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Abstract: Information on the use of endophytic bacteria as a bio-herbicide for the management of
weed control in agricultural fields is limited. The current study aimed to isolate endophytic bacteria
from evening primroses and to screen them for their bio-herbicidal activity. Two isolated endophytic
bacteria (Pantoea dispersa YNA11 and Klebsiella pneumoniae YNA12) were initially screened for citrate
utilization and for indole-3-acetic acid (IAA) and catalase production. The preliminary biochemical
assessment showed YNA12 as a positive strain. Ammonia, catalase, and IAA in its culture filtrate
were quantified. Gas Chromatography/Mass Spectroscopy- Selective Ion Monitoring (GC/MS-SIM)
analysis revealed the production of IAA by YNA12 in a time-dependent manner. YNA12 also
exhibited significant ammonia-producing potential and catalase activity against hydrogen peroxide.
The YNA12 culture filtrate significantly inhibited the germination rate of evening primrose seeds,
resulting in a marked reduction in seedling length and biomass compared with those of the control
seeds. Moreover, the culture filtrate of YNA12 significantly accelerated the endogenous abscisic acid
(ABA) production and catalase activity of evening primrose seedlings. Macronutrient regulation was
adversely affected in the seedlings exposed to the culture filtrate of YNA12, leading to inhibition
of seed germination. The current results suggest that endophytic YNA12 may be used as a potent
bio-herbicidal agent for controlling weed growth and development.

Keywords: endophyte; IAA; bio-herbicide; abscisic acid; catalase; macronutrients

1. Introduction

Plants interact with various microbes (phytopathogenic and phytobeneficial) throughout their
life cycle in a soil ecosystem [1]. This interaction widely influences plant growth, development, and
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productivity [2]. Each microorganism has different direct and indirect strategies to influence plant
growth and function by actively colonizing host plant tissues, providing microbial compounds to
the host plant, facilitating the uptake of nutrients, and reducing and preventing the harmful effects
of phytopathogens [3,4]. However, some microorganisms are known as deleterious microorganisms,
which can be defined as microorganisms that inhibit plant growth without causing any apparent
disease [5].

Deleterious microorganisms inhibit plant growth via several mechanisms [6,7], which include the
production of phytotoxins such as cyanide as well as other volatile and nonvolatile compounds [8,9].
However, plant growth inhibition through phytohormone production is also thought to be an alternative
mechanism of this group of microbes. Indole-3-acetic acid (IAA) produced by deleterious bacteria has
been reported to inhibit root growth in various crops such as spiny amaranth (Amaranthus spinosus),
purslane (Portulaca oleracea), sugar beet, and blackcurrant [8]. These bacteria may also compete with
plants and beneficial microorganisms for nutrients, which would contribute to the reduction of plant
growth. Moreover, the bacteria may also indirectly inhibit plant growth by reducing the effect of
nitrogen-fixing bacteria [6].

Conventional agriculture mostly relies on the use of heavy chemicals for higher agriculture
productivity; however, the widespread use of chemicals in agriculture could threaten food safety [10–12].
In such situations, the use of phytohormone-producing microbial inoculants could be an ideal
eco-friendly approach not only for promoting host plant growth and inhibiting weed growth but also
for minimizing chemical input in agricultural systems [13]. Therefore, to produce safe agricultural
products with eco-friendly methods and to minimize the use of chemical fungicides, pesticides,
herbicides, and plant growth retardants, the use of plant-associated microbes may be considered to
control pests and to retard the growth of unwanted plants [14].

Many microorganisms are used to improve plant growth and productivity via symbiotic
interactions [15]. However, the use of microorganisms for plant growth inhibition has not been
fully explored. Microorganisms that inhibit plant growth are needed for the inhibition of unwanted
plants in agricultural fields with minimum or no chemical input. Among the different microorganisms,
seed-borne endophytic bacteria are the most promising due to various phytobeneficial traits including
phytohormone production, active colonization, plant growth promotion, and biotic and abiotic stress
mitigation [3]. Evening primrose (Oenothera biennis) greatly affects the domestic ecosystem in South
Korea due to rapid germination and seed production. However, studies are lacking regarding the
management of Oenothera biennis that has rapidly spread nationwide and is disturbing domestic
ecosystems. Therefore, the current study investigated the potential of microbial utilization by isolating
seed-borne endophytic bacteria acting as biocontrol agent (BCA) in order to inhibit the growth of
rapidly spreading evening primrose growth by hormone and enzyme secretion. In addition, the
physiological basis of this phenomenon was evaluated by examining the regulation of endogenous
phytohormones, antioxidants, and macronutrients in the host plant.

2. Materials and Methods

2.1. Isolation and Identification of Endophytic Bacteria

The seeds of local evening primrose (Oenothera biennis) were obtained from a farm in Gunwi
in South Korea. The seeds were thoroughly rinsed with autoclaved double-distilled water and
surface-sterilized by immersion in sodium hypochlorite (NaOCl) solution containing 2.5% active
chloride (wt/vol) and 1 droplet of Tween 80 per 100 mL solution. To ensure the efficiency of the
sterilization process, randomly selected seeds and the last few drops of the final rinse were incubated
on Luria-Bertani LB medium at 30 ◦C for 3 days. Thereafter, approximately 30 seeds were carefully
macerated in a sterilized phosphate buffer saline solution and serially diluted up to 10−3 dilution.
From the diluted solution, 0.2 mL increments were plated on LB media plates and incubated at 27 ◦C
for 48 h for the isolation of endophytic bacterial strains.
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Thereafter, the newly endophytic bacterial isolates YNA11 and YNA12 were chosen due to their
metabolite-producing potential among the 20 isolated strains. The preliminary biochemical tests and,
thereafter, IAA and ammonia quantification of the selected bacterial isolates YNA11 and YNA12 were
done through using Gas Chromatography-Mass Spectroscopy- Selective Ion Monitoring GC-MS/SIM
and MI405 Ammonia Medium Range Photometer, respectively. Moreover, YNA11 and YNA12 were
grown on LB medium at 30 ◦C for 3 days, and the bacterial pellet was extracted from the culture medium
by centrifugation. The obtained pellet was further used for the extraction of genomic DNA to identify
the endophytic YNA11 and YNA12 isolates by amplification and sequencing of the 16S rRNA region
as described by Kang et al. [16], using the primer pair 27F (5′-AGA GTT TGA TCC TGG CTC AG-3′)
and 1492R (5′-TAC CTT GTT ACG ACT T-3′). The resulting 16S rRNA sequence was then BLASTed
against the National Center for Biotechnology Information (NCBI) GenBank database to investigate
the nucleotide sequence homology of the isolated strains, and phylogenetic analysis was conducted
using the neighbor-joining method with MEGA v. 7.0 [17]. The 16S rRNA sequences of Pantoea dispersa
YNA11 and Klebsiella pneumoniae YNA12 were deposited to the NCBI GenBank database.

2.2. Preliminary Biochemical Assessment of Endophytic Bacteria

2.2.1. IAA Detection

Preliminary screening was performed to detect the IAA-producing ability of endophytic YNA11
and YNA12 by Salkowski’s test as described by Kang et al. [18]. In brief, equal volumes (0.5 mL)
of the bacterial cell-free supernatant of 24-h-old cells grown in LB medium and Salkowski’s reagent
were mixed together and kept in the dark at room temperature for 30 min. The development of pink
coloration after 30 min was regarded as a positive indicator for the production of IAA.

2.2.2. Citrate Utilization Test

Citrate utilization test was conducted as described by MacWilliams [19] by streaking endophytic
YNA11 and YNA12 on Simmons citrate agar plate containing per L of distilled water, NaCl (5.0 g),
sodium citrate (2.0 g), ammonium dihydrogen phosphate (1.0 g), magnesium sulfate (0.2 g), dipotassium
phosphate (1.0 g), bromothymol blue (0.08 g), and agar (15.0 g). Then, the plates were incubated at
28.5 ◦C for 24 h.

2.2.3. Catalase Test

The catalase test of endophytic YNA11 and YNA12 was conducted as described by Tiwari and
Singh [20]. In brief, 24-h-old bacterial cells were transferred to a clean slide using an inoculation loop
and were exposed to several drops of 3% hydrogen peroxide (H2O2). The formation of oxygen bubbles
indicated a positive test for the production of catalase by endophytic bacteria.

2.3. Biochemical Analysis

2.3.1. Quantification of IAA Production by GC/MS-SIM

After IAA production was detected based on the preliminary Salkowski’s test, the culture filtrate
of YNA12 (24 h, 48 h, and 72 h old grown in LB medium) was further used for the quantitation of IAA
via GC-MS/SIM (5973 Network Mass Selective Detector and 6890N Network Gas Chromatograph;
Agilent Technologies, Palo Alto, CA, USA) as described by Kang et al. [18]. In brief, 20 mL of the
bacterial culture was centrifuged at 10,000× g for 15 min at 4 ◦C and the supernatant was filtered
through a 0.45-µm cellulose membrane acetate. The resulting filtrate was acidified to pH 2.8 and
supplemented with an internal standard of 40 µL of [D5]-IAA followed by extraction with 4 mL of
ethyl acetate. The ethyl acetate extract was rotary evaporated under vacuum at 40 ◦C. The organic
layer was vacuum-dried and amended with 60% methanol followed by adjustment to pH 8.0 ± 0.3 and
by passing through a reverse-phase C18 column. The extracted residue was dissolved in 1.0 mL of
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methanol and 1.5 mL of ethereal diazomethane. Ethyl acetate was used for redissolving the methylated
samples before the quantification of IAA by GC-MS/SIM.

2.3.2. Production of Ammonia

The production of ammonia by YNA12 was investigated as described by Lee et al. [21]. In brief,
100 µL of the culture broth of YNA12 grown in LB medium was transferred to tubes and diluted
100-fold in distilled water followed by the addition of Nessler’s reagent (0.5 mL). LB broth was used as
the control. The value was measured using MI405 Ammonia Medium Range Photometer (range: 0.00
to 9.99 mg L−1; Milwaukee, Szeged, Hungary).

2.3.3. Catalase Activity

The catalase activity of bacterial cells and seedlings was determined by using the Amplex Red
Catalase Assay Kit (Thermo Fisher, Waltham, MA, USA) as described by Park et al. [22]. In brief, 24-h,
48-h, and 72-h bacterial cultures (optical density (O.D600) = 0.2) were centrifuged, and the pellets were
lysed in 0.1 M Tris buffer (pH 7.4). The experiment was conducted in a 96-well plate by adding 25 µL
YNA12 cell lysates, catalase standard, and 40 µM H2O2. Subsequently, 50 µM Amplex Red reagent
and 0.2 U/mL horseradish peroxidase were added. The absorbance was measured at 590 nm using a
Multiskan™ GO microplate spectrophotometer (Thermo Fisher, Waltham, MA, USA).

2.4. Screening of Plant Growth Inhibition by Endophytic Bacteria via Germination Test

The seeds of evening primrose were surface-sterilized with 5% NaOCl followed by thoroughly
rinsing with double-distilled water, and they were kept in Petri dishes containing two layers of
filter paper. The culture broth (72 h old) of the isolated endophytic bacteria YNA12 was diluted
(100 ppm) and added to the Petri dishes containing 30 evening primrose seeds. The Petri dishes
were incubated at 28 ◦C for 7 days in an aseptic environment. LB medium (100 ppm) was used as a
negative control, while the combined application of YNA12 culture filtrate, ammonia (10 ppm) and IAA
(100 ppm) was used as a positive control. The following treatments were included in the experimental
design: (i) control seeds treated with LB medium; (ii) ammonia-treated seeds; (iii) IAA-treated seeds;
(iv) YNA12-culture broth-treated seeds; and (v) ammonia-, IAA-, and YNA12-culture broth-treated
seeds. The bio-herbicide effect of endophytic YNA12 was assessed by measuring the seed germination
rate, seedling length and weight, as well as cotyledon development frequency (CDF).

2.4.1. Effect of YNA12 on the Abscisic Acid (ABA) Modulation of Evening Primroses

Endogenous ABA was extracted from the germinated seedlings of evening primroses as described
by Qi et al. [23], with slight modifications as reported by Bilal et al. [24]. In brief, freeze-dried samples
of evening primrose seeds were extracted with isopropanol (95%) and glacial acetic acid (5%) followed
by supplementation with 20 ng of the internal standard Me-[2H6]-ABA. The resulting filtrate was
vacuum-dried using a rotary evaporator, dissolved in 1 N NaOH, and washed with methylene chloride,
and the pH was adjusted to 3.5. The obtained extract was dissolved in dichloromethane followed
by transferring to a silica cartridge. Then, diethyl ether and methanol (3:2, v/v) were added to elude
ABA from the cartridge. The resulting extract was dried using N2 gas and was methylated by adding
diazomethane for the detection and quantification of ABA using GC-MS coupled with a selected ion
monitor (SIM; 5973 Network Mass Selective Detector and 6890 N Network Gas Chromatograph System;
Agilent Technologies, Palo Alto, CA, USA). The Lab-Base (ThermoQuest, Manchester, UK) data system
software was used to monitor response signals to ions of m/e 162 and 190 for Me-ABA and 166 and 194
for Me-[2H6]-ABA.
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2.4.2. Analysis of Macronutrient Regulation in Plants by Inductively Coupled Plasma Mass
Spectrometry (ICP-MS)

The freeze-dried powdered samples of evening primroses were used for the quantification of
macronutrients (Potassium, K; Phosphorus, P; Calcium, Ca) by ICP-MS (Optima 7900DV; Perkin-Elmer,
Waltham, MA, USA), as previously described by Bilal et al. [25]. In brief, 0.05 g of the ground plant
sample was digested with 7 mL of 65% HNO3 and 1 mL of 30% H2O2 and subjected to microwave
digestion at 180 ◦C for 20 min. Then, the sample was cooled for 40 min and quantified by ICP-MS.

2.5. Statistical Analysis

All of the experiments were repeated three times, and the data collected from each repetition were
pooled together. The current data illustrate the mean values with standard deviation (SD). The means
were analyzed to find the significant differences among treatments by using one-way analysis of variance
(ANOVA), followed by Duncan’s multiple range test (DMRT) in SAS software (V9.1, Cary, NC, USA).

3. Results

3.1. Identification and Phylogenetic Analysis of YNA11 and YNA12

For molecular identification and phylogenetic analysis of YNA11 and YNA12 isolates, 16S rRNA
was amplified, sequenced, and compared to the database of known 16S rRNA genes. The sequences of
different genera were also used for constructing the phylogenetic tree to determine the relationship
among participating candidates in the group. The amplification of the 16S rRNA sequence and further
phylogenetic analysis of YNA11 and YNA12 revealed that the isolated strains have maximum sequence
homology with Pantoea dispersa and Klebsiella pneumoniae, respectively (Figure 1). The 16S rRNA
sequences of Pantoea dispersa YNA11 and Klebsiella pneumoniae YNA12 were deposited to the NCBI
GenBank database under the accession numbers MK027265 and MK027266, respectively.
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3.2. Biochemical Characterization

The preliminary biochemical assessment of the isolated endophytic bacteria revealed YNA12 as a
positive strain with the ability to use citrate as a carbon source, indicated by a change in the color of
the bromothymol blue indicator from green to blue (Figure 2B). YNA12 also reacted positively to the
catalase test by producing catalase enzymes that catalyze the release of oxygen bubbles, thus protecting
itself from the hazardous effects of H2O2 (Figure 2C). On the other hand, YNA11 was negative for citrate
utilization and catalase production in the preliminary biochemical assessment. Similarly, Salkowski’s
reagent test was carried out to confirm IAA production by endophytic YNA12 and YNA11. The results
showed the appearance of a pink color following the addition of the Salkowski’s reagent to the culture
filtrate of YNA12, indicating the production of IAA by endophytic YNA12 (Figure 2A). In contrast, no
pink color was observed in the culture filtrate of YNA11 following the addition of Salkowski’s reagent.
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Figure 2. Preliminary biochemical screening of endophytic YNA11 and YNA12: (A) Salkowski’s test,
(B) citrate utilization test, and (C) catalase test.

3.3. Quantification of Metabolite Production by YNA12

After the positive results of the preliminary biochemical tests, the culture filtrate of YNA12 was
used for further analysis by GC/MS for the quantification of specific indole compounds. A higher
level of IAA was detected in the 3-day-old culture medium of YNA12, followed by the 2-day-old and
1-day-old culture filtrates. The highest level of IAA in the 3-day-old culture filtrate of YNA12 was
119.3 ± 10.4 µg/mL (Figure 3A). Moreover, assessment of ammonia production by YNA12 revealed that
the highest level of ammonia was detected in the 2-day-old and 3-day-old culture filtrates, followed by
the 1-day-old culture filtrate. The highest level of ammonia was 7.75 ± 1.0 mg/L (Figure 3B). In the
preliminary test for catalase production, YNA12 exhibited a positive result for the catalase test by
producing oxygen bubbles. Therefore, the quantification of catalase production in response to H2O2

toxicity demonstrated a high tolerance of YNA12 against oxidative stress. Catalase production by
YNA12 was significantly higher in the 3-day-old cell lysate, followed by the 1-day-old and 2-day-old
cell lysates (Figure 3C).
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Figure 3. Quantification of indole-3-acetic acid (IAA) (A), ammonia (B), and catalase (C) produced by
endophytic YNA12: Values and error bars represent the mean ± standard deviation (n = 3). Means
followed by the same letter (a, b, and c) are not significantly different (p ≤ 0.05) according to Duncan’s
multiple range test.

3.4. Adverse Effects of Endophytic YNA12 on Seed Germination of Evening Primrose

The effect of the culture filtrate of YNA12 on the germination of evening primrose seeds was
examined to determine the inhibition of seed germination at two time points, i.e., 7 days after treatment
(DAT) and 5 DAT (Table 1). In addition, the germination rate of evening primrose seeds was significantly
enhanced at 7 DAT compared with 5 DAT in all treatments. The application of a sole culture broth of
YNA12 as well as the coupled application of ammonia, IAA, and YNA12 at 5 DAT equally resulted
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in a significantly lower germination rate compared with the control, the sole IAA-treated, and the
sole ammonia-treated plants. The findings illustrated that application of a combined treatment of
culture broth of YNA12, IAA, and ammonia exhibited approximately 9%, 37%, 65%, and 73% lower
germination rates as compared to sole YNA12 culture broth, sole ammonia, sole IAA, and control
seeds, respectively, at 5 DAT. Similarly, the germination rate at 7 DAT was noted to be significantly
lowered in the combined application of YNA12 culture broth, IAA, and ammonia, followed by sole
YNA12 culture broth, sole ammonia, sole IAA, and control seeds, respectively, whereas the combined
application of YNA12 culture broth IAA and ammonia led to a significant deterioration of the seedling
length and weight. Our results showed that the inhibition of the seed germination rate at 5 DAT with
the combined application of YNA12 culture broth IAA and ammonia broth significantly decreased the
seedling lengths by 33%, 65%, 76%, and 87% as compared with those of sole YNA12 culture broth,
sole ammonia, sole IAA, and control seeds, respectively. Likewise, treatment of the culture broth of
YNA12 and the combined application of YNA12 culture broth IAA and ammonia resulted equally in
significant reductions of seedling length at 7 DAT, followed by sole ammonia, sole IAA, and control
seedlings, respectively. Moreover, the seedling weight was drastically influenced by the application of
sole YNA12 culture broth and the combined application of YNA12 culture broth, sole ammonia, and
IAA by significantly reducing the seedling weight at 5 DAT as compared to those of sole ammonia,
IAA, and control seedlings, respectively. However, a reduction of seedling weight at 7 DAT was not
significant among combined treated seedlings, sole YNA12 culture broth-treated seedlings, and sole
ammonia-treated seedlings. Similarly, Cotyledon development frequency (CDF) at 5 DAT and 7 DAT
showed significant reduction under the combined YNA12 culture broth and the sole ammonia and
IAA applications, followed by those of sole YNA 12 culture broth, sole ammonia, and sole IAA-treated
seedlings as compared to control seedlings, respectively.

Table 1. Adverse effect of different treatments on the germination of evening primrose seeds.

Treatments
GR(%) SL(cm) SW(mg) CDF(%)

5D 7D 5D 7D 5D 7D 5D 7D

Control 38.3 ±
3.5a

50.0 ±
8.66a

1.54 ±
0.09a

2.10 ±
0.27a

2.58 ±
0.28a 4.1 ± 0.8a 52.2 73.3

IAA 100 ppm 29.0 ±
4.0b

36.6 ±
2.88b

0.84 ±
0.05b

1.20 ±
0.13b

1.57 ±
0.30b

2.1 ±
0.22b 13.5 17.6

Ammonia
10 ppm

16.0 ±
1.7c

29.0 ±
1.73c

0.58 ±
0.08c

1.08 ±
0.18b

1.00 ±
0.04c

1.38 ±
0.13c 11.5 15.6

YNA 12 Culture
Filtrate

11.0 ±
2.6d

22.3 ±
2.65d

0.30 ±
0.04d

0.40 ±
0.029c

0.84 ±
0.03d

1.12 ±
0.15c 5.2 13.6

A+I+YNA12 10.0 ±
1.0d

16.7 ±
1.53e

0.20 ±
0.04e

0.34 ±
0.041c

0.76 ±
0.05d

1.06 ±
0.14c 3.2 10.0

Means followed by different letters in the column are significantly different (p ≤ 0.05) as determined by Duncan’s
multiple range test (DMRT): Each Petri dish contained 30 evening primrose seeds. GR, Germination rate; SL, Seedling
length; SW, Seedling weight; and CDF, Cotyledon development frequency. D denotes the days after treatment.

3.5. Effect of YNA12 on the Catalase Activity of Evening Primroses

The effect of the 10-fold diluted culture of YNA12 was assessed to measure the catalase activity
of evening primrose seedlings (Figure 4). The results demonstrated that the catalase activity of
sole IAA-treated seedlings was significantly higher and that YNA12 culture broth-treated seedling
exhibited significantly lower activity at 5 DAT. On the contrary, sole YNA12 culture broth-treated and
combined YNA12 culture broth, ammonia, and IAA-treated seedling exhibited significantly higher
CAT activity equally of CAT at 7 DAT as compared to those of sole IAA, ammonia-treated, and control
seedlings, respectively.
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Figure 4. Effect of the YNA12 culture filtrate on the regulation of catalase in evening primrose seedlings:
Data are presented as the mean ± standard deviation (n = 3), and significant differences between the
control and endophytic YNA12 treatments were analyzed with one-way ANOVA followed by Duncan’s
multiple range test (p < 0.05).

3.6. Effect of YNA12 on the Regulation of the Endogenous ABA of Evening Primroses

The regulation of endogenous ABA content has been reported to modulate seed dormancy and
germination. In the current study, we investigated the effect of the culture broth of YNA12 on the ABA
level of evening primroses at two different time points (5 DAT and 7 DAT). The results depicted that
the ABA level of the YNA12 broth-treated seedling at 5 DAT was significantly higher by approximately
15%, 33%, 84%, and 164% as compared to those of combined treated, sole ammonia-treated, sole
IAA-treated, and control seedlings, respectively (Figure 5), whereas the accumulation of ABA was
significantly enhanced in evening primroses seedlings at 7 DAT. The findings illustrated that YNA 12
culture broth-treated seedlings exhibited significantly higher level (758.13 ng/g DW) of ABA, whilst
control plants demonstrated a significantly lower level (384.3 ng/g DW) of ABA at 7 DAT (Figure 5).
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Data are presented as the mean ± standard deviation (n = 3), and significant differences between the
control and endophytic YNA12 treatments were analyzed with one-way ANOVA followed by Duncan’s
multiple range test (p < 0.05).

3.7. Effect of YNA12 on the Macronutrient Regulation of Evening Primroses

The culture broth of YNA12 significantly modulated the endogenous macronutrients (P, K, and
Ca) of evening primrose seeds (Figure 6). The level of P was not significantly different. The findings
illustrated that the level of P was not significantly different at 5 DAT between YNA12-broth treated
and control seedlings and exhibited significantly higher levels as compared to the combined treated
and the sole IAA- and ammonia-treated seedlings. However, the level of P was significantly reduced
in YNA12 broth-treated seedlings at 7 DAT, followed by those of the combined treated and the sole
IAA- and ammonia-treated seedlings. On the other hand, the level of K in YNA12 broth-treated
seedlings was significantly lower compared with control seedlings, combined treated seedlings, and
sole IAA- and ammonia-treated seedlings at 5 DAT and 7 DAT. Similarly, a significantly higher amount
of Ca at 5 DAT was observed in control seedlings followed by YNA12 broth treated-seedlings, sole
ammonia, IAA-treated seedlings, and combined treated seedlings, respectively, whereas combined
treated seedlings depicted significantly lower levels of Ca at 7 DAT followed by YNA12 broth-treated
seedlings, sole ammonia seedlings, IAA-treated seedlings, and control seedlings, respectively.
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seedlings; and IAB, IAA-, ammonia-, and YNA12-treated seedlings. Different letters on the columns
with error bars (mean ± standard deviation) represent significant differences among the treatments.
The data were analyzed with a one-way ANOVA followed by Duncan multiple range test (p < 0.05).

4. Discussion

Together with the ability to promote host plant growth, endophytic microbes are also well
documented for inducing deleterious effects on weed plants for inhibiting their growth and
development [26]. Plant growth-promoting endophytes have been reported to exhibit host-specific
behavior, acting as beneficial symbionts in some plants but as pathogens in others [27]. Moreover,
the production of various metabolites by endophytes has been shown to have phytotoxic effects on
non-host species. Controlling weed growth through endophytes has distinctive advantages over
the application of pathogens, such as improving the ability of candidate microbes to survive in filed
conditions via having consistent ecological niches within their host plant [26,28]. Therefore, the
application of plant-promoting bacteria can be considered another environmentally sound technique
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for weed management as well as for reducing the application of synthetic fertilizers [28]. Moreover,
the application of bacteria as biocontrol agents is considered more prevalent and selective as compared
to synthetic herbicides by targeting only desired species and by lessening the chances of induction
of resistance in target weeds due to employing various mechanisms for inhibiting their growth [28].
Furthermore, allelopathic compounds have been identified from endophytic microbes with a major role
in weed management. Fourteen indole diketopiperazine (DKP) alkaloids, including spirotryprostatins
(1–3), tryprostatins (4–6), and cyclotryprostatins (7–14), were obtained from endophytic Aspergillus
fumigatus with significant plant growth-inhibiting potential [29].

Similarly, the inhibitory effect of culture filtrates of endophytic YNA12 on the growth of evening
primrose seeds was assessed, which demonstrated adverse effects on the germination rate. The influence
of the culture broth of YNA12 on inhibiting the germination rate of evening primroses was significantly
promising as compared to sole IAA, ammonia-treated, and control seedlings. Our results demonstrated
that the diluted culture broth (100 ppm) of YNA12 led to a significant reduction in seedling length
and biomass. The inhibition of the germination rate, seedling length, and seedling biomass by the
culture broth of YNA12 in the current study is in agreement with the findings of Barghouthi and
Salman [30], who reported the germination inhibition and radical length reduction of O. aegyptiaca
at higher concentrations using Pseudomonas aeruginosa QUBC1. Moreover, in the current study, the
suppression of the germination of evening primroses by endophytic YNA12 may be attributed to the
availability of various secondary metabolites in the culture broth, such as ammonia and IAA [7,31].
Previously, the emission of ammonia by S. odorifera 4Rx13 has been reported to significantly inhibit
the growth of A. thaliana [31], whereas in the current study, we observed the germination inhibitory
role of exogenous application of IAA and ammonia. Therefore, the inhibition of the germination rate
as well as the seedling length and biomass by YNA12 can be attributed to its higher IAA-producing
ability, which can exert negative effects on plant growth. In another study, the high concentration of
IAA produced by Pseudomonas significantly inhibited durum wheat germination and growth rate [32].
Previously, Trognitz et al. also reported that rhizospheric or endophytic bacteria produce host-specific
phytotoxic metabolites, such as IAA, in higher concentrations causing phytotoxicity by activating
ethylene synthesis via induction of ACC synthase in shoot and production of abscisic acid and
subsequently leading to the inhibition of plant growth [14]. Taken together, these findings suggest
that endophytic YNA12 may inhibit the growth and development of unwanted weeds under normal
conditions in an agricultural system.

To elucidate the mechanism underlying the detrimental effects of endophytic YNA12 on the
germination of evening primroses, a biochemical analysis including the assessment of endogenous
ABA regulation in germinated seeds was performed. Previously, high-level ABA has been reported
as a potent inhibitor of seed germination by reducing the availability of energy and nutrients [33].
The results of our study demonstrated that the application of endophytic YNA12 broth resulted in a
higher level of ABA accumulating in evening primrose seeds. The significant accumulation of ABA in
the bacterial broth-treated seeds may have resulted in a marked reduction in gibberellins, leading to the
retarded germination rate, seedling length, and seedling biomass. Previously, Radhakrishnan et al. [34]
also reported that the application of Enterobacter sp. I-3 to weed seeds (Echinochloa crus-galli L. and
Portulaca oleracea L.) significantly inhibited their germination via the accumulation of ABA and
subsequently blocked GA biosynthetic pathways for controlling seedling growth. The suppression of
evening primrose germination by YNA12, which increased the ABA level, may also be attributed to
the reduced accumulation of calcium as a higher concentration of Ca2+ has been reported to counteract
ABA effects by reducing ABI4 expression during Ca2+ -dependent germination [35]. In addition, the
ammonia-producing ability of YNA12 may have altered calcium homeostasis in evening primrose
seedlings, resulting in the inhibition of seed germination. A higher level of ammonia in plant cells has
been reported to exert adverse effects such as chlorosis, reduced root/shoot ratio, and inhibition of
seedling establishment [31].
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Similarly, the culture filtrate of YNA12 reduced the germination rate by affecting macronutrient
(P, K, and Ca) regulation in evening primrose seeds. The current findings demonstrated the adverse
effect of the culture filtrate of YNA12 on the nutrient uptake and regulation of evening primrose
seedlings at two time points. The reduction in the nutrient uptake of evening primroses may be
attributed to changes in the structure and function of the cellular membrane caused by the presence of
allelochemicals in the culture filtrate of YNA12 [34]. Bacteria with allelopathic effects either directly
influence plant growth by hampering metabolic and physiological processes through the release of
allelochemicals or indirectly through the inhibition of an essential symbiont [36]. In the current study,
the decrease in the macronutrient content of culture filtrate-treated seedlings may be attributed to the
availability of excess ammonia, which has been reported to cause ionic imbalances in plants and to
lead to nutritional deficiencies [37]. Therefore, the reduction in essential nutrients in YNA12 culture
filtrate-treated evening primrose seeds resulted in germination inhibition and retarded seedling growth.
However, the exact mechanism of nutrient uptake inhibition in evening primrose seedlings by the
YNA12 culture filtrate requires further investigation at the transcriptomic and molecular levels.

5. Conclusions

The current study investigated the potential of endophytic Klebsiella pneumoniae YNA12 as a rich
source of herbicidal metabolites. The culture filtrate of YNA12 contained IAA and ammonia and exerted
adverse effects on evening primrose germination as well as seedling length and biomass. Moreover, the
YNA12 culture filtrate increased the endogenous ABA level and suppressed the macronutrient uptake
and antioxidant activity of evening primroses. Therefore, further large-scale studies are required
to rectify the effectiveness of YNA12 application to agricultural fields as an alternative to chemical
herbicides for inhibiting weed plant growth and development, whereas the emphasis should also be
given to the extraction, isolation, and purification of YNA12 metabolites for producing vital compounds
and subsequently their trails for inhibiting weed growth in agricultural fields.
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