]. Proper sourcing of 

the analytical standard to be used as a test material is essential. 

From experience, we recommend attempting to procure at least 

two lots of standard material from discrete manufacturers. This 

allows for experimentation to determine errors or evaluate data 

absent in the certificate of analysis. In some cases, the chemi-

cal synthesis and purification of a neat standard is imperfect, 

resulting in bias in concentration assignment. Such inaccura-

cies may not be observed until the method comparison phase 

of validation or even after the launch of the assay [8]. Additional 

care should be taken when multiple analytes with high degrees 

of similarity are prepared from distinct solutions, especially for 

compounds that are metabolites or have only subtle modifica-

tions [9]. Such manufacturing or degradation by-products may 

contribute to biases in measurand concentrations.

In certain cases, a certified reference material linked to 

higher-order metrology with value and error assignments pro-

vided exists. Available compounds can be obtained from various 

organizations, such as the International Federation of Clinical 

Chemistry, National Institutes of Science and Technology, Joint 

Committee for Traceability in Laboratory Medicine, National 

Measurement Institute Australia, National Metrology Institute of 

Japan, and Korea Research Institute for Science and Standards 

[10]. These materials may also be included in commercial ven-

dor catalogs. With the recent uptake of quantitative nuclear 

magnetic resonance, traceable materials with well-characterized 

concentrations are becoming more readily available and will 

certainly improve calibration-related metrology [11, 12]. 

An analytical standard is required for an MS assay to enable 

quantification of the substance in patient samples. The lack of a 

purified material leads to a limited experimental space or at 

least experimental designs that have far more assumptions than 

variables. Important evaluations, such as spike and recovery, 

can be unambiguously performed with a neat compound. Alter-

native approaches often leave outstanding questions that must 

be addressed before applying the developed assay to patient 

samples and require significant validation.  

INTERNAL STANDARD (IS) SELECTION

An IS is essential to the application of MS to clinical analysis. 

While certain aspects of MS technology, such as relatively good 

response functions at low concentrations and perceived speci-

ficity due to collisional dissociation or high resolution, are impor-

tant, the ability to correct for all analytical steps with a true 

physicochemical mimic is profound. For endogenous analytes, 

the capacity to execute experiments using an IS cannot be un-

dervalued. As a surrogate, recovery of the IS can be used to as-

sess assay efficiency in patient samples without concern for the 

endogenous analyte biasing results [13]. Time-course studies 

may be executed to understand the influence of endogenous 

protein binding or adsorptive loss [14, 15]. The equilibration 

time for the IS is critical for the normalization of recovery of the 

IS and analyte. The time and conditions necessary for IS equili-

bration in the patient sample should be determined during 

method development [16, 17].

Appropriate labeling of the IS should fully resolve isotopic 

contribution from high levels of an analyte. In fortuitous circum-

stances, there may be more than one stable, isotopically labeled 

IS available. In these cases, the degree of the deuterium isotope 

effect (for deuterium-labeled species), cost, availability, and reli-

ability of product ion formation are all important considerations 

in IS selection [18, 19].  

The rationale for the concentration of the IS required for an 
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assay is generally not discussed in journal articles. Numerous 

factors, including cost, pipetting precision, solubility, stability, 

assay compatibility, unlabeled analyte, and overall analytical 

precision, have to be considered. Broadly, the lowest concentra-

tion of IS (cost) should be used to provide a response within the 

linear range of the detector with the lowest influence of noise 

and imprecise integration (analytical precision). The obvious de-

velopment experiment is to perform titrations of the IS, inject 

those titrations in replicates, and record the detection precision. 

Such an experiment is, to our knowledge, not described in most 

journal articles as it can be considered trivial. However, using 

data to rationalize the decision-making process is fundamental 

to “evidence-based medicine.”      

The solvent for storage of the IS should prevent adsorptive 

loss to the walls of the container (solubility) and have a compo-

sition or additives to prevent degradation and/or in-solution deu-

terium exchange (stability) [20]. Additionally, the IS should be 

added to the assay in a volume that is reproducible for the labo-

ratory (e.g., >20 μL is preferred by pipette manufacturers) and 

such that the aliquot does not interfere with the extraction pro-

cedure [21]. For example, excessive organic aliquots added to 

plasma prior to hydrophobic solid-phase extraction (SPE) may 

result in precipitants clogging the SPE bed and release of the 

analyte into the organic solvent. 

MS DEVELOPMENT

With analytical materials in hand, the physical work of method 

development can begin. Logically, this starts with the establish-

ment of provisional MS parameters, such as precursor and 

product ions, and collision energies. Note that any source con-

ditions should be appropriate for low-flow infusion and should 

not represent source conditions of the final method. Significant 

refinement is appropriate when the variables that affect source 

performance, such as LC flow rate and solvent composition, 

have been implemented [22, 23].  

Though relatively infrequent, the measured precursor can dif-

fer from the expected protonated precursor can occur in MS. 

In-source dissociation can result in loss of a moiety, commonly 

water [24-26]. In-source dissociation is influenced by tempera-

ture and electronic settings (e.g., declustering potential). These 

should be evaluated during initial infusion. Alternatively, certain 

analytes poorly form a (de)protonated precursor ion and instead 

preferably yield adducts. Common adducts are generated via 

sodium, ammonium, or lithium, though others may be ob-

served, depending on the molecule(s) being assayed [27, 28]. 

The addition of possible adducting species in the infusion solu-

tion may yield precursor ions not otherwise observed.  

The fragmentation of molecules may enhance the specificity 

of the assay, depending on the selection of the neutral losses. 

Known facile and/or common fragments should be avoided to 

ameliorate concerns of interfering peaks; indeed, sufficient care 

should be taken to account for all the forms of interferences that 

may be generated via MS [29]. However, from a development 

standpoint, all possible transitions should be retained until suffi-

ciently ample data are available to exclude a transition, with the 

decision being based mostly on specificity as opposed to raw 

response. Transition ratios/ion ratios or comparison of the peak 

areas between two distinct product ions from a single precursor 

are informative in identifying specificity issues [30]. In some 

cases, a molecule can only form a single product ion. A collision 

energy offset on the exact same neutral loss can provide a suit-

able evaluation of transition ratios for selectivity determination 

[31]. However, this approach must be implemented with cau-

tion as it may not be sufficient for every analyte [32]. In other 

cases, the compound may not fragment into a product ion at all 

or may yield such low efficiency dissociation/transmission that 

the product ion m/z is equivalent to the precursor m/z [33]. 

With the loss of the implied specificity of dissociation and the 

ability to assess specificity in data analysis, extra care must be 

taken to determine selectivity. Reducing the mobile phase 

strength over the separation time (“extended gradient”) during 

the analysis of many samples (>100) can provide confidence 

in peak purity [34].  

CHROMATOGRAPHY DEVELOPMENT

Aspects of chromatography development for a wide array of ap-

plications have been previously discussed [35-37]. In most 

cases, these guidelines are for industries and do not match the 

needs and challenges of clinical laboratory testing. Applications 

related to the assessment of active pharmaceutical ingredients 

may benefit from access to large sample volumes/masses, mak-

ing higher response functions through greater analyte load pos-

sible. This is not feasible for most clinical assays. While urine 

may seem plentiful, neonatal urine is both short in supply and 

difficult to capture. Blood draining, while an accepted clinical 

practice in the past, is currently discouraged. In general, sample 

availability is limited. In MS, there are few opportunities to safely 

garnish higher analyte responses. Generally, creating a higher 

ion yield in the source is the primary opportunity. The use of 

larger patient sample volumes is less desirable.
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Chromatographic development in bioanalysis for clinical trials 

may not be sufficient to manage the challenges associated with 

the measurement of endogenous compounds in an uncon-

trolled test population. Additionally, the sample types accepted 

into the laboratory for testing may be infrequently observed in a 

trial environment. Opaque yellow plasma from severe lipemia or 

near-neon oranges of icteric serum are not uncommon in the 

diagnostic environment. While perhaps the closest to the diag-

nostic industry, bio-analysis-based recommendations should be 

read with an understanding of their fit-for-purpose nature.   

Some strategies based on established assays may inform sci-

entists on the selection of chromatographic development start-

ing points. While initial determination of column dimensions 

may seem trivial, there are certain rationales for prioritizing this 

item over stationary phase selection. First, a column should be 

chosen such that the dimensions and expected flow rate do not 

exceed the capabilities of the LC system. For example, a 100 

mm long column with a 1 mm internal diameter packed with 1.8 

µm particles may provide excellent separation efficiency. How-

ever, when utilized with a 400 bar-max (5,800 psi/40 MPa) LC 

pump and a water/methanol gradient, the flow rate to prevent 

reaching the pressure limit would be close to 75 µL/min. Such a 

flow rate can result in lower laboratory efficiency as washing and 

re-equilibration of the column is a function of flow rate and vol-

ume. A column with a larger internal diameter and particle size 

may be more appropriate for the described equipment.        

An additional consideration is the use of columns with a rela-

tively small internal diameter to increase the sensitivity at the µL/

min flow level in electrospray ionization [38-40]. There are un-

deniable sensitivity gains; however, these must be balanced 

against the expectation of system ruggedness and robustness. 

Small internal diameters yield small cross-sections of particles 

at the head of the column. A 75 µm internal diameter tube 

packed with 5 µm particles can only contain approximately 200 

particles in the first cross-section. The normal distribution of 

particle features, such as size, shape, % functionalized, carbon-

load, for a bulk of the packing material (both within and be-

tween lots of stationary phase) may not translate into a 200-par-

ticle cross-section when assessed between columns [41, 42]. 

This can influence the separation for not just the analyte(s) of 

interest but also possible interferences, resulting in column-to-

column differences. In comparison, a 2.1 mm internal diameter 

column can have many thousands of particles within the first 

cross-section. This would increase the likelihood that the distri-

bution of activities and particles’ physical parameters is more 

likely to be precise across many years of purchasing the same 

column from the same vendor. The data in Table 1 indicate the 

preference for >2 mm internal diameter columns across clini-

cal laboratories running LC-MS/MS [43-53]. 

Additionally, the utilization of guard columns is rather infre-

quent or at least not often disclosed. Readers can extrapolate 

the relationships between a pressure max, column dimensions, 

and the maximum flow rate, which to the author, are poorly cor-

related with any feature. Indeed, the systems with the highest 

available pressure limits utilize the lowest described flow rate, 

without significant liabilities indicated in the column dimensions. 

Considered solely on this basis, it may be surmised that some 

throughput efficiency is lost; however, this should be balanced 

against a number of factors. The ionization cross-section may 

be greater on the mass spectrometer model used at that flow 

rate. Perhaps the laboratory is attempting to leverage the asso-

ciation between lower flow rates and more efficient separations 

to achieve resolution for a near-eluting isobar. Alternatively, the 

entire separation was perhaps performed on a previous-genera-

tion model and revalidation of a new separation was low priority. 

Apart from the hardware of LC, the mobile phases remain an-

Table 1. Summary of column dimensions, system maximum pressures, temperature and maximum flow rate for multiple examples of LC-
MS/MS assays utilized in clinical laboratories globally*

Reference [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53]

Length (mm) 100 50 150 100 125 100 35 50 100 50 100

Internal diameter (mm) 2.1 2 2.1 2 4 2 0.5 2.1 2.1 4.6 3

Particle diameter (µm) 5 3 1.7 3 5 3 3.5 1.7 3.5 2.6 2.6

System pressure max (bar) 400 250 600 1,000 350 600 600 1,000 400 600 1,000

Guard column used? Yes Yes ND ND ND ND Yes ND ND ND ND

Temp (°C) 40 ND ND ND 30 30 40 45 30 ND 45

Flow rate max (µL/min) 400 400 500 300 850 600 40 350 800 ND ND

*Note the consistency in which multiple practitioners apply internal diameters ≥2 mm, perhaps to address particle/stationary phase heterogeneity.
Abbreviation: ND, not described in the referenced study.
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other concern. The purity of solvents may affect the ionization 

cross-section of molecules, yet purity is generally expressed as 

a colloquial term. A search for specific requirements to be la-

beled as “LC-MS grade” within documents from International 

Union of Pure and Applied Chemistry, International Organization 

for Standardization, and the US Food and Drug Administration 

(FDA) returned zero meaningful results. In mobile phase selec-

tion, certainly, higher quality is preferred, though not required. 

Materials labeled as “HPLC grade” have been shown to be ade-

quate for the intended analysis [43, 46, 48]. Other assays utilize 

the claimed “LC-MS grade” for successful analysis. For simplifi-

cation of ordering, price reduction based on purchase volume, 

and ease of material storage, laboratories may prefer to order all 

mobile phases from a single vendor. This would limit the diver-

sity of manufacturers until back-order or supply issues require 

purchasing from a different manufacturer.     

As stated previously, the utilization of data to inform decisions 

as opposed to historical processes defining a method is impor-

tant in method development. It is not uncommon that a labora-

tory adopts a single weak and strong mobile phase for all analy-

ses or utilizes the same stationary phase for all separations. 

While perhaps beneficial to operational consistency, such con-

straints may not be optimal for the selectivity or response of a 

specific compound. Interrogation of ionization efficiency and re-

tention are worthwhile investigations, particularly if the develop-

ment is fully de novo. Upstream effects of optimal MS and sol-

vent conditions may dramatically lower the complexity of sample 

preparation, reducing cost, errors, and time. Solvent selection 

can be addressed solely as a function of ionization cross-sec-

tion. Some studies have indicated that this determination can 

be made solely on theoretical grounds [54, 55]. However, em-

pirical determination, which experimentally defines the optimal 

solvent characteristics for maximal response, has been sug-

gested [56]. Briefly, a single concentration of an analyte is forti-

fied into various solvent mixtures comprised of possible weak 

and strong solvents. Flow-injection analysis (an LC system with-

out a column) is used to assess what the ionization cross-sec-

tion of an analyte is in the presence of solvent(s) and/or modifi-

ers. This process is far less time-consuming than preparing bulk 

mobile phases, priming them on an LC system, running some 

series of injections, and repeating the same experiment for each 

possible mobile phase combination.   

For chromatography development, real data are an important 

guide in determining the most appropriate column. Experiments 

should be designed so as to introduce some of the issues for 

which LC-MS/MS analyses may struggle, including ion suppres-

sion and interfering species. First, certain molecules, such as 

endogenous phospholipids or exogenous phthalates, can dis-

rupt atmospheric pressure ionization [57]. To observe such 

phenomena, strategies such as post-column infusion or direct 

MS detection have been developed [58, 59]. Interfering species 

can be determined a priori in online chemical catalogs. It should 

be recognized that the nominal mass alone may be insufficient 

to determine possible interferences [60]. Molecular species that 

may be observed due to the nature of MS, such as isotopes, 

isobars, and in-source dissociation products, should be consid-

ered [61]. Knowledge of such species can guide developers to 

actively look for those signals that may present an issue as op-

posed to interfering signals that can be observed when the as-

say is used for patient samples. This is particularly important 

with regard to commonly prescribed medications, dietary/life-

style variations, or comorbidities/associated pathologies of the 

intended test population [62].  

Chromatographic screening utilizing solvents as determined 

in an ionization efficiency screening has been discussed else-

where [56, 63]. The process of chromatographic screening can 

be informed by important metrics, such as absolute abundance, 

retention time, cycle time, peak width, noise/baseline height, 

and relative retention time/resolution. In our experience, it can 

be tremendously difficult to attempt to force a molecule, pre-de-

termined mobile phase composition, and pre-selected column 

to work in concert. Exploration of as much experimental space 

as possible affords confidence in the developed assay. An addi-

tional benefit is the availability of detailed information for alterna-

tive separation techniques should an insurmountable difficulty 

appear later in development. This is especially important in hy-

drophilic-interaction LC, as the number and strength of interac-

tions vastly differ from those in reversed-phase LC [64].  

SAMPLE EXTRACTION

Sample preparation falls into a few broad categories, and each 

style serves distinct purposes. The decision-making path should 

start with the determination of the instrument’s lowest precise 

response versus the necessary reference interval. Take for ex-

ample a test where the measurand is intended to achieve a 1 

ng/mL lower limit of quantification (LLOQ). If with optimal sol-

vents and separation, the assay is capable of detecting a 1 pg/

mL concentration with significant signal-to-noise, concentration 

via SPE or liquid-liquid extraction is unnecessary from a re-

sponse perspective. However, these preparative techniques may 

be utilized to achieve a degree of selectivity not possible in the 
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LC setup. In that light, it should be recognized that LC is a rela-

tively high-resolution technique and affords near-full automa-

tion. Generally, LC is the most useful approach to effect specific-

ity of analysis prior to MS detection; however, specific sample 

extraction can yield excellent selectivity when properly designed 

for the target compound(s).

After the need for extraction to concentrate or dilute is deter-

mined, the laboratory’s physical setup and available equipment 

should be evaluated in the context of the assay to be executed. 

For a laboratory with a single 24-position SPE vacuum manifold 

intending to run 1,000 samples per day through tube-based 

SPE, additional vacuum ports and manifolds will need to be 

procured. Alternatively, it may be just as cost-efficient to look at 

positive-pressure manifolds for 96-well plates. At many steps 

during method development, ensuring that quality science can 

be delivered in a production/industrial setting may precede over 

research desires.

It is always helpful to encapsulate multiple conclusions from a 

single experiment in extraction development. For example, re-

covery studies on neat solutions are important; however, recov-

ery should be co-executed in the intended matrix as well. Note 

that many sample matrices are buffered because of the pres-

ence of preservatives. What works in Type I water may not work 

in citrated plasma. Experimentally, evaluation criteria including 

absolute analyte response as well as IS recovery, peak shape 

deviations, retention time drifts for multiple injections, and visu-

ally observed debris or other macro-confounders within the ex-

tracts, are highly informative [61]. Thoughtful experimental de-

sign, which includes expectations for reduced data (e.g. preci-

sion of IS response across multiple samples within 20%), is crit-

ical to efficient method development. 

SPE has been quite successful in implementation [65-67]. In 

particular, the shift away from silica-based phases for polymers 

has increased the ruggedness of the technology in industrial 

environments. Scientists interested in SPE should note that 

many generic protocols exist. They are drafted to capture a rea-

sonable percentage of many different compounds but are not 

universally ideal for all compounds. Some experimentation re-

lated to the degree of sample pre-manipulation (i.e., pH adjust-

ment, pre-precipitating), washing solution strength, number of 

washes, elution characteristics, etc. is necessary to develop an 

optimal protocol [68]. Given the breadth of available SPE prod-

ucts, testing different sorbents from different manufacturers 

(even if similar in interaction) may provide important information 

[69]. Additionally, the SPE modality should be considered in 

light of the LC separation mode [70]. When a hydrophobic SPE 

process is coupled to a reversed-phase LC separation, sample 

preparation can be just a lower-resolution analogy to the LC. 

This provides only concentration, not isolation of the target com-

pound from other, similar molecules. In line herewith, com-

pounds most likely to co-elute in the LC portion are also con-

centrated.  

Liquid-liquid extraction is quite popular in certain segments of 

clinical assays. Moderate- and low-polarity compounds can be 

separated from a bulk matrix in a facile manner, and certain po-

lar compounds have even been separated from an aqueous 

phase using salt assistance [71-73]. Tube-based liquid-liquid 

extraction has proven to be largely manual, mainly because of 

the need for pipetting of low-viscosity high-vapor-pressure sol-

vents. However, supported liquid extraction media of both natu-

ral and synthetic origins have been introduced to provide a sor-

bent for the liquid-liquid extraction process to occur in an SPE-

like manner [74-76]. Novel pipetting systems have been devel-

oped to support formats typical for liquid handling footprints [77, 

78]. In either liquid or supported form, conditions should be op-

timized for the compound(s) of interest [56]. This can include 

testing individual solvents as well as solvent mixtures to achieve 

the most appropriate extract [79].   

Immunocapture is used in clinical assays for both small and 

large molecules. The execution of development of this approach 

is largely empirical, and a number of additional aspects must be 

accounted for, especially for proteins [80]. In protein analysis, 

the immunoassay approach of “bind very strongly” generally 

does not apply; the antigen should be released without much 

effort to measure it via MS. Yet, the affinity must be sufficient to 

enable adequate recovery, which is generally addressed via ex-

perimentation [81, 82]. Peptide capture following digestion also 

offers an opportunity for the utilization of immunoaffinity-capture 

preparations [83]. In protein analysis, it is important to attempt 

to control the variability of digestion, which may or may not be 

adequately controlled for, even with a labeled protein IS (as op-

posed to a labeled or winged peptide) [14, 84]. Specific method 

development considerations in the clinical context have been 

recently discussed [85]. Of importance in recommendations for 

protein analysis by bottom-up approaches is the need for post-

digestion peptide stoichiometry. Correlation of the absolute re-

coveries of multiple peptides after digestion is paramount in 

demonstrating assay quality [86, 87].   

Protein precipitation and simple dilution have also been ap-

plied to many clinical assays, either as a stand-alone prepara-

tion or combined with other techniques. Precipitants may in-

clude organic solvents, such as methanol, ethanol, or acetoni-
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trile, or may be aqueous-based, such as zinc sulfate, sulfo-

salicylate, or trichloroacetic acid [88-91]. Some variation in re-

covery due to precipitants has been noted and should be ac-

counted for in assay development [92]. Despite some rather 

pointed statements on the superiority of a solution for precipita-

tion, experimentation is necessary to determine the optimal 

conditions for the intended analyte [93].       

Modification of the measurand(s) can offer solutions to some 

challenges in assay development. Highly polar molecules can 

be derivatized to more lipophilic products, allowing for increased 

retention in reversed-phase LC [94]. Some compounds with 

poor ionization cross-sections, low collisional dissociation yields, 

or minimal transmission efficiency may benefit from derivatiza-

tion [95].       

Notable drawbacks exist in derivatization workflows. In some 

cases, diagnostic stereoisomers can be merged into a single 

molecule. This is observed with the derivatization of allo-isoleu-

cine and isoleucine; therefore, the confirmatory test for maple 

syrup urine disease requires a distinct preparation [96]. In other 

cases, derivatization can result in the formation of epimers from 

a single molecule, such as 4-phenyl-1,2,4-triazoline-3,5-dione 

derivatives of 1,25-dihdyroxy vitamin D [97]. A third concern for 

chemical modifications is that MS/MS fragmentation may result 

in the product ion being part (or whole) of the derivative. In this 

case, all derivatized compounds can produce the same product 

ion, significantly limiting the specificity ascribed to MS/MS dis-

sociation [98]. Experimentation in the development of chemical-

modification workflows must also include a thorough evaluation 

of process stoichiometry with consideration for elevations of 

compounds in the matrix, some of which may be unrelated with 

the pathology being evaluated. For example, to develop an 

amine derivatization procedure for detecting urea cycle disor-

ders, the recovery of the derivatives must be stressed over su-

pra-physiological amounts of amines in the sample. Testing in 

development of only ideal, “normal” samples can lead to incor-

rect test results in the intended population.  

For the extraction modes discussed above, it is possible to 

combine certain techniques to achieve adequate specificity and 

response. Certain assays are difficult to perform in a single ex-

traction mode that provides for a high-quality test result. Utiliz-

ing multiple steps to reach that quality answer may be indicated 

during assay development. Similar to selection of the SPE mo-

dality in contrast to the LC modality, consideration of orthogonal 

techniques when combining extraction procedures is recom-

mended.  

CALIBRATION MATRIX

The use of a human matrix in early method development is not 

required. Much of an assay can be fully developed using com-

mercially available neat materials. However, early introduction of 

the intended sample matrix is important. This is particularly true 

in the assessment of calibration materials. The Clinical Labora-

tory Standards Institute (CLSI) has detailed a hierarchy of matri-

ces for test articles used for calibration [99]. A calibration matrix 

preferably is commutable between assays, exhibits the same 

analytical properties as the matrix of interest, and is a readily 

available material. For many LC-MS/MS assays, it is difficult to 

achieve the most preferred solution (patient pool) with a known 

concentration of the analyte(s). In general, MS assays for en-

dogenous targets in routine analysis will utilize an analyte-de-

pleted matrix, synthetic matrix, or solvent-based standard 

schemes. Additives can be included in any of these materials to 

provide advantageous outcomes, such as preservatives for ex-

tended stability or binding partners for preventing adsorptive 

loss [14, 99, 100]. For exogenous analytes, a compound-free 

matrix is readily available from commercial sources or in-house 

with the intended preservative of the test sample. This may be 

important for compounds that metabolize quickly, such as co-

caine in whole blood, which requires constrained conditions for 

collection, transport, and storage for the analysis to be meaning-

ful [101]. 

The calibration matrix considerably influences assay quality. 

In an LC-MS/MS experiment, the only moment an absolute ac-

curacy of preparation is required is during calibration. The addi-

tion of an IS to sample aliquots (generally the first step in a pro-

cedure) is entirely about precision. The relative volumes of those 

two components (IS aliquot and sample aliquot) must precisely 

match the ratio of the calibration standards. After the IS and 

sample are combined, even imprecision in absolute recovery 

during sample preparation, injection, and ionization is con-

trolled. Only the calibration standards must be prepared with 

accuracy.  

Particular care should be taken in determining any differ-

ences between the calibration matrix and the samples to be an-

alyzed. Charcoal-stripped sera and especially, fully delipidized 

and double/triple-stripped materials, do not behave like human 

serum as many of the lipophilic molecules have been depleted. 

Similarly, a dialyzed calibration matrix may have a grossly re-

duced concentration of endogenous materials. Deviations of the 

calibration matrix from the human matrix may result in differen-

tial adsorptive loss, variable matrix effects observed in sample 
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preparation, changes in IS equilibration time, and disparate ion-

ization suppression between calibrators and specimens [102, 

103]. 

Adsorptive loss can be problematic and can influence the ac-

curacy of a calibration scheme and quality controls (QCs) for 

some compounds. Generally, adsorptive losses are a function of 

equilibrium such that accuracy may deviate from trueness at 

the same percentage across the range of concentrations [104]. 

Depending on the protocol and compound, various solutions 

have been established, from the addition of albumin (as a non-

specific binding partner), increasing solubility through alterna-

tive solvents (e.g., dimethyl sulfoxide), or pH modification or 

sonication during extraction steps to re-solubilizing the com-

pound into the liquid [105, 106]. In a fine example of creativity, 

Lame, et al. [107] undertook doping synthetic cerebral spinal 

fluid with rat plasma to preserve amyloid beta peptide solubility. 

The recognition that the sample matrix has the appropriate 

binding partners, yet the measurement is not influenced by the 

endogenous content demonstrates the power of LC-MS/MS.   

CALIBRATION CURVE CONCENTRATIONS

There are few prescriptive guidelines for the determination of 

the concentrations to be used to generate a calibration curve. 

The European Medicines Agency (EMEA) and US FDA have 

made recommendations for MS assays [108, 109]. The mini-

mum number of distinct standards to utilize (six according to 

both EMEA and US FDA) and the acceptance criteria for back-

calculated accuracy (15% at non-LLOQ values, 20% at the 

LLOQ according to both EMEA and US FDA) are explicit. How-

ever, these directives are designed for clinical trials involving 

new drug entities and may not be suitable for the intended use 

of diagnostic assays.  

These guidance documents indicate a number of compo-

nents. First, the calibration range should always include brack-

eted standards: one at the LLOQ and another at the upper limit 

of quantification (ULOQ). Values below the LLOQ (without a vali-

dated concentration factor) or above the ULOQ (without a vali-

dated dilution) should not be extrapolated as they would fall 

outside the quantitative limits. Additionally, the expanded allow-

able imprecision at the low end of measure acknowledges the 

heteroscedastic nature of LC-MS/MS analysis. It is recognized 

that such guidance is inconsistent with the approaches for the 

establishment of lower limits and upper limits of measurement 

intervals (LLMI and ULMI, respectively) defined by the CLSI 

EP17-A2 [110]. The approaches for limit of blank and limit of 

detection require the determination of values often less than a 

lowest calibrator, yet these values would intrinsically have 

greater error. This discrepancy is attributed to the CLSI guid-

ance documents being drafted for various types of assay tech-

nologies (e.g., LC-Ultraviolet detection, nephelometry, turbidity, 

and PCR), while the EMEA and US FDA documents provide 

specific recommendations for LC-MS/MS. The specific recom-

mendations are preferred as they account for intrinsic capabili-

ties and liabilities of the platform. Consequently, the LLOQ is 

equivalent to the LLMI, and the ULOQ is equivalent to the ULMI.   

One additional consideration in calibration curve point selec-

tion is the acknowledgement of non-linear ionization and detec-

tion in LC-MS/MS protocols. While the dynamic range of mod-

ern MS systems is substantial, it is not infinite. There are con-

straints of ionization and detection non-linearity, which differ be-

tween vendor and models of instruments and may differ on the 

same instrument over time. Additionally, carryover can be a lim-

iting factor in measuring many orders of magnitude. A reliable 

working range beyond a 2,000-fold difference between the 

LLMI and the ULMI is quite rare for LC-MS/MS. 

Table 2 includes examples of assays used in clinical diagnos-

tics with their measurands and calibration schemes [43-49]. 

Several pertinent observations can be made from the collected 

references. Not all assays require a large breadth of reportable 

values, as demonstrated by azothiopurine metabolite analysis 

[45]. The relatively limited number of calibrators in the plasma 

metanephrine assay may also indicate the clinical utility, where 

gross elevations generally represent a catecholamine-expressing 

tumor [46]. Including more standard curve points in that assay 

may improve the perception of quality, with minimal change in 

its function.  

Of interest is the relative placement of calibration points. No 

discernible relationship exists between the width of the mea-

surement range and how the points are distributed within the 

range. Some points within a range are serially diluted (2-fold), 

while others differ 2.5-fold within a single standard curve [43]. 

In another example, there is an order of magnitude between the 

LLMI and the next calibrator, while all following points are 5-fold 

different [46]. One assay modifies the IS concentration while 

maintaining a single analyte concentration [49]. This practice is 

mathematically acceptable; however, there may be significant 

noise/interference differences for lower analyte concentrations 

that are not accounted for in the regression equation. Finally, 

one candidate reference method has but a single calibration 

point [47]! Remarkably, all these assays have demonstrated va-

lidity, meaning that all are acceptable calibration mechanisms 
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for the assays’ intended purposes. Each assay yielded precision 

and accuracy across their claimed measurement range. How-

ever, for ease, some expectations for calibration points could be 

set forth. For LC-MS/MS assays, a calibration curve should:

1)  define exactly the lowest reliable quantity of measurement 

(i.e., the LLMI/LLOQ);

2)  define exactly the highest reliable quantity of measurement 

(i.e., the ULMI/ULOQ);

3)  identify regions of non-linearity due to source or detector 

saturation;

4)  improve calibration accuracy in regions of increased im-

precision.

Therefore, the LLMI, ULMI, and a point in a region just below 

the ULMI (i.e., 90% of the ULMI) would be necessary to assist 

in describing non-linearity and at least one point near the LLMI 

to assist in improved accuracy of the fit at the low end of mea-

sure.

In this calibration scheme, points of regression influence have 

been reduced. Notably, calibration standards in the middle of 

the calibration curve are not included. Should the calibration 

curve for an LC-MS/MS assay not generally be linear throughout 

the middle of the measurement range, the appropriate under-

taking would be in troubleshooting, not assay calibration. Addi-

tionally, it is recognized that this simple model is just that: a suf-

ficient calibration that can be executed with maximal analytical 

value and understood by most laboratory staff. Finally, it should 

be recognized that error determinations are not addressed in 

this model; QCs are the primary drivers for batch acceptance 

based on error in back-calculated concentrations.  

QCs

The utility of QCs in a clinical assay is prescriptively to assess 

performance. More specifically, it is to decide whether a batch 

passes or fails based on a quantitative recovery of an expected 

amount of molecule. In an acute sense, the pass/fail assess-

ment is important. However, QCs are also used to monitor drift 

in results over time. QCs can offer some additional benefit as a 

function of quality assurance monitoring in LC-MS/MS assays, 

but otherwise serve the same general purpose as in other diag-

nostic assays. However, the capability of LC-MS/MS assays to 

frequently provide matrix tolerance (in which variations from the 

Table 2. Comparison of calibration levels for multiple LC-MS/MS assays*

Reference [43] [44] [45] [46] [47] [48] [49]

Assay Whole blood cannabis T4 and T3 in tissue Thiopurine 
metabolites in red 
blood cells

Plasma 
metanephrines

Vitamin D in serum Steroids in serum Alpha fetoprotein in 
serum

Compounds THC, 11-OH-THC, 
THCCOOH, CBD, and 
CBN

T4 and T3 6-TGN and 6-MMPN  Met, Normet 25-OH-Vit D 3 Androstenedione, 
DHEA, and 
testosterone

AFP-L3

Calibrator
All analytes 

(ng/mL)
All analytes  

(ng/mL)
6-TGN 

(µmol/L)
6-MMPN 
(µmol/L)

Met  
(nM)

Normet 
(nM)

25-OH-Vit D 3  
(nM)

All analytes ng/L 
(pg/mL)

AFP-L3†  
(ng/mL)

1 0.5 0.2 0.5 5 0.04 0.08 25 50 0.051

2 1 0.5 2 20 0.4 0.8 100 0.256

3 2 1 4 40 2 4 250 1.28

4 5 2 6 60 10 20 800 6.4

5 10 5 8 80 50 100 1,200 32

6 20 10 10 100 2,000 160

7 50 20 800

8 100 50 4,000

9 250

Range (fold) 500 250 20 20 1,250 1,250 NA 40 80,000

*Note the diversity of quantity and distribution of standard curve points relative to the range measured; †Calibrator values are a relationship of a single analyte 
concentration with varying labeled peptide  internal standard concentrations.
Abbreviations: LC-MS/MS, liquid chromatography-tandem mass spectrometry; Met, metanephrine; Normet, normetanephrine; THC, tetrahydrocannabinol; 
11-OH-THC, 11-hydroxy-tetrahydrocannabinol; THCCOOH, 11-nor-9-carboxy-tetrahydrocannabinol; CBD, cannibidiol; CBN, cannabinol; T4, thyroxine; T3, 
triiodothryonine; 6-TGN, 6-thioguanine nucleotides; 6-MMPN, 6-methylmercaptopurine nucleotides; DHEA, dehydroepiandrosterone; AFP, alphafeto protein; 
NA, not applicable.
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intended test matrix can be utilized) provides some additional 

prospects in QC selection.  

The QC matrix should be the same as that of the intended 

analyte as much as possible for the assay in development. This 

refers to the unmodified matrix, not one that is charcoal-stripped 

or of synthetic origin. However, in certain cases, modifications 

are necessary to support the longitudinal aspect of QCs due to 

instability, insolubility, or endogenous presence of a molecule. 

As a function of method development, stability studies for the 

analyte of interest should be conducted as soon as possible. 

Time is the limiting factor for such studies. Attempts at “acceler-

ated stability” studies or exposure of stability samples to ele-

vated temperatures to gauge possible liabilities have been made 

[124-126]. However, accelerated stability analysis should be 

considered informative, not definitive, particularly in blood-

based matrices. For complex, enzyme-rich samples, assump-

tions of the Arrhenius equation may be confounded by factors 

such as temperature-dependent enzyme activities, the presence 

or generation of co-factors, and pH changes in the sample dur-

ing storage [127].

The determination of the optimal stability of QC materials is a 

matter of research and experimenting. For established assays, 

literature searches and exploration of sample shipping/storage 

constraints from other laboratories can be enlightening. For 

novel assays, it is recommended that a broad approach be 

taken in the initial stability evaluation. Various storage conditions 

(-70°C, -15°C, 2-8°C, ambient laboratory temperature) as well 

as additives (antioxidants, pH modifiers, enzymatic activity in-

hibitors, preservatives, buffers, and solvents) should be evalu-

ated. The fortification of pooled matrix and neat solvents to the 

same concentration, the addition of probable (and perhaps im-

probable) stabilizers to the samples, and allowing for the pas-

sage of time followed by comparative analysis is the only con-

clusive method for demonstrating the conditions for measurand 

stability.

The numbers of QCs and their concentrations vary broadly 

across the clinical assay landscape. Table 3 shows a compari-

son of selected LC-MS/MS assays with reported QC levels [12, 

50, 111-123]. Although the numbers and target concentrations 

for QCs are highly disparate, even for the same measurand, 

there are some similarities. All assays have at least two QCs. Ex-

cept for testosterone and vitamin D assays, at least one QC 

within five times the LLOQ/LLMI exists. Fig. 1 shows the fre-

quency of QCs to be placed in the quartiles of a calibration 

range after transformation of the analytical measurement range 

and QC values into a 100-point scale. For LC-MS/MS assays, it 

seems preferable to place QCs (and in some cases, multiple 

QCs) at the low end of the measure. As a performance metric, 

this is quite reasonable because of the heteroscedastic nature 

of MS/MS detection; systematic errors, which would affect assay 

performance, may be more pronounced at the low end than at 

higher response functions. Interestingly, one testosterone assay 

utilizes a separate QC when used for samples from women. It 

can be surmised that LC-MS/MS QCs should stress both analyti-

cal and clinical assay components. This might be taken as a 

tacit recommendation to place QCs near the LLOQ and at iden-

tified medical decision points. However, this may not be a 

meaningful approach because of diminishing returns in effi-

ciency. The use of excessive numbers of QCs can prevent the 

analysis of actual patient samples. Indeed, to assess just the 

possible number of QCs for matching medical decision points 

for testosterone in serum, the variety of diagnostic and treat-

ment-associated cutoffs would indicate more than 30 QCs to be 

utilized, spanning indications for osteoporosis, age-related hypo-

gonadism, polycystic ovarian syndrome, androgen-secreting tu-

mors, pathological hyperandrogenism, hirsutism, ovarian hyper-

thecosis, McCune-Albright syndrome, precocious puberty, ex-

posure to testosterone-containing medications, etc. [128-132].  

Concentrations of QCs deserve some thought. Certain assays 

have prescribed concentration targets. For example, the Na-

tional Laboratory Certification Program (NLCP), which oversees 

the Substance Abuse and Mental Health Services drug testing 

program in the USA, dictates that QCs, at a minimum, shall be 

at 40% and 125% of the cutoff used to define drug presence in 

urine for quantitative assays [133]. This approach focuses the 

QCs in an analytical region where the concentrations are fit for 

purpose. In the NLCP example, the presence of controlled sub-

stances in urine is, in practice, a qualitative determination. It 

matters little whether the concentration of 6-mono-acetyl mor-

phine, a definitive metabolite of heroin, in urine is 600 ng/mL or 

900 ng/mL, as the purpose of the test is to confirm substances. 

With the lack of explicit guidance from regulatory authorities or 

best practice recommendations from qualified organizations, 

when selecting where to place QCs, one should consider the 

ideals set by precedence. A QC that challenges the low end of 

measure, such as one at 3-fold the LLOQ as described in the 

US FDA Bioanalytical Method Validation Guidance, is highly 

valuable in low-end error detection [109]. At least one other QC, 

preferably in a region where clinical delineation occurs, is im-

portant. Discussions with clinicians as to what levels are mean-

ingful are highly appropriate. 

Lastly, special-use cases for QCs do often occur. One of the 



Rappold BA
LC-MS/MS use in clinical laboratories

https://doi.org/10.3343/alm.2022.42.2.121 www.annlabmed.org  131

most broadly used MS/MS assays is newborn screening based 

on dried blood spots. These assays are typically semi-quantita-

tive at best, particularly for acyl-carnitine/amino-acid species 

that are isobaric and/or for which standard materials are not 

available. In this case, as well as other multi-index analyses, a 

QC scheme may benefit from the addition of clinical controls. 

These controls have known diagnoses and the samples are in-

terpreted for both analytical and clinical reproducibility. This ap-

proach has been adopted for proficiency testing schemes [134].

UNDERSTANDING MATRIX EFFECTS

Matrix effects is a term used for a number of different inci-

dences in LC-MS/MS workflows. Commonly, it refers to ioniza-

tion suppression or enhancement in patient samples relative to 

the solvent matrix. It should also encompass all matrix-induced 

Table 3. QC values and AMR for selected LC-MS/MS assays reported in the literature

Assay Analyte QC1 QC2 QC3 QC4 LLOQ ULOQ Unit Reference

Thyroglobulin in serum Thyroglobulin 3.8 5.5 22.3  NA 2 20 ng/mL [111]

7.1 23.7 57.4  NA 0.8 100 [112]

2.3 6.5 172.8  NA 0.5 1,045 [113]

0.1 0.5 4  NA 0.02 20 [114]

Testosterone in serum Testosterone 0.44 12.11 37.34 0.86* 0.035 69.34 nM [115]  

0.415 7.23 NA NA 0.0346 138.4 [116]

E1 and E2 in serum Estrone (E1) 3 30  NA  NA 1.2 156.8 pg/mL [117]

7.82 16.71 77.17 208.93 5 200 [118]

Estradiol (E2) 1.5 22.5  NA NA  1.3 56.5 pg/mL [117]

8.37 17.92 77.28 205.8 5 200 [118]

25-OH Vitamin D in serum 25-OH Vitamin D3 27 118 209  NA 25 545 nM [50]

55 87 NA  NA  5 316 [119]

31 62 125  NA 1.2 211 [120]

25-OH Vitamin D2 36 120.5 205 NA  25 545 nM [50]

52 76 NA  NA  4 250 [119]

30 61 121 NA  1.2 205 [120]

Immunosuppressants in whole blood Tacrolimus 1.9 46.7 97.3  NA 0.5 150 ng/mL [121]

2.9 7.6 16 34 0.6 44.7 [122]

5 15 40  NA 1 50 [123]

Sirolimus 1.9 24 76.9  NA 0.5 100 ng/mL [12]

2.7 10 20 40 0.6 51.4 [122]

5 15 40  NA 2.5 50 [123]

Cyclosporine A 50 250 480 1,120 11.6 1,850 ng/mL [122]

50 800 1,600  NA 10 2,000 [123]

Everolimus 2.6 5 10 34 0.6 46.3 ng/mL [122]

5 15 40  NA 2.5 50 [123]

*QC4 is used only when assaying samples from females.
Abbreviations: LC-MS/MS, liquid chromatography-tandem mass spectrometry; QC, quality control; LLOQ, lower limit of quantification; ULOQ, upper limit of 
quantification; AMR, analytical measurement range; NA, not applicable.

Fig. 1. Distribution of QCs shown in Table 3 as a function of their 
placement within the quartiles of the calibration range, indicating a 
preference for QCs to be placed in the lower quartile of the mea-
surement interval. The two QCs with reported concentrations above 
the AMR were within 15% of the upper limit of quantification.
Abbreviations: QC, quality control; AMR, analytical measurement range. 
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variations in measured response that may occur during sample 

preparation or chromatography. Ionization matrix effects have 

been extensively reviewed [135]. Solutions to resolve ionization 

matrix effects include switching from electrospray to atmo-

spheric pressure chemical ionization or electron ionization, 

modification of the extraction procedure, introduction of an in-

line trapping column for lipidaceous ionization suppressors, or 

preparative depletion techniques [136-140]. Each solution has 

its drawbacks. For example, a molecule may not sufficiently ion-

ize in an alternative modality to generate appropriate signal (if 

any at all). Phospholipid depletion may result in the loss of the 

target compound(s). The experimental design should account 

for unintended consequences while trying to manage matrix ef-

fects.  

From our experience, the most reliable way to resolve ioniza-

tion matrix effects is to increase chromatographic resolution. 

Provided the analytes are sufficiently retained (≥three void vol-

umes), modifying the amount of strong solvent delivered over 

time is a simple experiment. This is achieved by lowering the 

pitch of the LC gradient and extending the run-time, though ad-

ditional isocratic steps prior to the gradient may also serve to re-

solve suppressing analyte species [141]. When optimal solvent 

conditions have already been determined based on response 

function, it is not recommended that broad pH changes be uti-

lized to affect the necessary resolution. Rather, additional col-

umn screening or an orthogonal sample preparation technique 

is preferred. 

Of interest is the degree to which ionization suppression/en-

hancement is acceptable in an assay. We have heard various 

claims, ranging from 15% maximum allowable change from 

solvent to matrix to 80% allowable suppression or 200% en-

hancement. Some component of expectation should be derived 

from the laboratory’s standard operating procedure for the as-

says in use. If the laboratory typically accepts samples that have 

an IS recovery of 50%-150% compared with the calibrators/QCs 

in the same batch, that would be a bare minimum in method 

development. It should be noted that method development is 

often performed in a different manner than routine analysis, and 

tighter allowance criteria in the developmental stage may culti-

vate ruggedness in an operational assay. 

The other analytical steps in which matrix effects are to be 

considered are sample preparation and chromatography. In 

sample preparation, a primary concern is the effect of binding 

partners for the analyte and the IS. Such binding may induce 

recovery differences in an extraction where the IS is not allowed 

to equilibrate fully prior to extraction, leading to an over-recovery 

of the IS relative to the analyte [16, 17]. Analytes with known 

specific and high-avidity binding partners are susceptible, as 

are compounds with non-specific binding. To determine this ef-

fect in sample preparation, time-course studies are utilized. For 

exogenous measurands, the analyte can be fortified to a mean-

ingful concentration and allowed to equilibrate with the matrix 

for some hours or days, depending on stability. For endogenous 

compounds, a sample with a measurable amount of compound 

is sequestered. The IS is added to replicates of these samples, 

and the samples are extracted at timed intervals. Area ratios are 

assessed for reproducibility across the time points, with careful 

review of the absolute response of the analyte and taking the IS 

into account. Temperature deviations from laboratory normal 

(either warmer or colder) may be utilized to accelerate the equil-

ibration of the IS with the analyte. It should never be assumed 

that an extraction approach fully releases bound analyte or that 

full equilibrium between the analyte and IS have occurred. Ad-

ditionally, there is substantial diversity of possible unrelated pa-

thologies affecting non-specific binding in a patient sample. Un-

less the extraction process has been experimentally proven to 

free any bound fraction and/or reach equilibrium with the IS, 

few assumptions should be made.  

Chromatographic observations of matrix effects are commonly 

associated with deviations in observed peak shape due to mass 

overload [142, 143]. Mass overload is simply having too many 

solutes for the available capacity of the stationary phase. Nota-

bly, deformations in peak shape can result from not only an ex-

cess of the analyte being detected, but also other analytes that 

are in competition for access to the stationary phases. It is not 

uncommon to observe reduced retention times, severe tailing, 

and excessive peak broadening as a function of mass overload 

when compared with the measurand(s) in neat solution. In 

cases where sample dilution is limited (e.g., <4-5-fold) and the 

sample is not purified (e.g., in protein precipitation), testing of 

numerous samples is essential to understand the frequency 

and effects of mass overload.  

All three sources of matrix effects (ionization, sample prepara-

tion, and chromatography) should be evaluated prior to the 

completion of method development. Assessment of ionization 

suppression is typically the first and longest experiment, though 

easily achieved through measurement of IS response differ-

ences between crude matrix extracts and neat solvents during 

LC development. IS equilibration studies should be performed 

at the beginning of sample preparation development. Chromato-

graphic matrix effects can be stressed as a function of LC devel-

opment, provided that a sample of sufficient complexity and 
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concentration of non-measurands is available.  

OPTIMIZATION

The optimization of MS assays in the context of LC-MS/MS as-

says can be difficult in that it applies to numerous features, 

some of which are diametrically opposed. Take for example the 

optimization of an assay with a drug and its metabolite. For phil-

osophical purposes, assume that the drug has a relatively poor 

ionization cross-section and a very short half-life, while the me-

tabolite has a very high ionization cross-section and is very long-

lived. The assay may require that the drug be analyzed at a 

range 100-fold lower than the metabolite. Optimization of the 

drug may imply that a maximum signal is generated, whereas 

“optimization” of the metabolite may require sub-optimal set-

tings to prevent source saturation or detector blinding such that 

both compounds can be measured from a single preparation/

injection.  

Thus, MS optimization is more than “achieving the highest 

signal,” although that can be a target goal. Optimization may 

also include addressing process efficiency, reducing possible 

error rates, removing noise in raw data, increasing ruggedness, 

or improving throughput. Given the breadth of instrument mod-

els and intended uses, specific recommendations based on the 

literature cannot be made. However, some approaches in the 

literature are consistent.  

MS parameters are the focus of many optimization workflows; 

sample preparation and LC optimization references are included 

in the above sections. Gas flow rates/pressures, temperature, 

collision energies, ion optics energies, and probe voltage/posi-

tions are all modifiable components [144-146]. Both single-

variable (one variable at a time) and more complex approaches 

have been reported [147, 148]. There are pros and cons to 

both approaches, and either approach may yield meaningful 

changes in response of noise or analyte. Care should be applied 

to whichever approach taken as there are variables that are 

highly coordinated in MS analysis [149]. For example, the most 

appropriate collision energy at one collision cell pressure can be 

very different at another collision cell pressure. When planning 

optimization experiments, one should consider interactions be-

tween the variables being assessed.  

It may be appropriate to offer one small tip based on our own 

optimization protocols. For each transition of interest, it is possi-

ble to assign multiple values of an MS parameter and perform a 

single injection. Fig. 2 demonstrates the optimization of lysine in 

human plasma as a component of a broader panel. The same 

neutral loss is being explored as a function of this analysis; the 

mass difference in the product ion scan forces the software to 

discretely analyze each transition with the assigned compound-

dependent parameter. The goal of this optimization experiment 

was to lower the response of lysine without affecting other ana-

lytes co-measured. A reduction in the collision energy from the 

optimal provides a response that is within the linear range of the 

detector.    

Optimization of compound-specific parameters in this man-

ner can be highly useful for compound/transition-dependent 

parameters. First, it resolves concerns about injection variance 

contributing to response modifications. Second, objective con-

clusions can be reached visually without further data reduction. 

Third, it is an efficient use of both sample and instrument time 

relative to replicate injections with parameter variations. Note, 

however, that global parameters (e.g., collision cell base pres-

sure or temperature) do not respond with the same switching 

speed as electronics but require slower evaluations.  

CONCLUSION

We discussed aspects of sequestering test materials, establish-

ing MS parameters, developing a chromatographic separation, 

implementing sample preparation, selection of calibration and 

QC materials/concentrations, and managing matrix effects in 

the development of LC-MS/MS assays. These items have been 

listed in Table 4 as a method development checklist, approxi-

Fig. 2. LC-MS/MS analysis of lysine showing the same neutral loss 
(63 Da) with variations in CE in the same injection. The subtle mass 
offset of 0.001 in the product ion allows the software to treat each 
transition independently.
Abbreviation: LC-MS/MS, liquid chromatography-tandem mass spectrome-
try; CE, collision energy; cps, counts-per-second
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mating to a high degree what goes into the development of an 

assay. There may be distinct challenges that are not mentioned 

in this review and may well go unmentioned in all of literature. 

Perhaps the novelty of discovering and mitigating those chal-

lenges are among the most rewarding scientific ventures. 

Knowledgeable experimental design informed by all the vari-

ables in an LC-MS/MS system can lead to better testing for pa-

tients when such challenges are observed and subsequently 

mitigated.

We did not address the components of pre-validation or vali-

dation studies. We also did not discuss the actual process of 

how to institute an assay for production and keep it going for 

many years. These are essential components to the execution of 

LC-MS/MS in clinical laboratories and will be introduced in part 

2 of this review series.

In closing, the canvas on which LC-MS/MS assays can be 

painted is constrained by very few imposed limitations. As such, 

the opportunity to design highly efficient and high-quality assays 

is only within the boundaries of scientific creativity and, impor-

tantly, data to support the application of such assays on patient 

samples. The papers referenced herein offer only a brief de-

scription of the possible path to achieve quality work; much is 

left to the scientists performing the development. To that end, 

we offer the wish and advice of “good luck and work hard” to 

the reader.
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