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Unsuccessful rehabilitation therapy is a widespread issue amongst modern day amputees. Of the estimated 10 million amputees
worldwide, 3million of whom are upper limb amputees, a largemajority are discontent and experience rejection with their current
prosthesis during activities of daily living (ADL). Here we introduce Upbeat, an augmented reality (AR) dance game designed to
improve rehabilitation therapies in upper limb amputees. In Upbeat, the patient is instructed to follow a virtual dance instructor,
performing choreographed dance movements containing hand gestures involved in upper limb rehabilitation therapy. *e
patient’s position is then tracked using a Microsoft Kinect sensor while the hand gestures are analyzed using EMG data collected
from a Myo Armband. Additionally, a gamified score is calculated based on how many gestures and movements were correctly
performed. Upon completion of the game, a diagnostic summary of the results is shown in the form of a graph summarizing the
collected EMG data, as well as with a video displaying an augmented visualization of the patient’s upper arm muscle activity
during gameplay. By gamifying the rehabilitation process,Upbeat has the potential to improve therapy on upper limb amputees by
enabling the start of rehabilitation immediately after trauma, providing personalized feedback which professionals can utilize to
accurately assess patient’s progress, and increasing patient excitement, therefore increasing patient willingness to complete
rehabilitation. *is paper is concerned with the description and evaluation of our prototypic implementation of Upbeat that will
serve as the basis for conducting clinical studies to evaluate its impact on rehabilitation.

1. Introduction

Limb loss is a recurrent problem all across the world. Every
year, an estimated 185,000 people undergo upper limb
amputations [1], and a significant portion of them add to the
millions who live without the ability to comfortably perform
activities of daily life (ADLs) [2, 3]. Efforts within the field
have led to increased research in prosthetics over the years,
enabling amputees to achieve higher degrees of motion and
control aided with the development of myoelectric pros-
thetics. However, the functionality of these prosthetics re-
mains limited, and coupled with the high rejection rate of
these devices, development in the field has significant room
for improvement.

A common cause of prosthetic rejection is unsuccessful
rehabilitation therapy, in which the amputee is unable to

develop the sufficient skills needed to successfully manage
their prosthesis during ADLs [1]. Some of the major
problems leading to rehabilitation failure include the late
start of posttraumatic intervention due to wait time for a
prosthetic fit, a lack of objective assessment of the patient’s
progress and performance [4], and poor patient motivation
to commit to the repetitive practices involved in re-
habilitation [5].

Augmented and virtual reality (AR/VR) has the potential
to ameliorate the rehabilitation process. By using a virtual
arm instead of waiting for a prosthetic, patients can start
rehabilitation immediately after trauma, consequently re-
ducing the acuteness of muscle atrophy [6]. An example is
Anderson and Bischofʼs system, who developed an AR
system involving a virtual arm overlaid on a patient’s re-
sidual limb and controlled by residual limb muscle activity
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[7]. *is system, when compared to traditional, non-AR
game-based systems, showed higher user experience and
investment as well as comparable muscle isolation. Fur-
thermore, the advantage of the virtual arm enables the
patient to start the rehabilitation process earlier.

Another issue with current rehabilitation in upper limb
amputees is the lack of a comprehensive objective assess-
ment of the patient’s progress. Commonly used methods to
evaluate patient progress include the Box and Block Test
(BBT) [8], the Southampton Hand Assessment Procedure
(SHAP) [9], and the Clothespin Relocation Test (CRT) [10].
However, these are standardized tests only evaluating per-
formance within a small range of movement tasks with
limited degrees of freedom (DOF). *eir assessment
methods only account for completion rate (number of tasks
successfully accomplished), lacking a more comprehensive
quantitative and qualitative assessment of the patient’s
performance. Monitoring run-time dynamics to provide a
more comprehensive assessment is important for practi-
tioners to evaluate how well the patients are restoring
mobility [11].

Among the solutions to tackle the lack of comprehensive
assessment mentioned above stands the protocol developed
by Chadwell et al. [1], which combines EMG signal moni-
toring, kinematic sensing using inertial measurement units
(IMUs), and gaze tracking to determine the patient’s pro-
ficiency of using an upper limb prosthesis. *e results
provide information on the quality of movement as well as
the completion rate and are highly regarded for both its
incorporation of gaze tracking as well as for accounting for
the unpredictability introduced by the skin-electrode in-
terface. However, despite these novel features, this protocol
had a duration of approximately 4 hours, which was in-
conveniently long for efficient clinical use [1].

A year later, Hunt et al. developed the Prosthetic Hand
Assessment Measure (PHAM), an alternative method to
quantitatively assess performance in a range of manipulation
tasks associated with object manipulation (e.g., pinch, key,
and power, shown in Table 1) for upper limb amputees [12].
PHAM uses IMUs for motion tracking and presents a
performance evaluation assessment metric that accounts for
compensatory movements in the patient. Another method
proposed by Yu et al. utilizes a Kinect-based system to
introduce a personalized range of motion measurement with
AR feedback [13].*e goals of the study were to establish the
accuracy of the Kinect in measuring clinically relevant
movements in patients with Parkinson’s disease. *e results
of this system match expertsʼ observations and show
promising results for telerehabilitation scenarios [13], as well
as, once again, the potential of rehabilitation within an AR
system. As shown in the study by Yu et al., as well as later in
Upbeat’s implementation, integration of motion tracking
and electromyography (EMG) sensors within an AR system
provides quantitative data physicians can use for objective
assessment of patient progress. *e flexibility of such a
system also allows the therapy to be personalized to each
patient’s unique needs.

In addition to late posttraumatic intervention and lack of
comprehensive assessment, one of the final main challenges

of upper limb rehabilitation is maintaining patient moti-
vation and commitment to practice, especially considering
the prolonged and repetitive nature of this task. Previous
work on gamified systems for AR-guided rehabilitation
includes mirrARbilitation [14], a system based on gesture
recognition and markerless motion tracking which recog-
nizes and classifies biomechanical movements. *e appli-
cation provides exercise instructions, to prevent cheating via
movement compensation, and has been proven capable of
increasing patient success rate during rehabilitation, pre-
venting wrong movements, and fostering an incentive to
complete the process [14].

As such, AR/VR-guided rehabilitation proves to be ef-
fective in increasing motivation and adding excitement to
rehabilitation practices, consequently leading to increased
investment by the patients themselves. Similar results have
been extensively studied in rehabilitation for stroke patients
[6], results which remain highly applicable towards upper
limb rehabilitation programs [15]. Altogether, the advan-
tages of integrating AR into rehabilitation therapy lead to a
more effective restoration of mobility in amputees by pro-
viding more accurate performance evaluation methods,
providing real-time guidance for improved performance,
and increasing patient’s excitement and motivation while
performing therapy.

Upbeat takes the rehabilitation workflow presented in
PHAM [12] and incorporates it into an AR-based dance
game, simulating the idea of practicing a set of different hand
gestures within a dynamic environment. PHAM focuses on
monitoring gesture completion rate and accounts for
compensatory movement. In Upbeat, we expand upon this
idea through monitoring of patient’s EMG activity as well as
providing an AR feedback visualization system that allows
the patient to see the muscles activated throughout the
gameplay. *e proposed system shall be understood as a
proof of concept in order to quantify performance and
validate design decisions such that, upon completion of this
study, a refined version of the system can be used to evaluate
clinical appropriateness for rehabilitation on a control group
of amputees.

2. Materials and Methods

*e proposed system for rehabilitation is based on AR
guidance, gesture recognition, and markerless body track-
ing. A virtual dance instructor guides the patient through a
set of dance movements containing specific hand gestures
(Figure 1). A Myo armband, worn on the forearm, is used to
detect the patient’s muscle activity and classify the hand
gestures using detected EMG data. *e patient’s position is

Table 1: Correspondence of object, hand gesture, and ADL used in
the PHAM method [12].

Object Hand gesture Activity of daily living (ADL)
Cylinder Power Pouring a glass of water
Prism Tripod Picking up a pencil
Block Pinch Picking up coins
Card Key Grasping a credit card
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tracked with a Microsoft Kinect sensor and used to display a
visualization of the muscle activity upon completion of the
session. *e system’s workflow is described in Section 2.1
and summarized in Figure 2. Moreover, a detailed expla-
nation of the materials and methods to develop each
component in Upbeat is provided in Sections 2.2–2.6.

2.1. GameWorkflow. *e game is composed of three major
scenes for each stage of the game—Menu (song selection),
Play, and Feedback. Navigation throughout the application
can be done with either mouse inputs or with gestures
detected from the Myo Armband (Figure 3). *e Play scene
(Figure 1) is where the majority of the gameplay occurs. *is
scene has two key components: a dance instructor and a
hand gesture prompt. *e virtual dance instructor that
appears on the side of the screen shows the patient the dance
movements to follow. *e virtual dance instructor is to give
the patient visual cues on the correctness of their dancing
and encourage continuous engagement, similar to a real-life
dance instructor.

*e hand gesture prompt is an image icon on the bottom
right corner of the screen that informs the patient of which
hand gesture to perform at the givenmoment. Hand gestures
are tracked with the Myo Armband, and if the correct
gesture is performed in the expected time frame, the image is
replaced with a green success symbol to tell the patient that
correct gesture is performed. In the final Feedback scene
(Figure 4), the patient can see a visual summary of the data
collected during gameplay. *ese data can also be sent to a
rehabilitation practitioner for further analysis. *e Feedback
scene is displayed immediately after the Play scene, a few
seconds after the completion of the song and choreography.
An overview of the game’s workflow is shown in Figure 2.

2.2. Game Development. Upbeat was developed with the 3D
game engine Unity, through which all the sensors and
software used (Kinect, Myo, Mirracle [4]) were integrated.
*e Myo Armband SDK for Unity was used to feed data
from the Myo Armband sensor wirelessly into the Unity
application. Additionally, the Kinect SDK for Unity was used
to capture the pose and position of the patient during

gameplay and to utilize the data into the postgame feedback.
Along with a standard RGB video recorded during game-
play, motion data from the Kinect sensors were fed into
Mirracle [4], an AR application used to produce a color-
coded visualization of the patient’s muscle activity during
gameplay.

2.3. Dance Choreography. *e integrated dance used in
Upbeat was choreographed and recorded with the Kinect.
*e motion-capture data were then used to animate the in-
game virtual dance instructor which later guides the patient
through the same movements. *e choreography consists of
a set of dance movements embedded with hand gestures
inspired by the PHAM model. *e dance choreography was
designed to include full range of motion in the upper body,
as well as regular, repetitive movements. *ese two factors
(movements with various degrees of freedom and repeti-
tions) have proven to be beneficial in state-of-the-art re-
habilitation therapies [12].

Each dance move includes one of the four hand gestures
(spread, wave right, wave left, and fist; see Figure 3) and is
performed in time with selected music—in this case, the
current demo song is What About Us by P!nk. *e song was
chosen because it had a tempo appropriate for novice users
to effectively engage with the game. *rough repeated
sessions, the patients learned the dance by following the
virtual dance instructor while also practicing the hand
gestures for rehabilitation.

In the PHAM protocol [12], the patient is required to
manipulate a set of objects within a physical frame by
grabbing the object and changing its position in the frame
(see Table 1). Each object requires the patient to perform a
particular hand gesture, as shown in Table 1. While the hand
gestures included in the PHAMprotocol are useful for object
manipulation, in Upbeat we selected gestures common to
activities of daily living (ADLs) (see Table 2). *e gestures
selected were spread, wave right, wave left, and fist (see
Figure 3). *ese gestures were selected due to two key ad-
vantages: First, they are highly suitable for the EMG clas-
sification. Secondly, they can easily be embedded in dance
choreography.

Instructor guides
player through
dance moves

Player follows instructor

Keep track of
current score

Hand
gesture to
practice

Figure 1: Upbeat’s gameplay screen.
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2.4. Motion Capture and Model Animation. *e Kinect
sensor, along with NI mate software, was used to capture
the movements of a dancer performing the choreography.
*e NI mate software allowed the motion-capture data
detected with the Kinect to be fed into Blender, a free open-
source 3D creation suite (Foundation, Blender. “Blender.
Org–Home Of *e Blender Project–Free And Open 3D
Creation Software,” Blender.Org, 2018, https://www.blender.
org. Accessed 29 Nov 2018.), in the form of a rig, an animated
3D skeleton, which was later used to animate the dance in-
structor virtual model for the game (“Free Mannequin Male
3D Model.” Turbosquid.Com, 2018, https://www.turbosquid.
com/3d-models/free-mannequin-male-3d-model/1005602.
Accessed 29 Nov 2018.). *e motion data from the NI
mate rigging were matched to the model’s body (Figures 5(a)
and 5(b)). Because the visualization of specific hand gestures
was for a correct practice, each of the hand gestures was
manually key-framed in Blender (Figure 5(c)) to increase the
accuracy and clarity of the model hand gesture visualization.

2.5. Gameplay Setup. *e Myo Armband was placed on the
upper arm of the patient, right below where the forearm is

the widest. In the case of an upper limb amputee, this would
correspond to the phantom limb. *e Kinect sensor was
positioned at an approximate distance of 1.5meters in front
of the patient and at a height aligned with their upper chest.
A 43″ TV monitor was used to display the game and located
at the same distance as the Kinect (1.5m), which was a
clearly visible location for the patient. In addition, speakers
were connected to the computer and used to play the music
for the dance game.

Before the gameplay begins, each user undergoes a
calibration protocol for the Myo Armband to ensure correct
hand gesture detection. Calibration is done through the Myo
Armband’s proprietary interface, Myo Connect. In the cal-
ibration, the user is prompted to perform each of the five
recognizable gestures (wave in, wave out, fist, fingers spread,
and double tap) a sequence of times. *e process takes
approximately 3-4minutes overall, and it has to be done
every time a new user interacts with the system.

*e recording of the patient’s performance during the
game is displayed in real time on the game’s background,
simulating the effect of a mirror. *is setup is the most
appropriate in order for the patients to clearly see the virtual
dance instructor, as well as their own mirrored reflection
(from the head to slightly above their knees), such that they
could perform the dance movements with as much visual
observance as possible.

2.6. Performance Monitoring and Feedback. Performance
consisted in three key elements: gesture completion, muscle
activity, and muscle activation. *e Myo Armband was in-
tegrated into the application to track EMG activity and detect
the hand gestures.*e gesture completion is evaluated using a
score based on the number of successfully completed gestures.
*e patient’s muscle activity is then shown using an EMG

Upbeat welcome
screen

Tutorial/demo
(calibration)

Song and mode
selection Ready screen

Welcome to upbeat beta
Start

Tutorial/demo
Player profile

Settings

Create new player profile

Calibrate arm
movements

Song and mode selection

Easy
Medium

Hard

Get ready
to dance

(a)

Gameplay Score �erapy feedback

New high score
Congratulations!

500,000

(b)

Figure 2: Overview of Upbeat’s game navigation.

Spread Wave right Wave le� Fist

Figure 3: Hand gestures included in the choreography and tracked
with Myo Armband (“Getting Starting With Myo On Windows”.
Welcome To Myo Support, 2018, https://support.getmyo.com/hc/
en-us/articles/202657596-Getting-starting-with-Myo-on-Windows.
Accessed 29 Nov 2018.).
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graph, while a color-coded visualization of muscle activation
is produced with the Mirracle AR mirror system [4].

*e postgame feedback is designed to deliver a com-
prehensive evaluation of the user’s performance, following
methods that have proven to be effective for rehabilitation
[6, 12]. *e purpose of the feedback is to serve the user with
an immediate quantitative evaluation of how well they
performed the gestures during gameplay (given by the Game
Score), as well as a qualitative understanding of their
movements through the color-coded visualization of their
muscle’s EMG data. *is EMG graph also provides the
practitioner with a detailed understanding of the user’s
current progress in regaining control of their upper limb
muscles. *e feedback components are shown in Figure 4
and explained further below.

2.6.1. Game Score. *e scoring system is based on the timing
and accuracy of gesture completion. Each dance step shown
by the virtual dance instructor contains one hand gesture
that needs to be matched by the patient. Whether or not the
patient successfully completes the gesture is tracked by the
Myo Armband, which analyzes muscle activity in order to
classify the movement into a recognized gesture. If the
performed gesture both matches the one shown by the dance
instructor and is performed within a certain time frame, it is
deemed as the correct movement and adds 100 points to the
player’s total score. *e time frame for each specific hand
gesture and dance movement varies based on the chore-
ography and music, but typically lasts between 6 and
12 seconds. *e total game score is then calculated based on
how many hand gestures are accurately performed by the
player throughout the game, with points awarded for each
successfully completed gesture.

2.6.2. EMG Graph. *e Myo Armband contains an array of
8 bipolar surface electrodes that measure the EMG activity
from the user. *e raw data are then streamed wirelessly
through the Myo Data Capture application at a frequency of
200Mhz to populate a.csv file (stored locally) that is later
used to produce a graph of the patient’s EMG activity.

*is graph is displayed upon completion of the game in
the Feedback scene. Each color in the graph represents data
collected by each individual sensor, and the overall analysis
can be used by the practitioner to visually analyze the muscle
activity patterns as an indication of the patient’s progress
through the rehabilitation process.

2.6.3. Color-Coded Visualization of Muscle Activity. In our
system, the Mirracle application records a video of the
patient performing the movements during the gameplay. It
uses this video in combination with the Kinect depth sensor
data to output the same video with an augmentation of the
musculoskeletal system of the upper arm overlaid on top of
the patient’s right arm. *e augmented muscles are color-
coded (green for activated, red for relaxed) in real time to
indicate the muscles being used.

3. Results and System Evaluation

*e system was evaluated on three subjects, with 10 trials
of the gameplay performed by each subject. In each trial,
we measured the system’s ability to correctly classify each
specific gesture. Even though the classification is per-
formed using the built-in Myo Armband software,
measuring the classification accuracy within the Upbeat
environment is important in order to evaluate whether or
not the Myo Armband functions properly in a Unity
environment.

For each trial, we also measured the system’s operating
time, reaction time, and detection time for each hand gesture
involved in the gameplay. We define operating time (ot) as
the time taken for each hand gesture to be detected by the
system from the moment it appears on the screen. Operating
time can be broken down into detection and reaction times
(Figure 6, equation (1)). Detection time (dt) is defined as the
time it takes for each specific gesture to be recognized by the

EMG graph:
muscle activity

Final score:
gesture

completion

Mirracle:
muscle

activation

Your final score is 400! 

You performed 4/6 
gestures correctly.

Time

EMG data

Return

50
25

0
–25
–50–5

Figure 4: Feedback screen.

Table 2: Correspondence of hand gestures involved inUpbeat with
ADL.

Hand gesture Activity of daily living (ADL)
Spread Greeting someone, offering help
Wave right Indicating direction (right)
Wave left Indicating direction (left)
Fist Gripping a small object
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system, while reaction time (rt) is defined as the time it takes
the subject to perform a hand gesture from the moment it
appears on the screen (Figure 6).

ot � rt + dt. (1)

*e results for each hand gesture class are shown in
Table 3. Summarizing these results, the system reported an
average detection time across hand gestures of
0.24± 0.31 seconds, while the average reaction time was
0.92± 0.10 seconds. Overall, this gives us an average oper-
ating time of 1.15± 0.34 seconds. We also calculated the
classification accuracy, expressed as the percentage of cor-
rectly classified gestures per class across the 10 trials for each
patient (Figure 7).

Since more advanced versions of Upbeat would involve
faster dance movements expected to be performed within a
shorter time period, it is crucial for the system to be able to
detect different gestures quickly and accurately, in order to

accommodate for the different levels of proficiency for each
patient as their rehabilitation therapy progresses. To assess
the system’s ability to accommodate faster dance move-
ments, we used the detection time data to compute the
percentage of hand gestures that could be efficiently de-
tected within a time interval of no more than four seconds
(Figure 8). *e results show that it takes an average of
2.62 seconds for each gesture to be detected, meaning the
system could effectively support faster-paced choreography.
To set this in context, Figure 9 shows the dance movement
time interval across the current gameplay, which currently
ranges between 6 and 12 seconds.

4. Discussion and Further Directions

From the experiments we conducted during our system
evaluation, 77% of the gestures performed by the subjects
during gameplay were detected and accurately classified by

(a) (b)

(c)

Figure 5: (a) NI Mate rig with motion-capture data using Kinect; (b) Blender model used for virtual dance instructor. (c) Manual
keyframing of the model’s hand bones with motion-capture data.

Hand gesture is
detected.

Patient performs
hand gesture.

dt

Hand gesture
indication is shown.

rt

Figure 6: Detection time (dt) and reaction time (rt) measured during gameplay.
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the system. Considering that the commercial Myo Armband
has an average classification accuracy of 82.8% [16],Upbeat’s
results show that integrating the Myo Armband within
Upbeat’s local environment slightly compromises the clas-
sification accuracy.

Misclassification was more prevalent on the third sub-
ject. *is was due to the difficulties this subject experienced
during the calibration protocol, emphasizing the importance
of a more robust calibration protocol compared to that of the
commercial Myo Armband. Building a more robust cali-
bration protocol and integrating it in the game’s workflow

with a tutorial/calibration feature are further steps for the
system’s improvement.

It is also important to consider that the hand gestures
used in the current version of Upbeat have significantly
differentiable EMG patterns.*ere is a trade-off between the
complexity of the hand gestures and the accuracy of the
EMG classification. If the sequence of hand gestures in-
tegrated in the game were to be expanded by introduc-
ing more complex hand gestures in a shorter time frame,
the classification report of the system would be expected
to achieve lower classification results. However, it is also
expected that higher classification accuracy correlates with
increased practice. *e classification accuracy improves
because, as the user becomes more experienced performing
the rehabilitation exercises, the muscle signals become
clearer and differentiable, which leads to better classification
accuracy [12]. *at is to say, as a patient becomes in-
creasingly familiar with the choreography, it is expected that
they can time and perform the gestures synchronously with
the game with a higher degree of accuracy. As a result, this
usage of gamified rhythm, time, and practice, likely con-
tributes to higher success rates with the rehabilitative
movements, making up for any initial complexity of the
gestures. A further improvement to tackle this issue would
be to add an initial learning session where the user learns the
hand gestures and becomes familiar with the interface before
the actual dance choreography begins.

Because the dance movements during gameplay take
between 6 and 12 seconds (Figure 9), we expect that the
system is able to detect the gestures faster than the minimum
time of 6 seconds. With the purpose of assessing this, the

Table 3: System’s average, maximum and minimum detection, reaction, and operating times.

Wave left Wave right Fist Spread
Average detection time (s) 0.06± 0.09 0.06± 0.05 0.34± 0.52 0.49± 0.68
Maximum detection time (s) 0.38 0.17 2.20 2.62
Minimum detection time (s) 0.02 0.02 0.02 0.02
Average reaction time (s) 0.88± 0.28 1.09± 0.47 0.87± 0.49 0.83± 0.36
Maximum reaction time (s) 1.53 2.02 2.55 1.33
Minimum reaction time (s) 0.22 0.05 0.02 0.03
Average operating time (s) 0.94± 0.37 1.14± 0.53 1.20± 1.00 1.33± 1.04
Maximum operating time (s) 1.92 2.18 4.75 3.95
Minimum operating time (s) 0.23 0.07 0.03 0.05
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60%
70%
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100%

Wave le� Wave right Fist Spread

User 1
User 2

User 3
Average

Figure 7: Hand gesture classification accuracy. *is figure in-
dicates the percentage of the gestures correctly classified across 10
trials, for each of the three users.
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Figure 8: Optimal dance movement time interval. *is figure
reflects the percentage of hand gestures that would be detected,
given different time interval thresholds in the range 0–4 seconds.
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Figure 9: *e time interval for each dance movement in the
gameplay. *roughout the gameplay, there are sets of 10 move-
ments, each containing one hand gesture.
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reaction, detection, and operating times are measured and
presented in Table 3 of the results section. Amongst the
correctly classified gestures, the maximum detection time
across trials was 2.62 seconds, which was well below the
minimum of 6 seconds. However, we also had to take into
account the reaction time, namely, the time between the
appearance of the gesture symbol on the screen and the
patient actually performing the gesture. In our study, the
average reaction time was 0.92 seconds. By adding the de-
tection time to the average reaction time, we can conclude
that the operating time of the system is 3.56 seconds, which
is still well below our minimum requirement of 6 seconds to
perform a given movement. As such, we are certain that the
current system is suitable for accurately recognizing gestures
in a choreographed sequence. Given this operating time,
there would still be room for the system to introduce more
dynamic movements as part of more advanced levels.

Upbeat is a proof of concept aimed at testing whether a
gamified, AR version of upper limb rehabilitation therapy,
based on the PHAM protocol, could successfully be utilized
in a clinical environment. Currently, we assert that the
designed system and workflow is successful at classifying
hand gestures embedded in a dance routine taught by a
virtual dance instructor with a success rate of 77%. Fur-
thermore, the system was also successful in measuring EMG
signals from the patient’s upper arm muscle activity, as
reported by the graphical summary of the data as postgame
feedback. Finally, the system was able to display a recording
of the gameplay with an accurate augmentation of the
musculoskeletal system overlaid over the patient’s body,
allowing the visualization of the muscles being activated
during each dance movement.

In order to make the system appropriate for rehabilitation,
the next step is to implement a more complicated set of hand
gestures better reflecting those used in PHAM [12]. *is
process includes developing the Myo Armband built-in
classifier to detect a broader set of hand gestures given the
raw EMG data. Another improvement of the proposed system
is adding different levels to the current version of Upbeat,
where the difficulty is based on the speed of the music, the
complexity of the choreography, and the range of movements
involved. Additionally, analyzing the motion between poses
and accounting for the compensatory movements in the
scoring system would give a further insight into the patient’s
performance, for example, calculating the actual accuracy of
the performed gesture (as opposed to the currently binary
system of whether or not the gesture was completed).

Most importantly, a clinical study with a group of upper
limb amputees shall be conducted in order to evaluate their
progress when using Upbeat in comparison to that of a
control group following traditional rehabilitation therapy.
As the system is intended to improve rehabilitation in upper
limb amputees, it is important to understand how a system
like Upbeat is received by its target group. Furthermore,
while the qualitative and analytical aspects of the system
already have strong support, both from this study as well as
related studies, a more subjective assessment on how en-
joyable an application like Upbeat will be is a future target of
study.

5. Conclusions

Upbeat converts the proven success of PHAM re-
habilitation therapy and transforms it into a fun and en-
joyable gamified experience for rehabilitation. As such, the
gamified aspect of Upbeat has the potential to improve the
rehabilitation process by increasing user’s excitement.
Portability of the system allows for rehabilitation to begin
immediately after trauma, rather than waiting for pros-
thetics to be made or for medical-guided therapies to be
concretely established. Upbeat further facilitates the im-
portant element of personalized feedback which can prove
to be essential for the amputee to understand their prog-
ress, as well as giving doctors the ability to simultaneously
track the progress without being overbearing on the re-
habilitative process. Upbeat is presented as a prototype for
gamified AR rehabilitation therapy and, in future work, will
be used to conduct a clinical trial to evaluate its efficacy in
achieving the envisioned goals.

Data Availability

Release of source code and data will be considered on a per
request basis.
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Supplementary Materials

Supplementary Material shows a demo video of the system.
*e user first selects the “start” option in the menu and
browses through the available songs for the gameplay. *is
control is enabled by the Myo Armband, worn on the
forearm, which detects the patient’s muscle activity. Once
the song has been selected, the gameplay starts and the
virtual dance instructor (shown on the left of the screen)
shows the user the dance movements to imitate. *e hand
gesture prompt is an image icon on the bottom right corner
of the screen that informs the patient of which hand gesture
to perform at the given moment and whether this is per-
formed correctly. *e labels on the top of the screen display
the current score on the left and time left for the gameplay on
the right. Finally, an additional view of the user during
Upbeat gameplay has been added in the top right corner to
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give a better understanding on the system’s setup and the
placing of the webcam. (Supplementary Materials)
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