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Automating sleep stage classification using wireless,

wearable sensors

Alexander J. Boe'?%, Lori L. McGee Koch'*%, Megan K. O’Brien
Kathryn J. Reid®, Phyllis C. Zee® and Arun Jayaraman'**

' Nicholas Shawen'”, John A. Rogers®, Richard L. Lieber @**”,

Polysomnography (PSG) is the current gold standard in high-resolution sleep monitoring; however, this method is obtrusive,
expensive, and time-consuming. Conversely, commercially available wrist monitors such as ActiWatch can monitor sleep for
multiple days and at low cost, but often overestimate sleep and cannot differentiate between sleep stages, such as rapid eye
movement (REM) and non-REM. Wireless wearable sensors are a promising alternative for their portability and access to high-
resolution data for customizable analytics. We present a multimodal sensor system measuring hand acceleration,
electrocardiography, and distal skin temperature that outperforms the ActiWatch, detecting wake and sleep with a recall of 74.4%
and 90.0%, respectively, as well as wake, non-REM, and REM with recall of 73.3%, 59.0%, and 56.0%, respectively. This approach will
enable clinicians and researchers to more easily, accurately, and inexpensively assess long-term sleep patterns, diagnose sleep
disorders, and monitor risk factors for disease in both laboratory and home settings.
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INTRODUCTION

Sleep is a complex physiological state influencing the homeostasis
of brain function, autonomic nervous system (ANS) organization,
and circadian rhythms.'? Sleep duration and temporal cycling of
sleep stages, including rapid eye movement (REM) and various
non-REM stages (NREM), heavily influence both objective and
subjective sleep quality.> Accurately mapping these elements of
sleep architecture is crucial for identifying non-restorative sleep,
diagnosing sleep disorders, and exposing symptoms that are
related to cardiovascular, neurological, and psychosomatic
conditions.*”

At present, the gold standard technique for assessing sleep
quality and state is laboratory polysomnography (PSG), which
utilizes a combination of electroencephalography (EEG), electro-
cardiography (ECG), electrooculography (EOG), and electromyo-
graphy (EMG) to identify sleep stages, wake/arousals, and
ANS-based sleep changes. Laboratory PSG requires a dedicated
physical space to conduct sleep assessments, as well as an on-site
overnight staff to apply and monitor a plethora of wired and
wireless physiological sensors and to evaluate the integrity of
acquired data. Registered sleep technicians visually score PSG data
post hoc in 30-s epochs to determine sleep stages.® Critically, the
financial costs and resource burden associated with PSG data
acquisition, the subsequent scoring of sleep records, and the
discomfort to patients can outweigh the benefit of this system'’s
high accuracy’ and limit its potential for long-term sleep
assessment.

Wrist actigraphy (WA) is traditionally used to assess long-term
sleep quality, differentiating between sleep and wake to compute
total sleep time, sleep efficiency, and instances of wake after sleep
onset. WA devices are wireless, portable, and can be worn in a
free-living environment. These devices infer sleep and wake via an

accelerometer to detect the presence or absence of movement;
however, they tend to have reduced sensitivity to wakefulness
and thus inaccurately compute some metrics of overnight sleep
quality, such as overestimating total sleep time®'" and under-
estimating sleep onset latency (the time required for transition
from wake to sleep).'? These metrics are used to compute an
overall sleep efficiency, defined as the ratio of total sleep time to
the amount of time in bed, with lower sleep efficiency
corresponding to more time spent awake and poorer sleep
quality. Importantly, the accuracy of actigraphy is reduced further
for populations with an already low sleep efficiency, likely owing
to the greater time spent awake by these populations and the
reduced sensitivity to wake in WA devices.'""® WA is often
accepted in sleep research to objectively measure sleep in various
healthy and patient populations, despite these limitations and
without rigorous validation for individuals with limited upper limb
mobility (e.g., stroke). Indeed, their dependence on acceleration-
based movement alone suggest that they are unreliable to
quantify sleep for populations with impaired or pathological
movement patterns.'”

In addition to the amount of movement, there are physiological
mechanisms that change with wake and the different stages of
sleep. These mechanisms reflect activity of the ANS,'> '8 which
regulates involuntary body functions such as respiration or heart
rate. For example, distinct cardiovascular and thermophysical
changes occur during sleep that is indicative of each sleep stage.
Non-REM sleep is characterized by decreased heart rate, blood
pressure, and blood flow to peripheral areas in the body, as well as
an increased skin temperature and decreased core temperature. In
contrast, REM sleep is characterized by fluctuating cardiovascular
activity'® owing to modulations in sympathetic and parasympa-
thetic system contributions in the ANS. Consequently,
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physiological changes during REM sleep include increased heart
rate and less-efficient thermoregulation.'®™' Developing a system
to accurately and continuously measure sleep architecture
requires a fundamental trade-off between collecting enough
relevant movement and physiological data to identify different
sleep stages and ensuring that the system remains portable,
ubiquitous, unobtrusive, and user-friendly.

State-of-the-art wireless, wearable sensors can adhere to the
skin, flex around body contours, and collect multiple data
modalities simultaneously. These devices enable continuous
monitoring of health and disease states, including remote
measurement of physical activity,?® vital signs,>® motor control
symptoms of disease,®® and detection of falls.® For specific
applications in sleep monitoring, previous work has demonstrated
automatic classification of sleep staging using multimodal sensor
systems and machine learning, but many of these approaches still
incorporate intrusive measures from the PSG?°?® or respiratory
inductance plethysmography.”®3° Advanced wireless sensor
technologies enable less-obtrusive access to physiological vari-
ables of interest, which may improve performance of machine
learning classifiers that automatically identify sleep and sleep
stages without negatively affecting sleep quality.

In this work, we propose a novel wireless and flexible sensor
system that collects accelerometer, ECG, and skin temperature
signals to determine sleep architecture with minimal intrusion. We
applied machine learning techniques to classify sleep stages in
healthy young adults, validated against PSG, and compared the
performance of this system with WA and other state-of-the-art
sleep classification using wireless sensors.

RESULTS
Overnight sleep quality and gold standard sleep stage from PSG

Data from the proposed sensor set, the ActiWatch, and a PSG
system were collected from a full night of sleep for 11 healthy
young adults. A trained technician scored the PSG recordings as
being wake (time from lights off until sleep onset, or scored
awakenings during the night until time of lights on), NREM1 (stage
1 non-REM sleep), NREM2 (stage 2 non-REM sleep), SWS (slow
wave sleep, stage 3 non-REM sleep), or REM sleep. NREM1 and
NREM2 are considered light sleep, whereas SWS is considered
deep sleep. Overnight sleep quality for the study participants is
summarized in Table 1. Sensor data were labeled based on
accompanying PSG sleep stage scores and then segmented into
two-minute clips. Features were computed for each data clip and

Table 1. Participant characteristics and PSG sleep architecture
measures.

Sleep quality metric Mean (SD)
PSQI Global Score 3.7 (2.7)
Total sleep time (min) 425.75 (32.6)
Sleep efficiency (%) 88.9 (6.8)
Sleep onset latency (min) 15.1 (11.4)
Latency to persistent sleep (min) 25.8 (23.5)
WASO (min) 29.5 (23.7)
Stage 1 (%) 4.4 (1.8)
Stage 2 (%) 51.6 (8.6)
Stage SWS (%) 27.0 (7.7)
REM sleep (%) 16.9 (6.5)
REM latency (min) 194 (89.2)

PSQI Pittsburgh Sleep Quality Index, WASO wake after sleep onset, SWS
slow wave sleep, REM rapid eye movement
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used to train population-based bagging decision tree classifiers.
Performance of the bagging classifier was compared with that of
the ActiWatch and to various alternative machine learning models
described in the Supplementary Methods, Supplementary Table 1,
and Supplementary Fig. 1. Personal models were also tested to
evaluate the ability to classify sleep stages based on an
individual’s own data.

ActiWatch often misclassifies periods of wake as sleep

The ActiWatch outputs an automated sleep vs. wake classification
in 30-second clips. The classifications from ActiWatch were
compared with the corresponding PSG label, thereby evaluating
the reliability of the WA control device against the gold standard.
Across participants, the ActiWatch was able to recall an average of
96.4 + 0.88% of sleep epochs, but only 38.5 + 19.2% of wake (Fig. 1).

Proposed sensor system improves sleep stage classification
Bagging classifiers were built for three different resolutions of
sleep staging:

® Two-stage wake vs. sleep (PSG stages NREM1, NREM2,
SWS, REM).

® Three-stage wake vs. NREM sleep (PSG stages NREM1, NREM2,
SWS) vs. REM sleep.

® Four-stage wake vs. light sleep (PSG stages NREM1, NREM2) vs.
deep sleep (PSG stage SWS) vs. REM sleep.

Performance of these classifiers is shown in Fig. 2. The two-
stage model correctly identified wake and sleep for 74.4 + 23.7%
and 90.0+7.1% of clips, respectively (Fig. 2a). For three-stage
resolution (Fig. 2b), most confusion for the classifier was between
NREM and REM sleep stages, while the classification performance
of wake remained mostly intact. The classifier shows a moderate
amount of predictive power for discerning whether sleep is REM
or NREM, as shown by the area under the receiver operating
characteristic (AUROC) values > 0.5. The four-stage resolution (Fig.
2¢) performs relatively poorly, over-predicting the light sleep stage
and showing low generalizability across subjects, but retains a
wake recall similar to the three-stage model. This approach
substantially outperforms the ActiWatch for predicting wake at all
resolutions. The bagging model was the best-performing popula-
tion model explored in this study (Supplementary Table 2).

Personal models developed from a similar bagging classifier
approach notably improved performance for the four-stage
resolution (Supplementary Fig. 2). On average, personal models
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Fig. 1 Performance of ActiWatch wrist sensor. Confusion matrix
for the ActiWatch in a two-stage resolution, depicting average
classification rate of wake and sleep stages. The ActiWatch
demonstrated high recall of sleep (high sensitivity) but often
misclassified Wake as sleep (low specificity).
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Fig. 2 Performance of a bagging decision tree classifier for different sleep staging resolutions. Confusion matrices (top), Receiver
Operating Characteristic (ROC) curves (middle), and interquartile range (IQR) plots of model performance (bottom), obtained from leave-one-
out cross-validation subject, for a two-stage wake vs. sleep classification, b three-stage wake vs. NREM vs. REM classification, ¢ four-stage wake
vs. light vs. deep vs. REM classification. ROC curves show the trade-off between sensitivity and specificity for a given model across subjects
(line: mean; shading: standard deviation). Area under the ROC curve (AUROC) is listed for each stage; a value of 1.0 denotes a perfect classifier,
whereas a value of 0.5 denotes a classifier that performs no better than random and has no predictive power. IQR plots illustrate how well the
model generalizes across subjects, with smaller ranges indicating good performance and high generalizability irrespective of the subject
(center line: median; box limits: upper and lower quartiles; whiskers: 1.5 X IQR; points: outliers).

correctly identified wake, light, deep, and REM sleep in 69.5%,
47.8%, 67.2%, and 57.9% of clips, respectively, with most
confusion occurring between the light and deep stages.

Effect of sensor location

To facilitate practical implementation of sleep monitoring with
wearable sensors, we sought to minimize the number of sensors
needed to maintain performance of the sleep stage classifier.
Different location subsets of the proposed sensors were selected
and tested for each model resolution using the bagging classifier.
The subsets were chosen systematically to test the contribution of
various sensors to overall classification performance and to group
the sensors in as few body locations as possible for future device
development. Each subset and its average AUROCs are provided
in Table 2. The minimal sensor configuration required to maintain
classifier performance in the two-, three-, and four-stage models
was a single accelerometer (non-dominant), hand skin tempera-
ture (non-dominant), and ECG. The AUROCs for this minimal
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sensor set in the three-stage model to identify wake, NREM, and
REM were 0.88+0.15, 0.77 £0.14, and 0.65+0.15, respectively,
whereas the AUROCs for the full 13 sensor set was 0.90+0.11,
0.74+0.13, and 0.66 £0.19. All analyses are shown using this
minimal sensor set to directly illustrate its utility.

Removing skin temperature as a sensor modality reduced
performance for detecting wake (AUROC 0.83 +0.17). Using only
acceleration or only hand temperature decreased performance for
detecting all three stages, whereas using only ECG decreased
performance for detecting wake and NREM, but not REM.

Effect of training sample size

To estimate the performance impact of increasing the sample size,
the data set was reduced to only two subjects. The data set size
was incrementally increased by one until all subjects were again in
the data set, evaluating the classifier AUROC and its standard
deviation at each number of subjects (Fig. 3). This shows a
performance increase as subjects are added, through an increase
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Table 2. Mean (SD) AUROC for different subsets of the proposed sensor system for the two-, three-, and four-stage resolution models.
Sleep stage ACC, ECG, ACCND, ECG, ACC ND, ECG, all ACC ND, ECG, ACC ND, ACC ND, ECG ACCND  ECG Hand
TEMP (all)  all distal proximal TEMP Chest TEMP ECG, hand TEMP ND
TEMP (single proximal TEMP ND
sensor), hand
TEMP ND (single
distal sensor)
Wake (2-stage) 0.89 (0.12) 0.86 (0.16) 0.84 (0.15) 0.87 (0.16) 0.87 (0.16) 0.85 (0.14) 0.82 (0.19) 0.72 (0.21) 0.71 (0.16)
Sleep (2-stage) 0.89 (0.12) 0.86 (0.16) 0.84 (0.15) 0.87 (0.16) 0.87 (0.16) 0.85 (0.14) 0.82 (0.19) 0.72 (0.21) 0.71 (0.16)
Wake (3-stage) 0.90 (0.11) 0.87 (0.15) 0.84 (0.16) 0.87 (0.16) 0.88 (0.15) 0.83 (0.17) 0.81 (0.18) 0.67 (0.24) 0.72 (0.17)
NREM (3-stage) 0.74 (0.13) 0.75 (0.13) 0.75 (0.12) 0.76 (0.13) 0.77 (0.14) 0.76 (0.11) 0.68 (0.11) 0.71 (0.12) 0.58 (0.15)
REM (3-stage) 0.66 (0.19) 0.62 (0.17) 0.63 (0.16) 0.64 (0.15) 0.65 (0.15) 0.65 (0.15) 0.45 (0.13) 0.68 (0.11) 0.50 (0.14)
Wake (4-stage) 0.90 (0.11) 0.87 (0.15) 0.85 (0.14) 0.88 (0.14) 0.89 (0.13) 0.85 (0.14) 0.82 (0.18) 0.70 (0.24) 0.71 (0.17)
Light (4-stage) 0.53 (0.10) 0.57 (0.09) 0.56 (0.09) 0.58 (0.10) 0.58 (0.10) 0.57 (0.10) 0.58 (0.05) 0.59 (0.09) 0.51 (0.08)
Deep (4-stage) 0.71 (0.10) 0.70 (0.09) 0.68 (0.09) 0.70 (0.09) 0.71 (0.09) 0.70 (0.09) 0.64 (0.10) 0.65 (0.11) 0.57 (0.11)
REM (4-stage)  0.68 (0.15) 0.65 (0.14) 0.66 (0.14) 0.67 (0.13) 0.67 (0.14)  0.68 (0.13) 0.47 (0.09) 0.70 (0.10) 0.49 (0.13)
ACC accelerometer, ECG electrocardiography, TEMP skin temperature, ND non-dominant side
The minimum sensor set is presented in bold
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Fig. 3 Effect of number of training subjects on model performance. Mean and standard deviation (shading) of AUROC for a wake, b NREM,
and ¢ REM classes in the three-stage bagging classifier model. The gradual increase in AUROC for each class suggests that a training set larger

than N=11 would continue to improve classification performance.

in AUROC and a decrease in the standard deviation of the AUROC.
Performance does not appear to plateau as subjects are added
back into the training set, indicating that the inclusion of more
subjects will likely continue to improve performance.

Comparison with other work

We compared our two-stage findings from the proposed sensor
system and the ActiWatch to that of five previous studies using
wireless, wearable sensors to automatically detect sleep and wake
(Table 3). These studies have recorded accelerometry, gyroscope,
ECG, plethysmography (PPG), actigraphy, and skin temperature
data. Our approach yields the highest specificity (detection of
wake) and a slightly lower, though comparable, sensitivity
(detection of sleep).

Results from other recent wearable sensor studies examining
higher resolution sleep staging or alternative formulations of stage
discrimination are summarized in Supplementary Table 3. The
best-performing four-stage model in recent work is from Beattie
et al,’’ using a wrist-worn device collecting PPG and ACC with a
linear discriminant classifier. This study obtained classification
accuracies of wake: 69.3%, light: 69.2%, deep: 62.4%, and
REM: 71.6%.
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DISCUSSION

The sensor technology and machine learning approach employed
in this study is a less invasive and lower cost method of sleep
monitoring compared with the gold standard PSG system. A
portable, automated system that can detect high-resolution sleep
stages would significantly reduce the time for equipment setup
and manual epoch scoring, as well as the financial costs for
equipment, space, personnel, and training for overnight monitor-
ing and subsequent scoring. Our minimal proposed sensor system
—measuring accelerometer and skin temperature from the non-
dominant hand, and ECG from the chest—outperformed the
ActiWatch for classifying restful wake (proposed system 74.4% vs.
ActiWatch 38.5%), with slight reduction in performance for
classifying sleep (proposed system 90.0% vs. ActiWatch 96.6%).
Our approach also yielded the best average performance for
classifying wake compared with other studies of wireless sensors
for sleep detection. Improved detection of wake would allow
clinicians and researchers to compute more-accurate metrics of
sleep quality from wireless body-worn technology, such as sleep
onset latency, total sleep time, and occurrences of wake after
sleep onset.

This approach also demonstrates potential for higher resolution
sleep stage monitoring than a traditional wrist-worn actigraphy
device. In a three-stage resolution model, the minimal proposed

Scripps Research Translational Institute
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Table 3. Comparison of current study results (proposed sensor set and ActiWatch) to previous wearable sensor work.
Study Sensor modalities Subjects Model Specificity Sensitivity
(detection of wake) (detection of sleep)
Proposed System ACC ND; ECG; Hand 11 Bagging classifier; 51 features extracted 74.4% 90.0%
TEMP ND from 2 min epochs

Beattie et al.>' ACC; PPG 60 Linear discriminant classifier; 54 features 69.3% 94.6%
extracted from 30s epochs

Aktaruzzaman et al.**  ACT: ECG 18 Support vector machine classifier; 4 54% 81%
features extracted from 7 min epochs

De Zambotti et al.**  PPG; ACC; 41 Proprietary algorithm by OURA Ring (Oulu, 48% 96%

Gyroscope; TEMP Finland); direct comparison between wake/

sleep output and PSG for each 30 s epoch

Fonseca et al.*® ACC; PPG 152 Linear discriminant classifier; 54 features 58.2% 96.9%
extracted from 30s epochs

Razjouyan et al.*® ACC; ACT 21 Threshold optimized by accuracy rate for ~ 53.4% 94.9%
wake/sleep score; based on 1 min epochs

ActiWatch ACT 11 Built-in threshold for wake/sleep score; 38.5% 96.4%
based on 30s epochs

Bolded rows indicate results from the current study

sensor system classified wake, NREM, and REM with 73.3%, 59.0%,
and 56.0% recall, respectively, with positive predictive power for
each stage (AUROCs>0.5). Although a four-stage resolution
model showed a lack of generalizability and a preference for the
majority class (light sleep), personal models more effectively
identified wake, light, deep, and REM sleep, with 69.5%, 47.8%,
67.2%, and 57.9% average recall. Additional training data for the
population-based models would likely improve classification of
the three-stage and four-stage resolution models for reliable sleep
stage monitoring.

We found the minimum number of sensors to maintain
classification performance was five (one tri-axial accelerometer,
three ECG sensors, one skin temperature sensor), significantly
reduced from 13 sensors. This minimal sensor set offers a middle
ground between ActiWatch and PSG, exhibiting improved
performance over the ActiWatch with notably less intrusion than
the PSG. To further improve the feasibility of this system for long-
term, portable, and user-friendly monitoring, different sensor
modalities can be packaged into a single wrist- or hand-worn
system, measuring acceleration, skin temperature, and replacing
ECG with PPG. Also, provided that additional data would improve
model accuracy, performance of the three- and four-stage
classifiers could be improved to lessen the performance disparity
between the PSG and the proposed sensor set.

Including skin temperature data generally improved classifica-
tion of restful wake. Although core body temperature is more
closely tied to sleep, circadian rhythms, and ANS regulation than
skin temperature,®” current methods to measure core temperature
are intrusive (i.e,, rectal or vaginal thermometers). Nevertheless,
the distal-to-proximal skin temperature gradient is a good
predictor of sleep initiation,*®> as an indirect measure of distal
heat loss. Whereas proximal skin temperature follows the same
circadian time-course as core temperature, decreasing to prepare
for sleep and increasing to prepare for wake* distal skin
temperature follows the reverse pattern and represents vasodila-
tion and heat loss at distal regions of the body that promotes
sleep onset.>> Although we computed distal-to-proximal tempera-
ture gradient (DPG) features when testing the full sensor set, distal
temperature from a single sensor at the hand was sufficient to
maintain model performance. A possible explanation is that the
distal skin temperature is a more direct indicator of the drop in
core body temperature, and the large temperature changes
peripheral body that accompany sleep onset®>=° outweighed the
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contributions of proximal skin temperature during the machine
learning process. We tested a distal sensor at the hand to consider
whether this modality could be paired with accelerometer. Indeed,
it improved classification of sleep and wake over accelerometer
alone or accelerometer and ECG.

The primary limitation of this study is the small sample size.
Traditional machine learning models and neural networks perform
best when a large amount of training data are used to adequately
learn the underlying data trends.’” Though the model held
predictive power for detecting sleep and wake (two-stage
resolution), classification of additional sleep stages (three- and
four-stage resolution) was limited, likely owing to the more subtle
physiological changes and intersubject variability that occurs in
NREM and REM sleep. As shown in Fig. 2 (bottom panel), the range
of AUROC for detecting sleep in the wake vs. sleep model is
relatively low, meaning that this model performs consistently well
to detect sleep irrespective of the subject. In contrast, the range
for the higher resolution stages of sleep vary greatly, meaning that
the model performs well to classify the various sleep stages for
some subjects, but poorly for others. Personal models demon-
strated improved classification performance at the four-stage
resolution, suggesting that there are subject-specific differences in
these stages that were not sufficiently captured by a population-
based model. Increasing the subject sample size would expand
the training data set, and likely improve differentiation for higher
resolution sleep staging as well as generalization to new subjects.

Another limitation of the work is in the use of a single
technician to score the PSG data. A previous study of the inter-
rater reliability of PSG scoring by trained sleep technicians found
82.6% overall agreement for sleep stages, with disagreements
between scorers primarily occurring in the transitions from one
stage to another.’® We have reduced the potential for ambiguity
in the PSG scores by removing transitions from the data (see
Materials and methods, Signal alignment), but future studies
should consider using multiple PSG scorers to ensure accuracy of
the gold standard sleep stages.

Future work will gather additional training data to test existing
and proposed models and apply this wireless sensor system to
monitor sleep in patient populations, including individuals with
stroke. Sleep stage cycling promotes neuroplasticity, which in turn
can improve motor learning and structural recovery of damaged
brain.>* This may be especially important in defining appropriate
therapies to enable recovery after stroke or traumatic brain injury,
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where the main cause of disability is the damage to brain circuits.
However, sleep is often suboptimal for these hospitalized patients,
in part owing to disturbances during the night.*® Thus, regular
monitoring of patient sleep may inform the recovery process and
quantify impact of environment on sleep quality. As the proposed
sensor set performed better than the ActiWatch for healthy
individuals, and the ActiWatch has shown decreased accuracy in
those with poor sleep efficiency,'® we believe the proposed set is
a more effective solution for wireless monitoring. It remains to be
seen how this sensor data from an impaired population would
affect the model training and performance.

An additional area of interest for future work is to continue
exploring alternative machine learning approaches to optimize
classification accuracy. For example, previous algorithms used for
sleep classification (but with different sensor signals) can be
applied to the same data set to directly compare model
performance. We found that a simple population-based bagging
classifier performed well on average for this small data set, but we
expect that more sophisticated learning algorithms, such as
sequence-based classifiers or recurrent neural networks, would be
effective learning algorithms in this problem with more
training data.

METHODS

Participants

Twelve individuals (7F/5M, age 27.4+3.9 years, BMI 24.2 +2.7 kg/m?)
participated in the study after providing written informed consent and
meeting the following inclusion criteria: (1) older than 18 years of age; (2)
independent in activities of daily living; (3) able to give a written informed
consent; (4) no history of significant medical, neurological, or psychiatric
illness. Exclusion criteria included: (1) subjective report of sleep disorders
by history or documented on PSG, (2) shift work or other types of self-
imposed irregular sleep schedules; (3) body mass index > 35 kg/mz. Data
from one participant was excluded owing to a sensor malfunction, leaving
data from 11 participants to be used for the training and testing of
machine learning models.

Study protocol

The protocol was approved by the Northwestern University Institutional
Review Board. Eligible participants came to the Northwestern Memorial
Hospital Sleep Disorders Center for one night of PSG sleep and multimodal
sensor monitoring. Participant bedtime was determined using the self-
reported habitual bedtime of each patient. Data were collected from the
time of lights off to the time of lights on, 8 h later, using the Polysmith
v8.0 software (Nihon-Kohden; Gainesville, FL). Participants completed a
Pittsburgh Sleep Quality Index (PSQI) self-reported sleep questionnaire
prior to sleep monitoring setup.

Participants concurrently wore three different sensor systems: (1) the
proposed set, consisting of the accelerometer, ECG, and skin temperature
sensors, (2) the control set, consisting of a research-grade WA device, and
(3) the gold standard PSG system (Fig. 4a). To place the sensors, the skin
was prepped with alcohol and electrode gel was added to ECG sensors.
Additional adhesive dressings (Tegaderm; 3M, Maplewood, MN, USA) were
applied over the proposed sensor set devices to stabilize the device-skin
interface. Trained sleep technicians and researchers placed all sleep
monitoring systems on participants prior to lights off.

Sleep monitoring systems

The proposed wearable sensor set was composed of the BioStampRC
(MC10, Inc; Lexington, MA) and the Thermochron iButton (DS1922L-F5;
Maxim Integrated Products, San Jose, CA, USA). These devices are both
wireless and have a low profile, and the BioStampRC is a flexible sensor
with a soft-shell encasing (Fig. 4b); such characteristics are beneficial to
maximize participant comfort over the wired and cumbersome PSG
system. Two BioStampRC sensors, placed at the same orientation, collected
tri-axial acceleration bilaterally at the wrist (sampling frequency of 62.5 Hz).
Three BioStampRC sensors collected ECG at the chest (sampling frequency
of 1000 Hz). Although these are single-lead ECG devices, we placed three
sensors to create redundancy in the event of noisy signals or movement
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A Testand Control Sensor Set

Gold Standard Set (PSG)

Test Set Control Set
BioStampRC ActiWatch
&8 ACC @ AT

[m ECG

iButton

(m————————

| JESSRY

g |
BioStampRC

ActiWatch

iButton

Control Set Test Set

Fig. 4 Sensor systems and placement during overnight sleep. a
Each participant wore three systems, including the proposed sensor
set, consisting of accelerometers (ACC), electrocardiography (ECG),
and skin temperature (TEMP), in addition to the wrist actigraphy
control device measuring activity counts (ACT) and the gold
standard system (PSG). b Size and profile comparison of the
proposed sensors with the control device. (iButton: Copyright
Maxim Integrated Products. Used by permission. ActiWatch: Permis-
sion to use ActiWatch Spectrum image was granted by Philips
Respironics. BioStampRC: Permission to use BioStampRC image was
granted by MC10, Inc.).

artifact from any one sensor throughout the night. Eight iButton sensors
collected skin temperature (sampling frequency of 1/60Hz), with four
placed distally at the back of each hand and below the medial malleolus of
each ankle, and four placed proximally at the forehead, chest, abdomen,
and right inner thigh in accordance with placement described in Krauchi
et al.3* Data from the BioStampRC and iButton sensors were stored on the
device and later offloaded for analysis.

The ActiWatch Spectrum (Philips Respironics; Murrysville, PA) served as
the WA control device. The ActiWatch contains a tri-axial piezoelectric
accelerometer and records an activity count for each 30-second epoch by
summing peak acceleration per second over the length of the epoch. This
activity count determines sleep or wake classification based on a built-in
thresholding algorithm. Participants wore the ActiWatch on their non-
dominant wrist.

The gold standard PSG system included four scalp electrodes for
monitoring EEG, at central (C3, C4) and occipital (O1, 0O2) locations and
reference electrodes on the contralateral mastoid (A1, A2). Electro-
oculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG)
were also obtained. Signals were amplified and sampled at 200 Hz
(Neurofax EEG-1100, Nihon-Kohden), with a 70 Hz low-pass filter and a
time constant of 0.3s (0.6 Hz). A Registered Polysomnographic Technol-
ogist scored each 30-second epoch of the recording using the Polysmith
software as wake or one of four sleep stages, according to the American
Academy of Sleep Medicine (AASM) scoring criterion. These sleep stages
included stage 1 (NREM1), stage 2 (NREM2), slow wave sleep (SWS), and
REM sleep.® Sleep metrics computed from the PSG scores include the
following:
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Actiwatch —— BioStampRC —— PSG

Activity Counts
ECG

Fig. 5 Time synchronization of independent data collection
systems. ActiWatch was synchronized with the BioStampRC by
aligning activity counts; BioStampRC was synchronized to the PSG
by aligning ECG signals.

® Total sleep time: time interval separating sleep onset latency from
morning awakening minus the amount of time spent awake during
the night.

® Sleep efficiency: total sleep time divided by the total recording time
and expressed as a percentage.

® Sleep onset latency: time from lights off to the first 30-second epoch
scored as sleep stage 1 or higher.

® Latency to persistent sleep: time from lights off to the time the onset
of sleep lasting at least 10 contiguous minutes in any sleep stage.

® Wake after sleep onset (WASO): time spent awake after sleep onset
and before lights on.

® Percentage of each sleep stage: ratio of time spent in each sleep stage
to the total sleep time.

Data cleaning

All preprocessing was performed in MATLAB 2018b software (Natick, MA,
USA). Data from the BioStampRC sensors were interpolated and resampled
to 62.5 Hz for accelerometer data and 1000 Hz for ECG data, to correct for
occasional duplicated or missing data points. Initial noise in the
BioStampRC ECG signal was mitigated using the following approach: the
standard deviation of the signal was computed over 10-second clips. Any
clip with a standard deviation higher than twice the mean of the lowest
15% of standard deviations was not included for analysis. Individual
outliers, identified as data points > 10 standard deviations above the mean,
were removed from the clip as well as a 5 ms buffer before and after these
outlier points. Signals of the three ECG sensors then were summed to
create a composite ECG signal.

Signal alignment

Because the PSG, ActiWatch, and proposed sensor set were not part of a
single data acquisition system, the time-series data were not automatically
synchronized between systems. Synchronization is vital to ensure that the
training data used in machine learning algorithms are labeled correctly to
match the gold standard sleep stage from the PSG. ActiWatch and
BioStampRC data were synchronized post hoc with the PSG data using the
MATLAB function xcorr, which maximizes the cross-correlation between
two signals by shifting one of the signals in time. Our strategy for time-
series alignment is depicted in Fig. 5, where the ActiWatch is first
synchronized to the BioStampRC by aligning wrist acceleration signals
(after transforming the BioStampRC acceleration into an approximate
activity count via the method in Te Lindert et al.*?), and the BioStampRC is
synchronized to the PSG by aligning ECG signals. The iButtons required no
alignment correction because they were initialized on the PSG computer
system, and so were already time-synchronized with the PSG. Alignment of
all systems was confirmed via visual inspection.

The PSG score provided a gold standard sleep stage to the aligned
sensor and ActiWatch data. The 30-second epochs immediately before and
after a sleep stage transition were removed, as PSG epochs are scored
based on the majority stage, but it is unclear from the score when the
transition from one stage to another occurs. We removed these potential
transitional clips to ensure that the sensor data were fully consistent with
the aligned PSG score and thereby maintain the integrity of training data
for the machine learning models.

Signal processing
ECG and accelerometer data from the BioStampRC were high-pass filtered
using a Butterworth filter with a cutoff frequency of 1Hz and an order of
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Table 4. Features extracted from the sensor data.

Sensor modality Sampling No. of  Features

frequency (Hz) features

Accelerometer 62.5 33 Mean (x,y,z)

Minimum (x,y,z)
Maximum (x,y,z)

Range (x,y,z)

Interquartile range (x,y,z)
Standard deviation (x,y,z)
Kurtosis (x,y,2)

Root mean squared (x,y,z)
Variance (x,y,z)

Pearson’s coefficient (x,y,z)
Pearson’s p value (x,y,z)

ECG 1000 14 Mean R-R interval
Minimum R-R interval
Maximum R-R interval
Standard deviation R-R
interval

RMSSD

NN50, PNN50

NN20, PNN20

VLF, LF, HF

LF/HF Ratio

Mean DPG
Minimum DPG
Maximum DPG
Range DPG

Skin 0.0167 4
temperature

RMSSD root mean square of successive differences; NNX number of
successive R-R intervals that differ by more than X ms, PNNX ratio of NNX to
total number of R-R intervals, VLF very low frequency power (activity in the
0.003-0.04 Hz frequency band); LF low frequency power (activity in the
0.04-0.15 Hz frequency band), HF high frequency power (activity in the
0.15-0.40 Hz frequency band); DPG distal-to-proximal gradient35

1st and 5th, respectively, to remove signal drift. The wavelet transform of
the ECG data was computed using the “sym4” wavelet, which resembles
the QRS complex of the ECG trace and accentuated the R-peaks in the
signal. The time locations of R-peaks in the ECG trace were determined
using the MATLAB function findpeaks on the transformed signal, which
were then used to calculate R-R intervals to compute measures of heart
rate and heart rate variability.

Feature extraction

Sensor data were segmented into non-overlapping 2-minute clips, each
with a corresponding PSG score as the true sleep stage. This resulted in
10,527 total clips available for machine learning models, 45% of which
were from the NREM2 stage (Supplementary Fig. 3). Fifty-one features were
computed for each clip, including 33 from the accelerometer (11 per axis)
in the time domain, 14 from the ECG in both the time and frequency
domain, and 4 from skin temperature in the time domain. These features
are listed in Table 4.

Sleep classification

A bagging classifier with a decision tree estimator was used for supervised
machine learning. This ensemble learning approach is advantageous for its
resistance to overfitting and small number of tunable hyperparameters. An
ensemble of 130 decision tree classifiers was trained using a random
subset from the feature matrix. This number of trees was sufficient to
achieve nearly full learning without overfitting the model. To account for
the imbalance of sleep stage classes, the bagging classifier was coupled
with random under-sampling to reduce preference for predicting the
majority class (NREM2).

We also explored various alternative machine learning approaches for
the classification of sleep stages, including a Support Vector Machine,
Convolutional Neural Network, Hidden Markov Model, and Long Short-
Term Memory model. However, none of these models outperformed the
ensemble-based bagging classifier, so we focus predominantly on results
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from the bagging classifier in the main text. The alternative models and
their formulation are described in the Supplementary Methods.

The models were developed to classify sleep stage for three different
resolutions of sleep staging: the two-stage wake vs. sleep (PSG stages 1, 2,
SWS, REM); the three-stage wake vs. NREM sleep (PSG stages 1, 2, SWS) vs.
REM sleep; and the 4-stage wake vs. light sleep (PSG stages 1, 2) vs. deep
sleep (PSG stage SWS) vs. REM sleep.

Model performance was evaluated as via the model recall (true positive
rate, also known as sensitivity in a two-class problem) and AUROC, which
were computed using leave-one-subject-out cross-validation. In this
population-based approach, data from other subjects are used to detect
sleep stages for a new subject.

The bagging model was trained and tested using data from targeted
subsets of the proposed sensors to minimize the total number of sensors
required while maintaining classification performance. The sensor subsets
were compared using AUROC for each sleep stage, which provides a single
measure of the separability of that sleep stage from the others. For subsets
of the skin temperature sensors, features were computed on the DPG**
when using all temperature sensors, on the weighted temperature average
when using either all distal or proximal sensors, or on the pure
temperature when using individual sensor locations.

In addition, we implemented personal models for each subject, wherein
data from one subject were used to detect sleep stages in the same
subject. Balanced bagging classifiers with 130 trees were tested using 20-
fold cross-validation for each subject, then averaged across subjects. This
analysis was introduced to address the potential individual differences in
sensor data for this relatively small data set, which may not generalize well
for a population-based approach.

Comparison with other work

A literature search was conducted to compare our results with previous
work in wearable sensor sleep classification using the keywords “sensors,”
“sleep detection,” “sleep classification,” and “machine learning.” Studies
were included for direct comparison if they met the following criteria: (1)
trained machine learning models on PSG data from wireless, wearable
technology, and (2) reported model recall for sleep vs. wake classification or
for multiple sleep stages using non-hierarchical methods. Studies using wired
or intrusive sensors (i.e., wired EEG, rectal core temperature) were excluded.

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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