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Abstract

Background: Given multiple studies of brain microRNA (miRNA) in relation to Alzheimer’s disease (AD) with few
consistent results and the heterogeneity of this disease, the objective of this study was to explore their mechanism
by evaluating their relation to different elements of Alzheimer’s disease pathology, confounding factors and mRNA
expression data from the same subjects in the same brain region.

Methods: We report analyses of expression profiling of miRNA (n = 700 subjects) and lincRNA (n = 540 subjects)
from the dorsolateral prefrontal cortex of individuals participating in two longitudinal cohort studies of aging.

Results: We confirm the association of two well-established miRNA (miR-132, miR-129) with pathologic AD in our
dataset and then further characterize this association in terms of its component neuritic β-amyloid plaques and
neurofibrillary tangle pathologies. Additionally, we identify one new miRNA (miR-99) and four lincRNA that are
associated with these traits. Many other previously reported associations of microRNA with AD are associated with
the confounders quantified in our longitudinal cohort. Finally, by performing analyses integrating both miRNA and
RNA sequence data from the same individuals (525 samples), we characterize the impact of AD associated miRNA
on human brain expression: we show that the effects of miR-132 and miR-129-5b converge on certain genes such
as EP300 and find a role for miR200 and its target genes in AD using an integrated miRNA/mRNA analysis.

Conclusions: Overall, miRNAs play a modest role in human AD, but we observe robust evidence that a small
number of miRNAs are responsible for specific alterations in the cortical transcriptome that are associated with AD.
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Background
Late onset Alzheimer’s disease (AD) is an age-dependent
neurodegenerative disorder characterized clinically by
cognitive decline and pathologically by the accumulation
of neuritic β-amyloid plaques (NP) and neurofibrillary
tangles (NFT) in the brain. Currently genetic [1], epige-
nomic [2] and transcriptomic studies [3, 4] coupled with
advances in imaging techniques [5, 6] have begun to
sketch the sequence of events in the causal chain linking

risk factors to a syndromic diagnosis of AD dementia.
One of these events may be the dysregulation of gene
expression by alterations in the expression of microRNA
(miRNA) and long intergenic non-coding RNA
(lincRNA) molecules.
miRNA are a class of small regulatory RNA that

modulate gene expression via a multiprotein complex
which facilitates the interaction between an miRNA and
its complementary elements in the 3’UTR of target
mRNAs to initiate transcript degradation and repression
of protein production [7, 8]. Aberrant expression of
miRNA and/or its target mRNAs have been implicated
in abnormal neuron function [9] and in several neurode-
generative disorders [10, 11]. Recently, certain miRNA,
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such as miR-132 have been associated with pathologic
AD [12–16]. However, these studies were conducted in a
modest number of subjects with limited phenotypic in-
formation, and few results are consistent across these
studies [17].
lincRNA are RNA that are longer than 200 nucleotides

and do not code for proteins [18]. As with most long
non-coding RNA and unlike miRNA there is no clear
common functional mechanism for lincRNA [18]; some
may have a structural role in protein/RNA complexes.
There is still debate over what percentage of lincRNA
may be functional at all [19]. However, focusing on the
lincRNA that lie in the same locus as protein coding
genes may provide insight into their functional corre-
lates. Given the reported association of the long non-
coding RNA BACE1-AS [20] with AD and the lack of
investigation of this class of non-coding RNAs in a large
sample size, we investigated the potential role of long
non-coding RNA in AD and its component pathologies.
We first evaluated the role of miRNAs previously asso-

ciated with AD with measures of both neuritic amyloid
plaque (NP) and neurofibrillary tangles (NFT) since
these are key neuropathologic features of AD and allow
us to explore the mechanism by which an AD-associated
non-coding RNA contributes to disease. We secondarily
expanded this effort to evaluate other miRNAs and
lincRNAs to discover new associations. In addition, we
leveraged transcriptome-wide RNA sequencing profiles,
generated from the same RNA samples that were used
to generate the miRNA profiles, to identify the func-
tional consequences of altered miRNA expression on
protein-coding genes in the human dorsolateral pre-
frontal cortex (DLPFC) and to identify additional cases
where miRNA and mRNA AD associations converge in
the human cortex.

Methods
Total RNA, including miRNA, was extracted from ap-
proximately 100 mg sections of frozen postmortem brain
tissue from the dorsolateral prefrontal cortex (BA 9/46)
of subjects from two previously described longitudinal
cohorts of aging, Religious Order Study (ROS) and Rush
Memory Aging Project (MAP) [2, 21–23]. Tissue was
thawed partially on ice and between 50 and 100 mg of
gray matter was dissected from the section then trans-
ferred immediately to 1 mL of Trizol. The tissue was
then quickly homogenized using the Qiagen TissueLyser
and a 5 mm stainless steel bead, for 30 s at 30 Hz. The
foam was settled with a quick spin, and the sample incu-
bated for a minimum of 5 mins at room temperature.
Debris was pelleted at 4 °C at 12,000 g for 10 min and
Trizol was transferred to a new 1.5 mL tube. We contin-
ued preparation of samples following the instructions of
Qiagen’s miRNeasy Mini kit, with volumes adjusted for

1 mL instead of 700uL of Trizol until wash steps. RNA
was eluted from the miRNeasy spin columns in 75uL of
elution buffer, and quality tested by Nanodrop and
Bioanalyzer RNA 6000 Nano Agilent chips. RNA yields
averaged about 25μg and RIN scores ranged from 2 to 9
with an average of 6.5. RNA was normalized to 33 ng/ul
and plated into 96w plates for Nanostring processing
using the nCounter Human miRNA Expression assay kit
version 1 with reporter library file: NS_H_miR_1.2.rlf.
The data collection from 733 post mortem brain sam-
ples was done at the Broad Institutes Genomics Platform
(Broad Institute of Harvard and MIT, Cambridge, USA).
Subjects from different diagnostic categories were
distributed across experimental batches to reduce batch
effects. To minimize variability at the ligation step,
processing of the annealing and ligation steps was per-
formed on the same thermocycler. Two thermocyclers
were used for the purification steps, but all samples were
placed in the same thermocycler for denaturation and
hybridization steps. Two nCounter Prep Stations were
utilized, but all samples were then scanned on the same
Digital Analyzer. The data was collected in 8 batches of
96 samples and a single sample technical replicate was
introduced as control in every single 96 well plates and
sometimes twice in one single plate in two different
cartridges.

Quality control and dataset pre-processing
All data is available at https://www.synapse.org/#!Synap-
se:syn3219045. The miRNA from the Nanostring RCC
files were re-annotated to match the definitions from the
miRBase v19. The raw data from the Nanostring RCC
files were accumulated and the probe-specific back-
grounds were adjusted according to the Nanostring
guidelines with the corrections provided with the probe
sets. After correcting for the probe-specific backgrounds,
a three-step filtering of miRNA and sample expressions
was performed. First, miRNA that had less than 95% of
samples with a missing expression level were removed.
This is followed by removing samples that had less than
95% of miRNAs with missing expressions. Thus, the
call-rates for the samples and the miRNA are set at 95%.
Finally, all miRNA whose absolute value is less than 15
in at least 50% of the samples were removed to eliminate
miRNA that had negligible expression in brain samples.
After the miRNA and sample filtering, the dataset con-
sisted of 309 miRNAs and 700 samples. A combination
of quantile normalization and Combat [24], specifying
the cartridges as batches for the miRNA data, was used
to normalize the data sets. The strong association ob-
served between miRNA expression and RNA-integrity
was validated via qRT-PCR (Additional file 1: Figure S3)
and verified not to be specific to the Nanostring
platform.
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The mRNA sequencing data have been described else-
where [25]. For the lincRNA analysis, a non-gapped
aligner Bowtie [26] was used to align reads to a hg19
lincRNA reference [27] and then RSEM [28] applied to
estimate expression levels for all lincRNA. A combin-
ation of quantile normalization and Combat [24] to
account for batch was used for normalization. After fil-
tering out lowly expressed lincRNA with an expected
count less than 5, a final dataset of 454 lincRNA mea-
sured in 540 samples was used.

Identifying differentially expressed miRNA or lincRNA
Simple linear regression analysis was used to associate
the expression levels of miRNA and lincRNA to several
variables that measured the neuropathology in the AD
brain. These included either the numbers of neuritic
plaques, neurofibrillary tangles or a binary variable
representing the pathologic diagnosis of AD on autopsy
according to the NIA Reagan criteria [29]. All the associ-
ations were adjusted for age, sex, study (ROS or MAP),
the proportion of neurons in the tissue [2], RNA Integ-
rity number (RIN) and post-mortem interval (PMI). The
proportion of neurons in the tissue is estimated from
DNA methylation data available from the same brain
region of each individual, as described in our recent
study [2]. A Bonferroni corrected significance threshold
of 0.05 was used to account for multiple comparisons.

Constructing micro-RNA and linc-RNA networks
Linear models were used to identify miRNA or lincRNA
that were associated with either NP, NFT or AD. To do
this the models included age, neuronal composition
(NNLS), sex, study of origin (Study, ROS or MAP), post-
mortem interval (PMI), RNA integrity number (RIN),
NP, NFT and AD., NP, NFT and AD as covariates. Using
these models a miRNA or lincRNA were included in the
networks if there was evidence that any of effects sizes
of NP, NFT or AD were non-zero (nominal p-value from
an F-test from less than 0.05). For each of the included
miRNA or lincRNA, forward stepwise variable selection
was used with a Bayesian information criteria (BIC) to
select which edges between miRNA or lincRNA and
explanatory variables should be included in the network.
As RIN is associated with all the miRNA and lincRNA
its edges are excluded from the networks.

Pathway analysis
Our approach for pathway analysis of the miRNA data
using pMim [30] involved analyses of the miRNA and
mRNA data on the 525 samples which had both miRNA
and gene expression data. The mRNA analyses are de-
signed to focus on sets of genes that are co-expressed
and are predicted to be a target of one of the tested miR-
NAs. Targetscan v6.2 [31] was used for prediction of

miRNA targets and the GO biological processes [32]
were used for pathway annotation. Figure 3a outlines
how pMim is used to construct and test “miR-pathways”,
where a miR-pathway consists of genes that are targeted
by a miRNA and lie in a common pathway. Specifically,
pMim identifies sets of genes that (1) are predicted to be
targeted by an miRNA associated with AD, (2) lie in a
common biological pathway and (3) are also associated
with AD diagnosis themselves in terms of mRNA ex-
pression. All 309 miRNA and their corresponding miR-
pathways (sets of genes that are targeted by the same
miRNA and share a common biological process) were
tested; a joint statistic summarizes and ranks the evi-
dence for both the miRNA and mRNA analyses testing
if both a miRNA and one of its corresponding miR-
pathways are associated with AD. This joint statistic is
calculated with two significance combination methods.
Within a miR-pathway, Stouffer’s method was used to
combine significance of genes associated with AD. A
one-sided Pearson’s method was used to combine the
significance between the miR-pathway gene summary
statistic and the association of its miRNA with AD.
Under very strict assumptions these joint statistics could
be considered as p-values, however due to the large
amount of correlation within an annotated pathway they
are highly inflated. Hence we consider these joint statis-
tics for ranking purposes only.

Results
Demographic features and nature of our non-coding
RNA data
The NanoString nCounter assay was used to measure
miRNA expression from the DLPFC of each subject. At
the conclusion of a rigorous quality control and prepro-
cessing pipeline, expression measures from 309 miRNAs
in 700 subjects were retained for downstream analysis.
The subjects profiled in this study are participants in
one of two prospective cohort studies of aging, the
Religious Order Study (ROS) and Memory and Aging
Project (MAP) which are designed to be merged for
joint analyses [33, 34]. These studies enroll non-
demented individuals and include detailed, annual ante-
mortem characterization of each subject’s cognitive
status as well as prospective brain collection and a struc-
tured neuropathologic examination at the time of death.
The study design of ROS and MAP yields an autopsy
sample that includes a range of syndromic diagnoses
and neuropathologic findings that are common in the
older population. While this is not a true population-
based sample, it captures the diversity of the older popu-
lation at the time of death and is different than the
collection of subjects typically used for age-matched
case-control studies [12, 13, 15, 16]. The subjects in the
study have an average age of 88 at death, 61% meet
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criteria for pathologic AD by NIA Reagan criteria [29]
and 64% are female (Additional file 1: Table S1). To
evaluate the nature of our data in relation to pub-
lished results, we first assessed whether the expres-
sion of miRNAs are associated with a pathological
diagnosis of AD according to the NIA Reagan criteria
[29], focusing on an evaluation of previously reported
miRNA associations [12, 13, 15, 16].

miRNA associated with a pathologic diagnosis of AD
We used a linear regression model controlling for age,
sex, study, proportion of neuronal cells, post-mortem
interval and a measure of RNA quality (RNA integrity
(RIN) score) to evaluate associations of miRNA with
pathologic AD. In this analysis of the human DLPFC, two
previously reported associated miRNAs are significantly
associated with pathologic AD, exceeding a threshold
defined using a Bonferroni correction for the number of
miRNA tested, p < 1.6 × 10−4 (Table 1, Fig. 1). Specifically,
miR-132 (P = 2 × 10−8) and miR-129-5p (P = 3.9 × 10−6)
were found to be diminished in expression in subjects
with AD, consistent with prior studies [12, 13]. Thus, our
data confirm well-validated miRNA associations with AD.
To provide perspective on effect size, miR-132 explains
6.7% of the variance in AD, which is similar to the 6.1%
variance explained by APOE ε4 in our data and 6% in pre-
vious literature [35]. In contrast, the miRNA effect is more
than the <1% of variance explained by genetic susceptibil-
ity variants in ABCA7, CD33, and CR1 that were originally
discovered in genome-wide association studies [35].
We next systematically reviewed our results for those

miRNA that have previously been associated with AD in
various brain regions [13, 15, 16]: they are catalogued in
Table 2. Figure 1 illustrates the strength of the associ-
ation of miRNAs with pathologic AD in our cohort,
highlighting 11 miRNAs that were deemed to be signifi-
cantly associated with AD in a prior study of moderate
sample size (n = 49 subjects) [12]. Of the 11 miRNA
previously reported to be associated with AD in the pre-
frontal cortex, only miR-132 and miR-129-5p replicated.
In addition, miR-129-3p (P = 0.0013), miR-200a

(P = 0.018), miR-30e (P = 0.0048), miR-100 (P = 0.011),
let-7i (P = 0.045) and miR-185 (P = 0.013) display sug-
gestive association and may warrant further investiga-
tion. The Bonferroni threshold (p < 0.00016) that we
employed may be overly conservative, but it provides a
useful way to distinguish the most robustly associated
miRNA. Given our large sample size (n = 700), we have
good power to confirm results with small effect sizes: we
have 80% power to detect an effect small enough to only
explain 2.2% of the variance in relation to AD (which is
much smaller than the effect of mi132 described above).
Thus, if other miRNAs that we tested have a role in AD,
they are more in line with the magnitude of effect found
with AD SNPs.

The role of confounding variables in miRNA expression
There is a substantial lack of concordance in behavior
between the previously reported AD miRNA signatures
and their level of association in our cohort (Table 2,
Additional file 1: Figure S1). While this could be
explained, in part, by differences in the brain regions
that have been assayed and the technologies used in the
different studies, many of these miRNAs are highly
associated with age, sex, the proportion of neurons in
the profiled tissue sample, post-mortem interval and/or
RIN score (Table 2, Additional file 2: Table S2). Thus,
explicitly accounting for all of these factors is essential
in brain miRNA studies, and the RIN score appears to
play an especially significant role.

Identifying miRNA associated with amyloid and tau
neuropathologies
Having described the nature of our data in relation to
prior reports, we proceeded to our main goal of investi-
gating the relationship of miRNA expression with
specific features of AD neuropathology: namely, we in-
vestigated whether miRNA are associated with the accu-
mulation of neuritic amyloid plaques (NP) and/or
neurofibrillary tangles (NFT) that are defined by the
presence of Tau accumulation. The pathologic AD-
associated miRNA, miR-132 and miR-129-5p, were

Table 1 miRNA and lincRNA associated with AD, NP or NFT

coefficient: AD p-value: AD coefficient: NP p-value: NP coefficient: NFT p-value: NFT

miR-132 −0.26 2.00E-08 −0.29 1.40E-11 −0.31 4.10E-08

miR-129-5p −0.11 3.90E-06 −0.15 6.90E-11 −0.17 2.20E-08

miR-129-3p −0.095 0.0013 −0.13 1.80E-06 −0.12 0.00085

miR-99b 0.081 0.0034 0.075 0.0037 0.14 6.00E-05

linc-CTSD-3 −19 0.0012 −22 6.90E-05 −33 8.60E-06

linc-BRD9–1 32 0.00025 35 2.40E-05 23 0.036

linc-ADC 3.8 0.18 3.8 0.15 14 6.70E-05

linc-RNFT2–1 3.3 0.36 3.4 0.31 18 7.10E-05

In bold are the tests which meet the Bonferroni correction threshold of p < 0.00016
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associated with both NP and NFT (Table 1). These two
neuropathologic features of AD are strongly correlated
with one another and it can be challenging to dissect the
effect of one from the other unless large sample sizes are
available. In addition, we found that, among the tested
miRNAs, miR-129-3p (P = 1.8 × 10−6) was associated
with NP, and miR-99b (P = 6 × 10−5) was associated with
NFT, exceeding our significance threshold (p < 0.00016).

Dissecting the network of miRNA associations in AD
The complexity of the relationships between miRNA ex-
pression, the burden of NP and NFT neuropathologies,
a pathologic diagnosis of AD, technical variables and
demographic variables are demonstrated in Fig. 2a. Here,
we consider all variables in a single model to resolve the
most likely primary association between each miRNA
and the neuropathologic traits. These traits are all
correlated with one another (Fig. 2b, Additional file 1:
Table S3), making it difficult to understand where an
miRNA’s primary effect may be exerted simply by look-
ing at the univariate results: for example, while miR-132
is significantly associated with both NP and NFT in sep-
arate analyses (Table 1), it appears, in the joint network
model, that its effect may be driven predominantly
through NP. This is visualized by the edge linking miR-

132 and NP in the network model. The effect on NFT
may be secondary and result from the accumulation of
NP. To elaborate a more comprehensive network model,
we included all of the miRNAs with either a significant
or suggestive (p < 0.05) association to one of the AD
pathologies. Similar to miR-132, we see that many miR-
NAs are only associated with either NP, NFT or AD,
suggesting that they may have a primary effect through
one or the other pathology or some other aspect of AD
not captured by these pathologic measures. On the other
hand, miR-433, miR-487b and miR-485-3p are negatively
associated with NP and also positively associated with
AD in our joint model. This result captures the
complexity and likely non-linear relationships of miRNA
associations with pathology as miR-433, miR-487b and
miR-485-3p are all negatively associated with AD in
univariate analysis. This result highlights the need to
evaluate the possibility of more complex relationships
between miRNA and disease in future studies.

Evaluating the functional consequences of AD-associated
miRNA in human brain
We next attempted to delineate the downstream effects
of the expressed miRNAs by integrating the miRNA data
with gene expression data from the same brain region
and the same individuals. In fact, both the miRNA and
RNA sequence data were generated from the same RNA
sample. Our approach involved separate analyses of
miRNA and mRNA data, with the mRNA analyses being
focused on sets of genes that are co-expressed and are
predicted to be a target of one of the tested miRNAs.
Specifically, pMim [30] was used to identify sets of genes
that (1) are predicted to be targeted by an miRNA
associated with pathologic AD, (2) lie in a common
biological pathway and (3) are also associated with
pathologic AD themselves in terms of mRNA expres-
sion. Figure 3a outlines how pMim is used to construct
and test “miR-pathways” where Targetscan v6.2 [31] was
used for prediction of miRNA targets and the GO bio-
logical processes [32] were used for pathway annotation.
All 309 miRNA and their corresponding miR-pathways
(sets of genes that are targeted by the same miRNA and
share a common biological process) were tested; a joint
statistic summarizes and ranks the evidence for both
the miRNA and mRNA analyses. The top eight miR-
pathways in which both the miRNA and the mRNA
are significantly associated with AD are presented in
Table 3.
Looking more closely at the top miR-pathways, we see

that, in the DLPFC, miR-132 appears to be targeting a
group of five genes (EP300, NACC2, SALL1, SREBF1
and SIRT1) that are related to protein acetylation. All
five of these protein acetylation genes lie within the top
20 predicted miR-132 target genes whose expression is

Fig. 1 Validation of miRNAs associated with AD in other studies. The
relationship between average miRNA expression (x-axis) and
association with pathological AD in ROSMAP (y-axis) is plotted for
each miRNA. The association between a miRNA and AD is calculated
as a z-score after correcting for other factors; a negative z-score
denotes decreased miRNA expression in the context of AD.
Previously reported miRNAs [12] are highlighted by colored triangles,
with red denoting higher expression in AD and blue reduced
expression in AD in the original publication. The dotted horizontal
line marks the z-score threshold of significance that is equivalent to
a Bonferroni p-value cut-off of 0.05; none of the miRNAs with
positively correlated expression are significantly associated with AD.
The gray circles represent all other miRNAs tested in our study
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Table 2 P-values from tests of association with AD and other covariates for miRNA implicated in other studies

ROSMAP Lau Cogswell Hebert Nunez Study Age Sex NNLS PMI RIN AD AD (no covariates)

miR-132 Down Down Down 0.54 0.58 0.32 0.46 0.0052 7.00E-14 2.00E-08 4.00E-12

miR-129-5p Down Down 0.31 0.012 0.72 0.23 6.00E-04 1.70E-11 3.90E-06 6.50E-07

miR-129-3p Down 0.59 0.089 0.063 0.73 0.0057 3.00E-08 0.0013 0.00098

miR-136 Down 0.59 0.3 0.71 0.16 0.046 0.1 0.67 0.78

miR-370 Down 0.29 0.084 0.025 0.051 0.17 0.0036 0.67 0.57

miR-409-5p Down 0.52 0.0064 0.22 0.26 0.52 0.071 0.33 0.53

miR-487a Down 0.89 0.1 0.78 0.79 0.53 5.90E-09 0.8 0.99

miR-92a Up Up 0.36 0.81 0.039 0.00056 0.43 7.50E-10 0.95 0.1

miR-27a Up Up 0.39 0.69 0.46 0.47 0.53 0.56 0.56 0.6

miR-92b Up Up 0.14 0.44 2.70E-05 0.96 0.74 2.30E-18 0.056 0.74

miR-200a Up 0.95 0.013 0.58 0.65 0.095 2.00E-53 0.018 0.00013

miR-9 Down Down 0.47 0.15 0.21 0.005 0.65 1.20E-06 0.73 0.39

miR-146b-5p Down 0.45 0.12 0.92 0.5 0.36 0.0064 0.93 0.84

miR-425 Down 0.35 0.19 0.88 0.34 0.41 0.35 0.29 0.11

miR-30e Up Down 0.91 0.043 0.14 0.71 0.33 0.019 0.0048 0.0043

miR-423-5p Up 0.5 0.023 0.78 0.42 0.076 1.80E-07 0.38 0.25

miR-27b Up 0.19 0.57 0.84 0.66 0.16 0.08 0.48 0.38

miR-100 Up 0.13 0.99 0.0091 0.11 0.16 8.70E-05 0.011 0.0083

miR-34a Up 0.4 0.00015 0.056 0.013 0.39 0.59 0.18 0.028

miR-145 Up 0.015 0.63 0.96 0.89 0.55 5.50E-06 0.26 0.084

miR-381 Up 0.55 0.73 0.12 0.74 0.6 0.47 0.12 0.022

miR-125b Up 0.28 0.42 0.92 0.66 0.6 3.20E-10 0.63 0.37

miR-148a Up 0.19 0.74 0.22 0.23 0.97 0.016 0.95 0.69

miR-15a Down Down 0.47 0.24 0.49 0.016 0.0053 0.031 0.51 0.48

miR-29b Down Down 0.98 0.27 0.15 0.99 0.057 0.00017 0.34 0.019

miR-101 Down Down 0.77 0.24 0.013 0.21 0.099 0.96 0.3 0.15

miR-181c Down Down 0.13 0.49 0.24 0.038 0.23 0.42 0.34 0.3

miR-363 Down 0.2 0.027 0.13 0.2 0.072 0.096 0.92 0.54

miR-19b Down 0.72 0.05 0.069 0.34 0.18 0.65 0.064 0.032

miR-106b Down 0.25 0.92 0.95 0.68 0.3 0.82 0.15 0.13

miR-22 Down 0.84 0.35 0.75 0.16 0.64 0.15 0.81 0.77

miR-93 Down 0.11 0.7 0.0064 0.81 0.74 0.03 0.34 0.2

miR-26b Down 0.34 0.36 0.25 0.94 0.76 0.67 0.13 0.21

let-7i Down 0.46 0.79 0.79 0.58 0.93 0.39 0.045 0.036

miR-320a Up Up 0.44 0.24 0.26 0.78 0.38 4.60E-14 0.16 0.057

miR-197 Up 0.23 0.43 0.49 0.36 0.31 0.39 0.77 0.43

miR-29c Down 0.87 0.36 0.43 0.089 0.0082 2.00E-06 0.35 0.31

miR-494 Down 0.61 0.4 0.94 0.5 0.044 2.50E-11 0.38 0.16

miR-598 Down 0.26 1 0.25 9.70E-05 0.1 0.0034 0.2 0.11

miR-374a Down 0.84 0.48 0.74 0.081 0.35 0.039 0.63 0.72

miR-376a Down 0.93 0.58 0.027 0.16 0.58 0.71 0.11 0.012

miR-148b Down 0.89 0.15 0.69 0.12 0.6 0.92 0.72 0.75

miR-95 Down 0.51 0.76 0.33 0.0017 0.71 0.056 0.86 0.74

miR-582-5p Down 0.6 0.86 0.94 0.012 0.89 0.00018 0.35 0.18

Patrick et al. Molecular Neurodegeneration  (2017) 12:51 Page 6 of 13



inversely associated with miR-132 abundance in our cor-
tical samples (p-values <0.00018, Table 4). The miR-132
association with EP300 expression confirms earlier
reports and in vitro studies [12, 14, 36, 37], illustrating
the robustness of our results and the relevance of earlier
studies. As shown in Fig. 3b-d, miR-132 explains
approximately a third of the association of each gene to
AD, and therefore it does not appear to be the sole
driver of the role of these protein acetylation genes in AD.
While miR-132 may thus be influencing AD, in part,
through histone acetylation and chromatin remodeling,
miR-129-5p appears to be regulating genes related to the
regulation of transcription. Interestingly, both miR-132
and miR-129-5p target EP300, which encodes the histone
acetyltransferase protein E1A-associated cellular p300
transcriptional co-activator, and each miRNA explains
some of the variation in EP300 expression (adjusted R-
squared 0.039 and 0.033 respectively). The role of these

two miRNAs appears to be non-redundant: when they are
considered together, they explain more of the variance in
EP300 than either miRNA explains separately (adjusted R-
squared 0.045), further illustrating the complex interac-
tions involved in mRNA regulation by miRNAs.
In addition to these miR-pathways related to the vali-

dated miR-132 and miR-129-5p miRNAs, it is intriguing
that miR-200a, which is suggestively associated to AD in
our miRNA only analyses (Table 2), is the second stron-
gest result in this pathway analysis because of the strong
association of its downstream genes: this set of thirteen
predicted target genes of miR-200a are all involved in
anion transport. For these thirteen genes, an average of
18% of the mRNA association with AD is accounted by
miR-200a. These integrated miRNA:mRNA analyses
therefore report highly significant results drawn from
autopsy tissue and set the stage for exploring specific
downstream hypotheses; they also suggest that miRNAs

Fig. 2 Network of miRNAs associated with phenotypes. a The relationships between miRNA expression and various demographic and technical
features as well as neuropathologic outcomes are displayed in a network diagram. All miRNA with a significant (p < 0.00016) or suggestive
(p < 0.05) association are included in the network. These relationships were extracted via feature selection from linear models which explain an
miRNA’s expression level by using age at death (Age), neuronal composition (NNLS), sex, study of origin (Study, ROS or MAP), post-mortem
interval (PMI), RNA integrity number (RIN), neuritic amyloid plaques (NP), neurofibrillary tangles (NFT) and pathological AD diagnosis (AD). Each
node in the diagram represents an miRNA (small circles) or a demographic or a neuropathologic variable (large circles). The significantly associated
miRNA (Table 1) are represented by rectangles. A red edge represents a positive association between the miRNA and trait; a blue edge denotes
an inverse association. As most of the miRNAs are associated with RIN, the associations with RIN were removed from this figure for clarity.
b The correlations between the expression levels of eight miRNA and lincRNA with significant associations in our study are shown, along with
correlations with the outcome variables (NP, NFT and AD). Each of the correlations are displayed in each cell of the correlation map and is colored
by the strength of correlation, red for positive associations and blue for negative associations

Table 2 P-values from tests of association with AD and other covariates for miRNA implicated in other studies (Continued)

miR-432 Up 0.59 0.32 0.99 0.16 0.084 0.53 0.12 0.1

miR-188-5p Up 0.8 0.82 0.18 0.4 0.12 0.011 0.99 0.76

miR-382 Up 0.83 0.51 0.29 0.15 0.52 0.029 0.33 0.28

miR-185 Up 0.92 0.19 0.77 0.055 0.81 0.41 0.013 0.0044

In bold are the tests which meet the Bonferroni correction threshold of p < 0.00016
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are just one element contributing to the changes in gene
expression found in AD since most of the variance of
the affected genes – such EP300 and the miR200a
targeted genes – remains unexplained at this time.

Deregulation of lincRNA expression in relation to AD
neuropathology
Our RNA sequencing data was also used to measure
lincRNA expression from the DLPFC in the ROSMAP
cohorts. At the conclusion of a rigorous quality control
and preprocessing pipeline, expression measures from

454 lincRNAs in 540 subjects were retained for down-
stream analysis. The subjects with lincRNA expression
are primarily a subset of the subjects with miRNA ex-
pression; 525 subjects have both miRNA and lincRNA
expression data.
To investigate the relationships between lincRNA

expression and the available neuropathologic measures,
we used the strategy deployed in studying miRNA: we fit
three independent linear models using age, sex, study,
an estimate of the proportion of neuronal cells, post-
mortem interval and RNA integrity number and either

Fig. 3 An integrated analysis of miRNA and their target mRNA. a This diagram presents an overview of (1) how the miR-132:Protein acetylation
miR-pathway was constructed from the KEGG pathways database and Targetscan miRNA binding target prediction database and (2) how a score
was derived to assess the association of this miR-pathway combination with pathological AD diagnosis. The approach is described in greater
detail elsewhere [30]. b This heatmap illustrates the relation of miR-132 with the outcome measures (AD, NP, and NFT) and the mRNA expression
levels of five of its target genes that are member of a protein acetylation miR-pathway. Each column presents data from one subject. Scaled
expression values for a given variable are colored from red (to denote high expression) to blue (low expression). c The relationship between

miR-132 and one of its targets, EP300, is demonstrated in a scatterplot. Each dot represents one subject. d The standardized effect sizes ( β
SE βð Þ)

capturing the strength of the relationship between the five protein acetylation genes and AD are plotted in this panel. We highlight the relative
amount of the effect size (β) which can and cannot be explained by miR-132 expression, as miR-132 is predicted to be regulating each of these genes

Patrick et al. Molecular Neurodegeneration  (2017) 12:51 Page 8 of 13



NP, NFT or pathological AD as covariates to explain
lincRNA expression. The lincRNA that were significantly
associated with NP, NFT or AD are shown in Table 1
and Additional file 3: Table S4. No lincRNA is signifi-
cantly associated with AD after Bonferroni correction.
However, two are associated with NP (linc-CTSD-3 and
linc-BRD9–1) and three with NFT (linc-CTSD-3, linc-
ADC and linc-RNFT2–1); none of these lincRNAs have
sequences that overlap the exons of protein coding
genes.
We then repeated our network-building strategy to

illustrate the primary associations among lincRNAs
and the various demographic and pathological vari-
ables (Fig. 4a). We use linc-CTSD-3 to illustrate the
fact that the pathologic AD-associated non-coding
RNAs can also be independently influenced by con-
founding variables, highlighting the need to include
them in the modeling (Fig. 4a, b, Additional file 1:
Figure S2). As in the miRNA network, no lincRNA
maintains a relationship between both NP and NFT
after feature selection.
We have therefore investigated two different types of

non-coding RNAs, miRNA and lincRNA, which may
play a role in regulating gene expression in AD. Interest-
ingly, while the expression level of different pathologic

AD-associated miRNAs are fairly strongly correlated to
one another, they are not strongly associated with lincR-
NAs, and the lincRNAs are only modestly correlated
with one another (Fig. 2d). This suggests that, while
related, the molecular mechanisms to which these non-
coding RNAs contribute in the context of AD may be
largely different, with greater coordination among
miRNA effects.

Discussion
The number of individuals profiled in our cohorts and
the prospective nature of the brain collection in these
longitudinal studies of aging make our dataset a valuable
resource for exploring, in greater detail, the role of
miRNAs that have previously been associated with
pathologic AD: our analysis meets a need for studies
in larger datasets [17, 38] and offers a potentially less
biased perspective of the disease than the comparison
of AD cases and controls that are pulled from a brain
bank to fit certain diagnostic criteria and were not
collected prospectively. We see that the role of miR-
NAs in AD begins to be resolved in terms of AD’s
component pathologies: linking a specific miRNA
with either NP or NFT. These associations with a
pathologic feature relating to either amyloid or tau

Table 3 Integrated analysis of miRNA and their target mRNA identifies miR:target combinations that are associated with AD

miRNA Pathways Direction Score Genes in pathway targeted by miRNA

miR-132 protein deacetylation; protein
deacylation; macromolecule
deacylation

Down 1.17E-09 EP300, NACC2, SALL1, SREBF1, SIRT1

miR-200a anion transport Up 1.07E-07 SLC20A1, SLC25A3, RIMS1, SLC35A1, SLC35D1,
GLS, ATP8A2, ATP8A1, IRS2, SLC38A9, CXCL12,
SLC16A7, SLC18A2

miR-129-5p regulation of transcription, DNA-
templated

Down 1.19E-07 EP300, NCOA1, ZBTB20, PBX3, LMNA, ZBTB5,
ETS1, CHD7, CBX4, WWC2, YWHAB, CBX7,
PKNOX1, ZBTB10, CBX6, PHIP, ZFY

miR-129-5p cell migration; cell motility;
localization of cell

Down 1.19E-07 SUN2, DLC1, LMNA, TMEM201, ETS1, RPS6KB1

miR-129-5p positive regulation of transcription,
DNA-templated;
positive regulation of transcription
from RNA polymerase II promoter;
positive regulation of RNA metabolic
process;
positive regulation of RNA
biosynthetic process;
positive regulation of nucleic acid-
templated transcription

Down 1.19E-07 EP300, NCOA1, LMNA, ETS1, PKNOX1, PHIP

miR-129-5p regulation of RNA metabolic process;
regulation of nucleic acid-templated
transcription;
regulation of RNA biosynthetic
process

Down 1.19E-07 EP300, NCOA1, ZBTB20, PBX3, LMNA, ZBTB5,
ETS1, CHD7, CBX4, WWC2, YWHAB, ACTN1,
CBX7, PKNOX1, ZBTB10, CBX6, PHIP, ZFY

miR-129-5p cardiovascular system development;
circulatory system development

Down 1.19E-07 EP300, DLC1, LMNA, ETS1, CHD7, PKNOX1,
TIPARP

miR-129-5p single-organism organelle
organization

Down 1.19E-07 SUN2, EP300, DLC1, NCOA1, LMNA, VAMP1,
WHAB, SNX9, ACTN1, PAPD5, PHIP
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pathology are important to generate hypotheses that
can be tested in future studies, particularly in mouse
models that may recapitulate only one of these path-
ologies. Aside from the two validated miRNAs, we
found suggestive evidence of association (p-values
<0.05) for 8 of the 48 previously proposed pathologic
AD-associated miRNAs, demonstrating that additional
miRNAs may have smaller effects on AD. While all
of the other studies age-matched their subjects, none
explicitly modeled sex or other technical covariates in
their analysis. In particular, we observe strong associa-
tions with RIN score, a technical measure capturing
the quality of the RNA sample that led to spurious
associations when not accounted for in the analysis.
One study [12] reports the overall RIN scores for
their hippocampal and prefrontal cortex samples;
however, they do not provide a description of how
this measure correlates with AD, and the incomplete
RIN score data reported by another study [13] shows
some potential differences between AD and controls.
By accounting for the covariates that we have mea-
sured, we not only enhance confidence in the miRNA
reported as being associated with AD pathology but
also provide an opportunity to speculate on the rea-
son why some miRNA may not have been validated
due to the technical, clinical and demographic differ-
ences among subjects selected for different studies.

Fig. 4 Network of lincRNAs associated with phenotypes. a The relationships between lincRNA expression and various demographic and technical
features as well as neuropathologic outcomes are displayed in a network diagram. All lincRNA with a significant (p < 0.00016) or suggestive
(p < 0.05) association are included in the network. These relationships were extracted via feature selection from linear models which explain an
lincRNA’s expression level by using age at death (Age), neuronal composition (NNLS), sex, study of origin (Study, ROS or MAP), post-mortem
interval (PMI), RNA integrity number (RIN), neuritic amyloid plaques (NP), neurofibrillary tangles (NFT) and pathological AD diagnosis (AD). Each
node in the diagram represents a lincRNA (small circles) or a demographic or a neuropathologic variable (large circles). The significantly associated
lincRNA (Table 1) are represented by rectangles. A red edge represents a positive association between the lincRNA and trait; a blue edge denotes
an inverse association. As most of the lincRNAs are associated with RIN, the associations with RIN were removed from this figure for clarity. b The
association of linc-CTSD-3 expression with each variable is plotted after fitting a model including all variables. The standardized effect size of each
of these explanatory variables and 95% confidence intervals are shown. This illustrates the fact that non-coding RNAs significantly associated with
AD pathology can be strongly influenced by confounding variables, but that these effects are independent

Table 4 Predicted target genes that are negatively associated
with miR-132 expression in the human cortex

Gene P-value: association
with miR-132

P-value: association
with AD

In protein
acetylation
pathway

CLMN 1.00E-14 0.0016

TJAP1 1.60E-12 0.00059

ANKRD40 9.30E-11 0.023

CXorf36 1.00E-10 0.0082

CDK19 2.60E-10 0.019

SSH2 6.10E-09 0.39

SEMA6A 4.90E-08 0.013

HIP1R 5.50E-08 0.0017

EP300 9.60E-08 0.0024 ✓

DYNC1LI2 1.30E-07 0.023

NACC2 1.60E-07 0.021 ✓

SOX5 1.60E-07 0.22

SIRT1 1.70E-07 0.069 ✓

SALL1 5.10E-07 0.031 ✓

MAPK3 4.10E-06 0.15

BCAN 2.00E-05 0.034

EPB41 0.00017 0.8

CTGF 0.00033 0.68

MEX3C 0.00038 0.53

SREBF1 0.00051 0.058 ✓

Patrick et al. Molecular Neurodegeneration  (2017) 12:51 Page 10 of 13



Our study has certain limitations, including the
advanced average age at death (88 years) in these co-
horts and the fact that they are representative of the
older population but are not truly population-based,
which limit the generalizability of our results. However,
the high rate of autopsy (>90%) among study subjects
ensures that our results are representative for the entire
study population, which consists of subjects who are
non-demented at the beginning of the study. Further,
the data that we analyzed was generated from the cortex
(gray matter). This is a practical compromise to attain
large sample sizes, but it presents a challenge for future
work as it is not clear which cell type may be driving a
particular association. While accounting for the propor-
tion of neurons in the tissue addresses some of the con-
cerns that relate to the role of changes in the relative
frequency of cell populations, future work in purified
cell populations will be needed to resolve these ques-
tions more fully. The Nanostring technology used to
measure miRNA expression could also introduce a tech-
nical bias in the replication of previously reported
miRNA, and the use of probes to measure miRNA with
Nanostring and of a predefined reference for aligning
lincRNA data will limit the discovery of unannotated
non-coding RNAs. Finally, we cannot comment on caus-
ality since we have a performed a cross-sectional analysis
of brain tissue.
The availability of transcriptome-wide mRNA data

from the same RNA samples in a large (n = 540) subset
of the ROSMAP subjects profiled for miRNA also pro-
vides a rare opportunity to directly explore the relation
of miRNA with their putative target mRNAs and of miR-
NAs with a different class of non-coding RNAs, lincR-
NAs, in human tissue. Some of the lincRNAs are
associated with AD pathology but their expression ap-
pears to be largely independent of the miRNAs. On the
other hand, our large autopsy-derived mRNA sequence
data has identified several different molecular pathways
whose component genes have mRNA levels that are as-
sociated with AD and are targeted by AD-associated
miRNA. The robustness of these results is nicely demon-
strated by our lead miRNA, miR-132, which has been
validated to be associated with AD in prior targeted
studies [12, 13, 39] and for which selected putative target
genes have been evaluated in brain samples, including
EP300 and SIRT1 [12, 14]. Here, we not only refine earl-
ier observations by showing that the effect of miR-132 is
mediated by the accumulation of amyloid pathology but
also expand prior targeted studies of downstream effects
by organizing the target genes in pathways to highlight
cellular functions, such as protein acetylation that
appear to be targeted by alterations in miR-132.
The functional consequences of lincRNAs remain

poorly understood, and we therefore could not repeat

our pathway analysis with this subset of non-coding
RNAs. Since lincRNAs may influence the coding RNAs
found in the same locus, we did evaluate the association
of the neighboring protein-coding genes with AD and
the neuropathologic outcomes, but none of the coding
transcripts were significantly associated. We also note
that the previously reported BACE1-AS lincRNA [20]
was not in the reference used in this study, and therefore
could not be evaluated in our study. The positive associ-
ation of BACE1 mRNA expression with AD was not rep-
licated in our cohort (P = 0.63).
With our analyses, we have therefore begun to use

autopsy data from a large set of well-characterized
human subjects that capture the heterogeneity of older
human brains to resolve which aspect of AD-related
pathology is influenced by each miRNA of interest. The
two well-validated miRNAs in AD illustrate this well:
while miR-132 and mir-129-5p are strongly associated
with the correlated amyloid and tau pathology measures,
both miRNAs are more strongly associated with amyloid
pathology than with the accumulation of Tau pathology
when the pathologies are included in the same model.
This leads to very different experimental paths to further
dissect the mechanism of these miRNAs in AD. In
addition, using these quantitative pathologic traits that
are more precise than a categorical diagnosis of AD, we
find that some new miRNAs, such as miR-99b, that may
have a stronger effect on a specific pathology, such as
Tau/NFT. lincRNAs also appear to be involved, but the
downstream consequences of these non-coding RNAs
remain unclear. Nonetheless, the lincRNA associations
bring another dimension to the broad narrative that
emerges from our report: that molecular changes associ-
ated with AD include an important alteration in the
regulation of cortical transcription, which is consistent
with prior reports of epigenomic changes in certain
model systems such as Drosophila melanogaster DNA
methylation profiles and the involvement of REST in AD
[40, 41]. This narrative is also illustrated by miR-200
where the simple analysis of the miRNA alone is sug-
gestive but not convincing of association with AD;
however, an integrated analysis that also considers alter-
ations of miR-200 target genes prioritizes this miRNA and
downstream transcriptional changes in anion transporters
for further evaluation. Such integrated analyses of comple-
mentary data may be helpful to resolve the broader per-
spective on alterations in cellular function in AD. With
this manuscript, we therefore provide a robust foundation
of detailed neuropathologic associations that set the stage
for a new generation of integrative analyses that consider
different molecular measures generated from the same
subjects and allows for the direct modeling of the complex
phenotypic and molecular heterogeneity of the aging
population at risk of AD and other dementia.

Patrick et al. Molecular Neurodegeneration  (2017) 12:51 Page 11 of 13



Conclusions
By studying cortical levels of non-coding RNA in a large
prospectively recruited cohort of well-characterized hu-
man subjects we had a unique opportunity to explore
their associations with measures of both neuritic plaques
and neurofibrillary tangles as well as the target mRNAs
that they may be regulating. This work provides a robust
foundation for future hypothesis-driven work to further
dissect the mechanism of the reported associations to
specific neuropathologic features of AD.
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