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Strasbourg, France, 3 Center for Bioinformatics, University of Tübingen, Tübingen, Germany, 4 Applied

Bioinformatics, Department of Computer Science, Tübingen, Germany, 5 Service de Néphrologie et

Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France, 6 Laboratoire de Virologie, Plateau
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Abstract

Infection with human BK polyomavirus, a small double-stranded DNA virus, potentially

results in severe complications in immunocompromised patients. Here, we describe the

in vivo variability and evolution of the BK polyomavirus by deep sequencing. Our data

reveal the highest genomic evolutionary rate described in double-stranded DNA viruses,

i.e., 10−3–10−5 substitutions per nucleotide site per year. High mutation rates in viruses

allow their escape from immune surveillance and adaptation to new hosts. By combining

mutational landscapes across viral genomes with in silico prediction of viral peptides, we

demonstrate the presence of significantly more coding substitutions within predicted cog-

nate HLA-C-bound viral peptides than outside. This finding suggests a role for HLA-C in anti-

viral immunity, perhaps through the action of killer cell immunoglobulin-like receptors. The

present study provides a comprehensive view of viral evolution and immune escape in a

DNA virus.
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Author summary

Little is known about the mechanisms of evolution and viral immune escape in double-

stranded DNA (dsDNA) viruses. Here, we study the evolution of BK polyomavirus and

observe the highest genomic evolutionary rate described so far for a dsDNA virus, in the

range of RNA viruses, which usually evolve rapidly. Furthermore, the prediction of viral

peptides to determine immune escape suggests a specific role of HLA-C in antiviral

immunity. These findings are helpful for future advances in antiviral therapies and pro-

vide a step forward in our understanding of in vivo viral evolution in humans.

Introduction

Viral evolutionary rates can vary strongly depending on the method used to estimate them [1,

2]. Among Baltimore groups, the fastest evolving entities are single-stranded (ss) RNA and

reverse-transcribing (RT) viruses, with rates ranging between 10−2 and 10−5 substitutions per

site per year (s/s/y). The rates of double-stranded (ds) RNA and ssDNA viruses range between

10−3 and 10−6 s/s/y, whereas dsDNA viruses evolve more slowly (10−3 and 10−8 s/s/y) [3, 4]. It

is important to note that only few estimates on dsDNA viruses are published. In fact, higher

estimates are based on specific genes, as estimated for human papillomavirus 16 (E6 and E7),

human adenovirus (hexon), or JC virus (VP1), which are in the order of 10−3 s/s/y [4, 5].

Regarding estimates based on dsDNA complete genomes, all of them range between 10−5 and

10−7 s/s/y [3, 5]. This finding confirms that viruses are fast evolving entities whereas humans

have much lower evolutionary rates (10−8–10−9 s/s/y). However, the well-established co-diver-

gence of viral populations with their hosts suggests the possibility of low evolutionary rates in

viruses as well. For example, polyomaviruses were historically considered to be examples of

human-virus co-divergence, and have been used as markers for human migration patterns,

with proposed estimates ranging from 1.41 × 10−7 to 4 × 10−8 s/s/y [6, 7]. Detailed studies are

needed to better understand dsDNA virus evolution in vivo, especially in viruses that can be

considered as potential pathogens.

In vertebrates, the major driving force in anti-viral immunity is the high level of polymor-

phism in human leukocyte antigen (HLA) genes. Despite a few recent reports [8, 9], limited

information is presently available on the extent of viral variability in vivo, especially at the

whole viral genome level, and only a few studies have tackled this variability in conjunction

with the HLA genotype of infected individuals. Consequently, viral escape mutants—i.e.,

viruses that produce mutated peptides that are no longer able to bind to cognate HLA mole-

cules—have been mainly studied for limited model epitopes in in vitro systems and in highly

relevant RNA viruses such as HIV, HCV, influenza or dengue (see the following historical ref-

erences [10, 11]; for a recent review and full bibliography on the subject see [12]). It is not sur-

prising that RNA viruses can adapt to circumvent the immune responses [4], but little is

known about viral escape in DNA viruses.

A better understanding of the epitopes involved in viral escape from the immune system

could be useful for the development of vaccines and specific treatments. Here, we initiate a dual

approach using the BK virus (BKV) as a model. BKV, which was detected for the first time in

1971, is a 5.1 kb dsDNA virus of the Polyomaviridae family that harbors six genes (Agnogene,

VP1 to VP3, large T antigen “LTA” and small t antigen “stA”) [13]. The primary infection

occurs essentially in childhood and the virus infects up to 90% of the human population. The

virus remains persistent throughout life, primarily in the urinary tract [14]. High-level replica-

tion mainly occurs in immunocompromised hosts and, more specifically in those receiving
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modern immunosuppressive regimens, notably post-kidney transplantation. BKV-associated

diseases, especially BKV-associated nephropathy, affect 1–10% of transplant recipients [15, 16]

and may lead to loss of the allograft and even death [17]. There are no specific prophylactic or

curative treatments, and early diagnosis, as well as quick restoration of immunity (through

dampening of immunosuppression), remain the most effective strategies to control the disease.

Results and discussion

High level of variability in BKV as detected by NGS

Access to the virus in the bloodstream and/or urine within a transplant setting, where HLA

alleles of both donors and recipients are known, provides a unique opportunity to study viral

evolution in vivo in the context of the individual’s (both recipient and donor) HLA class I geno-

type. A retrospective cohort of 96 patients—225 samples—that underwent solid organ (N = 83)

or hematopoietic cell transplantations (N = 13), harboring a minimum of 104 viral copies/mL in

whole blood or urine, was selected. Quantitative real-time PCR showed that the viral titers in

blood (8.98 × 104 ± 2.47 × 104 copies/mL) were significantly lower than those in urine (2.16

×109 ± 3.94 × 108 copies/mL) (Mann-Whitney U = 315.0, two-tailed, P< 0.0001). After com-

plete deep genome sequencing of all 225 samples and alignment to the BKV Dunlop reference

strain (GenBank accession number NC001538), an average of 110 ± 3 polymorphisms per sam-

ple was observed with an average median coverage of 3043 ± 78 reads/position (S1 Table, Gen-

Bank accession numbers KT896230-KT896454; see Methods). In total, 37.88% of all amino acid

positions in the Agnoprotein, 12.43% in VP1, 9.97% in VP2, 11.21% in VP3, 8.20% in LTA and

8.72% in stA, were found to be polymorphic (S2 Table). Agnogene is the only gene that is not

under apparent selective constraints (Nei-Gojobori test, P = 0.8663), while the others are under

purifying selection (Nei-Gojobori test, P< 0.0001, Fig 1, see Methods). Only a few single nucle-

otide insertions or deletions were detected in the viral genes (S3 Table). Due to methodological

limitations (short reads) the non-coding control region was not included in the analyses.

The occurrence of mutations is the main process generating genetic variability, but other

processes, such as genetic drift, gene flow, selection and recombination, are responsible for

shaping the genetic structure and variation of viral populations. Here, we present evidence

that BKV is under strong purifying selection even in the immunocompromised host. Several

specific features of the Polyomaviridae (e.g., limited size of the genome, small number of genes

and overlapping transcription units) likely account for this outcome. In addition, the preva-

lence of purifying selection in essential genes is anticipated in all viruses as there is a require-

ment to complete the viral cycle, even in immunocompromised hosts. Most mutations in

coding regions must be deleterious, and a high substitution rate implies the accumulation of

mutations with deleterious effects [18]. This phenomenon is well known in RNA viruses,

which have high mutation rates and short replication times. Similar results have been shown

comparing mutational fitness effects and evolution in ssRNA and ssDNA viruses [19, 20]. Our

study supports the hypothesis, in concordance with other recent findings [21], that the evolu-

tionary rate gap between small dsDNA and RNA viruses might not be as wide as previously

thought. A recent study in lentiviruses has revealed that the combined effects of sequence satu-

ration and purifying selection can explain the time-dependent pattern of rate variation. Purify-

ing selection acts on the genetic diversity over long timeframes by removing a large number of

transient deleterious mutations that are still present within short timeframes [4].

Phylogenetic analysis: Incongruent results between serology and genotyping

Phylogenetic analysis with all BKV complete genomes available from GenBank (Fig 2A) sug-

gested the existence of three large groups or genotypes represented by serotypes I, II/III, and

BKV immune escape

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007368 October 18, 2018 3 / 18

https://doi.org/10.1371/journal.ppat.1007368


IV, with subtypes within genotypes. Limited differences (short branch lengths) between the

previously designated genotypes II and III suggested the existence of only one genotype II/III

with two subtypes (in contrast to more pronounced differences between serotypes II and III).

A similar phylogenetic classification was observed by analyzing only the VP1 gene (Fig 2B).

Incidentally, this finding indicated that the current BKV classification should be revised due to

inconsistencies between serotyping and genotyping. Next, to establish the genotype of our

samples, one reference strain of each genotype and subtype was used for the phylogenetic anal-

ysis (Fig 2C). Most of our samples (80.88%) belonged to genotype I, whereas genotypes IV and

II/III were less represented (13.78% and 5.3% respectively). The clustering was patient-depen-

dent but independent of the sample origin (urine or blood) and suggested that some samples

likely contained a mixture of genotypes. This mixture might be due to multiple lifelong infec-

tions or the replication of viruses from the recipient and/or the donor.

High intra- and inter-patient evolutionary rates in BKV

Intra- and inter-patient evolutionary rates were estimated. BKV sequences from samples with

possible recombination or a mixture of genotypes according to the RDP output [22] were

removed from the analysis (see Methods). We estimated an intra-patient substitution rate for

BKV in transplanted patients in the range of 4.90 × 10−4–1.22 × 10−3 substitutions per nucleo-

tide site per year (s/s/y). No differences between substitution rates in solid organ and hemato-

poietic cell transplant recipients were found (t-test, P = 0.2581). To estimate the inter-patient

Fig 1. Distribution of the normalized dN-dS per codon among proteins. The six proteins are represented

(Agnoprotein, VP1 to VP3, large T antigen “LTA” and small t antigen “stA”). Non-significant values are shown in blue,

and significant values in red (positive values for positive selection and negative values for purifying selection, two-

tailed binomial distribution). P-values correspond to the Nei-Gojobori test of neutrality for each gene.

https://doi.org/10.1371/journal.ppat.1007368.g001
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evolutionary rate, the best substitution (molecular clock) and demographic model according

to marginal likelihood analyses was the relaxed log-normal uncorrelated clock with Bayesian

skyline demographic prior. The estimated inter-patient evolutionary rate ranged from

1.00 × 10−5–2.15 × 10−4 (95% HDI) for a maximum sampling interval of 568 days. The esti-

mate was quite robust to different demographic and molecular clock models (S4 Table).

The evolutionary rates based on the maximum likelihood and least-squares methods imple-

mented in treedater were similar when applied to the whole data set (4.30 × 10−3 s/s/y) but

with large parametric bootstrap confidence intervals (in the 10−20 to 1014 range), thus prevent-

ing their consideration as reasonable estimates. However, when the dataset was reduced to the

sequences of genotype I (n = 56) the average evolutionary rate was estimated at 1.33 × 10−4

(95% CI = 3.13 ×10−6–5.59 × 10−3). These values were close to those obtained with the Bayes-

ian approach described previously.

Fig 2. Maximum likelihood phylogenetic trees of BK polyomavirus. Three major groups are found: genotype I in

blue, a single group including genotypes II/III in red, and genotype IV in green. (A) Unrooted ML phylogenetic tree

with 309 complete genome published sequences retrieved from NCBI. (B) Unrooted ML phylogenetic tree with 309

VP1 gene sequences retrieved from NCBI. (C) Unrooted ML phylogenetic tree with 225 complete genome consensus

sequences obtained in this study by next-generation sequencing and one reference strain of each genotype and

subtype. Reference strains are marked with dots (Ia, Ib1, Ib2, Ic, II, III, IVa1, IVa2, IVb1, IVb2, IVc1, IVc2).

https://doi.org/10.1371/journal.ppat.1007368.g002
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It is usually assumed that RNA viruses evolve at a rate of 10−4 s/s/y, while dsDNA can be

close to 10−8 s/s/y [23]. ssDNA viruses with small genomes evolving at rates similar to those of

RNA viruses have been reported previously [24, 25], as illustrated by the canine parvovirus,

with a substitution rate of 1.7 × 10−4 s/s/y [26]. In the case of dsDNA, many evolutionary rates

have been calculated under the assumption of co-divergence between viral and human popula-

tions, as observed for polyomaviruses. Recently, the substitution rate for JC polyomavirus was

evaluated at 1.7 × 10−5 s/s/y [27]. Based on this result, Bayesian analyses suggested the substitu-

tion rate of BKV to be on the order of 10−5 s/s/y [5, 28], while another study found only minor

nucleotide substitutions in the genes encoding late proteins [29].

Here we estimated a substitution rate for BKV on the order of 10−3–10−5 s/s/y (Fig 3). Our

experimental results show, for the first time using whole-genome sequencing of in vivo viral

populations (in a large monocentric cohort), that the genomic evolutionary rate of a dsDNA

virus can be as high as that of RNA viruses. It is important to note that the sampling window

of sequences may affect the estimates of evolutionary rates, because very short timescales can

inflate them. A recent study has shown that estimates of evolutionary rates were lower for

broader sampling levels and longer timeframes for both, DNA and RNA viruses, suggesting

that the time dependence of substitution rates is ubiquitous among all viruses [4]. For example,

lentivirus evolutionary rates from serial samples over a few years within a single patient or host

are in the order of 10−3 s/s/y [30], reflecting those observed in this study in a small dsDNA

virus.

In addition, a previous study comparing the evolution of ssRNA and ssDNA viruses has

shown that small genomes (< 5 kb) can evolve rapidly [24] regardless of their encoding mate-

rial, and that the well-known correlation between genome size and mutation rate [70] can also

hold for evolutionary rates. Here, we show that small dsDNA genomes can also evolve as fast

as single-stranded ones. Although BKV uses the host DNA polymerase for its replication, the

virally-encoded Agnoprotein inhibits dsDNA break repair activity, thereby potentially increas-

ing the error rate during BKV DNA replication [71]. Interestingly, cell tropism of RNA viruses

was recently suggested as a key factor in their capacity to evolve, since viruses replicating in

epithelial cells (as BKV) are characterized by rapid replication and higher substitution rates

[72].

To investigate the relationship between the evolutionary rate of the virus and the immuno-

suppressive drug regimen—hence the strength of the immune system—we analyzed such

information in our kidney transplant recipient cohort (the largest subgroup in our cohort).

Kidney transplant patients were given either anti-thymocyte globulin (ATG) (immunological

high-risk patients) or anti-Interleukin-2 receptor (anti-IL-2R) (immunological low-risk

patients) as induction treatments, and tacrolimus (immunological high-risk patients) or cyclo-

sporine (immunological low-risk patients) as maintenance therapy. Mycophenolate mofetil

and steroids were also part of both drug regimens (for high- and low-risk patients). Evolution-

ary analysis of the different subgroups showed no significant differences in the mutational

load (full negative binomial mixed model regression with random effect intercept to account

for repeated measures) nor in inter-patient substitution rates where ranges overlapped

between treatments (ATG 6.12 × 10−4–1.03 × 10−5 s/s/y, Anti-IL-2R 8.60 × 10−4–1.36 × 10−5

s/s/y, tacrolimus 4.64 × 10−4–9.31 × 10−6 s/s/y, and cyclosporine 1.72 × 10−3–1.11 × 10−5 s/s/y).

Immune escape in BKV associated with HLA-C epitopes

To investigate the genetic immune escape mechanism of BKV, potential T-cell epitopes pre-

sented by HLA class I were predicted using both donor and recipient HLA alleles, combined

with the viral substitutions found herein (S1 Fig, S2, S5 and S6 Tables, see Methods). In this

BKV immune escape
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way, we determined the putative HLA ligandome of the virus as linked to the individual’s cog-

nate HLA genotype. Interestingly, the two codons in VP2 that appeared to be under positive

selection corresponded to codons within predicted epitopes. The VP2 103 codon, the one with

the highest level of significant difference, was found in three predicted HLA-C epitopes

(KFFDDWDHKVSTV, FFDDWDHKV and FFDDWDHKVSTV), and codon 340 was located

within two HLA-A predicted epitopes (TTNKRRSR and TTNKRRSRSSR).

We also found a higher fraction of observed amino acid substitutions within HLA-C epi-

topes compared with the fraction of amino acid substitutions outside of HLA-C epitopes (one-

sided Wilcoxon signed test, P = 3.71 × 10−10). The opposite behavior was observed for HLA-A

Fig 3. Genomic evolutionary rates for the major Baltimore groups and BKV. Substitution rates are given as substitutions

per nucleotide site per year (s/s/y). For the major groups (dsDNA: double-stranded DNA viruses—BKV [5, 7, 28] (time span of

sequences (TSS) of 29 years (y), 25 y, and 32 y, respectively), JC polyomavirus [27, 31] (TSS 33 y and 13 y, respectively), herpes

simplex virus 1 [32, 33] (TSS not available and 21 y, respectively), human papillomavirus 18 [34] (TSS not available),

monkeypox virus [35] (TSS 7 y), variola virus [5] (TSS 31 y), varicella zoster virus [5] (TSS 37 y); ssDNA: single-stranded DNA

viruses—African cassava mosaic virus [25] (TSS 5 y), banana bunchy top virus [36] (TSS 2 months), human bocavirus [37]

(TSS 1 y), human parvovirus B19 [38, 39] (TSS 14 y and 28 y, respectively), porcine circovirus 2 [40] (TSS 27 y), tomato yellow

leaf curl virus [41] (TSS 29 y); RT: retroviruses—avian hepatitis B virus [42] (TSS 22 y), human hepatitis B virus [42–44] (TSS

22 y, 25 y and 35 y, respectively); human immunodeficiency virus 1 [45] (TSS 2 y), primate T-cell lymphotropic virus [45] (TSS

2 y); dsRNA: double-stranded RNA viruses—bluetongue virus [46] (TSS 48 y), human rotavirus [47] (TSS 16 y), homalodisca

vitripennis virus [48] (TSS 2 y); ss(-)RNA: single-stranded RNA viruses with negative polarity–Ebola virus [49] (TSS 4

months), fever, thrombocytopenia and leukocytopenia syndrome virus [50] (TSS 4 y), influenza A virus [51, 52] (TSS 28 y and

1 y, respectively), hepatitis delta virus [53] (TSS 3 y), human respiratory syncytial virus [54] (TSS 10 y), rabies virus [55] (TSS

30 y), rift valley fever virus [56] (TSS 10 y); and ss(+)RNA: single-stranded RNA viruses with positive polarity—avian

coronavirus [57] (TSS 41 y), barley yellow dwarf virus [58] (TSS 2 y), dengue virus [59](TSS 29 y), foot-and-mouth disease

virus [60] (TSS 75 y), hepatitis A virus [61] (TSS 13 y), hepatitis C virus [62] (TSS 20 y), Japanese encephalitis virus [63] (TSS

60 y), Middle East respiratory syndrome coronavirus [64](TSS 4 months), porcine reproductive and respiratory syndrome

virus [65] (TSS 3 y), rubella virus [66] (TSS not available), severe acute respiratory syndrome coronavirus [67] (TSS 4 months),

St. Louis encephalitis virus [68] (TSS 46 y), Venezuelan equine encephalitis virus [69] (TSS 54 y)). Each point represents the

value of a previously published genomic evolutionary rate (note that for some references, more than one substitution rate is

represented in the caption). Red circles represent short time span estimates (< 5 years) and blue squares represent long-time

span estimates (> 5 years). Medians with interquartile ranges are indicated. In the case of the inter- and intra-host genomic

evolutionary rates of BKV, the values are represented as a range of values obtained in this study.

https://doi.org/10.1371/journal.ppat.1007368.g003
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and -B presented epitopes (one-sided Wilcoxon signed, HLA-A: P = 4.17 × 10−29; HLA-B:

P = 1.35 × 10−26) (Fig 4). This difference in contribution of HLA loci was independent of the

transplantation type (solid organ or hematopoietic) or the origin of the HLA loci (whether

from the donor or the recipient) as assessed by a three-way ANOVA (P = 0.7947). Therefore,

our results suggest that HLA-C might be specifically involved in the immune response against

BKV through its peptide selection capacity for viral peptides. A possible mechanistic explana-

tion for this finding stems from the amply documented interaction of HLA-C with natural

killer (NK) and T cells expressing the killer cell immunoglobulin-like receptors (KIR). Notably,

the relevance of KIR and HLA-C interactions has been described for viral infections [73, 74],

and the involvement of NK cells in the immune response against BKV has also been reported

[75, 76], although further investigations should be done to confirm this hypothesis.

High evolutionary rates in RNA viruses allow them to escape immune pressures. Interac-

tions between HLA epitopes and viruses have been described for a variety of RNA viruses,

such as HIV, HCV, influenza or dengue, while little is known about immune escape in DNA

viruses. A few studies in HPV-16 or herpes simplex virus have been done to improve vaccine

design and drug development, but those studies have only examined a fraction of the proteins

and not at whole-genome sequencing data [77–79]. This work, to our knowledge, is the first in

which predicted epitopes from whole genome sequencing have been studied in an in vivo
cohort, in conjunction with cognate HLA alleles, to understand the mechanism involved in

immune escape in a DNA virus. Our results of viral escape combined with the high evolution-

ary rate described herein suggest that a combination of drugs should be used as potential treat-

ment against BKV, as commonly used in highly variable viruses such as HIV and HCV, due to

the variable viral populations present in a single patient as observed in our study.

Conclusions

The present work describes an unusually fast evolutionary rate for BKV in vivo and charts its

interaction with the immune system—through the analysis of cognate HLA alleles—whilst

considering the whole viral genome and not only candidate epitopes. It further offers a blue-

print for similar analyses in other viruses and helps to better rationalize anti-viral therapy and

candidate vaccine development. Our results suggest that small dsDNA viruses should be

treated as RNA viruses due to their similarities in evolution and immune escape. Thus, a com-

bination of drugs might be necessary for the treatment of BKV, as used for fast evolving RNA

viruses. It is important to note that new analytic methods for the study of the evolutionary

Fig 4. Fraction of amino acid substitutions within and outside of predicted epitopes presented by HLA-A, -B and -C molecules across individuals. The detected

amino acid substitutions of a viral population were mapped onto reference proteins and the fraction of mutated amino acids within and outside of predicted epitopes of

each viral protein and hosts HLA allele were calculated for each viral population found in patient and donor respectively. The fraction of substituted amino acids within

HLA-A and -B presented epitopes (yellow) is significantly lower compared with the fraction outside (blue), while the fraction of amino acid substitutions in HLA-C

binding epitopes is significantly higher compared with the fraction outside.

https://doi.org/10.1371/journal.ppat.1007368.g004
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rates are needed to better understand the effect of time spans and improve the comparison

between estimates.

Materials and methods

Patients and samples

Ninety-six transplanted patients between 2012 and 2013 from the Strasbourg University Hos-

pitals (France) with high levels of post-transplant BKV viruria—as detected by routine BKV

testing at the hospital’s clinical virology laboratory—were enrolled in this study. Sixty-eight

patients underwent kidney transplantation, 12 were lung recipients, 3 received double (kid-

ney-heart; heart-lung or kidney-pancreas) transplants and 13 hematopoietic stem cell trans-

plantation. A total of 225 samples, including 197 urine (from 94 patients) and 28 whole blood

(from 13 patients) were included. Urine samples were collected longitudinally for 36 patients.

Ethics statement

All patients were enrolled in the study following the Helsinki guidelines. Written informed

consent for genetic testing was obtained from all patients and the study was approved by the

Strasbourg University Hospitals institutional review board (RNI DC-2013-1990).

DNA isolation, quantitative BKV real-time PCR, PCR and sanger

sequencing

Urine and whole blood samples were collected, and DNA was purified using the QIAxtractor

instrument (Qiagen, Hilden, Germany), following the DX protocol. Extracted DNA was stored

at -80˚C until analysis. Blood and urine specimens were assessed using the BK virus R-gene

quantification kit (Biomérieux, Lyon, France) following the manufacturer’s recommendations.

DNA was amplified by Phusion Polymerase (New England Biolabs, MA, USA) using specific

overlapping primers. Nested PCR was performed for samples with a low BKV DNA load (usu-

ally blood samples). PCR products were purified using the GeneJET DNA purification Kit

(ThermoFisher Scientific, Waltham, MA, USA) and quantified with Qubit (ThermoFisher

Scientific, Waltham, MA, USA). Twenty-one urine-blood paired samples were used for

sequencing by the Sanger method using an ABI Prism 3130 Genetic Analyzer (ThermoFisher

Scientific, Waltham, MA, USA). Bi-directional sequencing was performed with the Big Dye

Terminator v3.1 kit (ThermoFisher Scientific, Waltham, MA, USA) following the manufactur-

er’s recommendations. Chromatograms were analyzed with the Staden package (24) to obtain

the consensus sequence for each sample. These consensuses were obtained to compare with

the results after the next-generation sequencing assembly to validate our pipeline.

Next-generation sequencing (NGS) and sequence assembly

All 225 urine and blood samples were sequenced by NGS. PCR products from the same sam-

ples were pooled in equimolar amounts and library construction with barcodes was performed

according to the Fragment Library Preparation protocol using the AB Library Builder System

(ThermoFisher Scientific, Waltham, MA, USA). Libraries were quantified by Qubit (Thermo-

Fisher Scientific, Waltham, MA, USA) and then pooled in equimolar amounts for Template

beads preparation using the SOLiD EZ beads System (ThermoFisher Scientific, Waltham, MA,

USA). Template beads were subjected to sequencing using SOLiD 5500 (ThermoFisher Scien-

tific, Waltham, MA, USA) with the paired-end 75 bp / 35 bp workflow. Sequences were assem-

bled against the Dunlop reference strain (GenBank accession number NC001538) using

LifeScope software (ThermoFisher Scientific, Waltham, MA, USA). Comparison with Sanger
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sequencing was performed to ascertain the correct assemblies. To quantify the variability per

sample, mutations were analyzed with SeqMan software (DNASTAR, Madison, Wisconsin,

USA). For each sample, we obtained a list of variants with their genomic location, coverage, and

quality metrics, among others. To establish a cutoff for variant calling, we introduced internal

controls including (a) a clone from the Dunlop reference strain, pBK (BKV34-2) plasmid

(ATCC 45025) prepared by minipreparation (ThermoFisher Scientific, Waltham, MA, USA);

(b) PCR amplicons from the same clone; and (c) PCR amplicons in duplicate from three of the

samples. These controls were processed using the same sequencing methodology to establish

the rate of sequencing and PCR errors. The final list of variants was selected by means of a Fish-

er’s exact one-sided test comparing evidence obtained from the data for every potential poly-

morphism to the estimated error rate using our internal controls. Based on this analysis, BKV

sequence variants found in less than 0.5% of reads were removed from the analysis.

Mutation analysis

Sequences were aligned and assembled against the Dunlop strain by Muscle implemented in

MEGA version 6 [80] with default parameters in order to compare and determine point muta-

tions, insertions, deletions, and other sequence variations. For better analysis of coding

regions, individual datasets per gene were obtained. Further analysis of synonymous and non-

synonymous substitutions and the Nei-Gojobori test of neutrality were performed with

MEGA version 6 [80].

Phylogenetic analyses

Phylogenetic analyses of the whole genome consensus sequences obtained from all samples,

and for each gene separately, were performed using MEGA version 6 [80]. Maximum likeli-

hood phylogenetic trees were constructed with the general time reversible model (GTR) of

nucleotide substitution with gamma distribution to account for rate heterogeneity among

sites, as this model achieved the lowest AIC score. Similar analyses were performed for 309

BKV complete genome sequences collected from GenBank (all items found by searching the

NCBI nucleotide database for “BK polyomavirus complete genome”).

To genotype the populations in the different samples, two approaches were performed.

First, phylogenetic trees with all our samples and one of the reference strains for each genotype

and subtype were obtained following the methodology explained previously. We determined

the genotype as the shortest branch distance to one reference. The second approach was based

on the methodology proposed by Luo and colleagues, in which point mutations specifically

reported in particular genotypes are described [81].

Estimation of substitution rates

To estimate the evolutionary rates of BKV, intra- and inter-patient analyses were performed.

Upon multiple alignment, consensus sequences were tested using RDP software [22] for

potential recombination, and those with positive results using at least two different methods

implemented in the RDP package were removed from the ensuing analyses. Samples showing

mixtures of genotypes were also excluded since they could interfere with the calculation of the

substitution rate. To estimate the intra-patient substitution rate, we used urine samples from

twenty-five patients collected at different times (the first positive samples and after 6 months).

To calculate substitutions per site per year, we considered all the different genomic positions

between two different times that were fixed in the populations. All the substitutions that

reverted to the reference base were not included since the possibility of them already being

present in the ancestral population at a low frequency could not be ruled out. Thereby only
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substitutions appearing de novo and exhibiting a high proportion in the population (fixed sub-

stitutions, more than 80% of the reads) were included in this approach. With this methodol-

ogy, we obtained conservative estimates.

To estimate the inter-patient substitution rate, the consensus sequence for the first available

urine sample of each patient with a known date of sampling was selected. After being tested by

RDP, a dataset of 79 BKV sequences was used to estimate the inter-patient evolutionary rate

(sequences from 15 patients were potential recombinants). A maximum likelihood phyloge-

netic tree was obtained using Phyml [82] with the GTR model with gamma distribution and

invariant sites to account for heterogeneity among sites. This model was determined to be the

most appropriate for this dataset with jModeltest [83]. TempEst analysis was conducted to

detect a correlation between genetic divergence and sampling time, and it assured a temporal

signal in our inter-patient dataset (S2 Fig) [84]. We used Bayesian estimates of the evolutionary

rate with dated tips as implemented in BEAST [85]. Based on previous results by Firth et al.

[5], we considered three molecular clock models (strict, relaxed log-normal uncorrelated, and

relaxed exponential uncorrelated) and two demographic models (constant population size and

Bayesian skyline). The GTR model with a gamma distribution and invariant sites was used as

the nucleotide substitution model in all combinations. Model selection was performed through

computation of the marginal likelihood using path sampling and stepping stone sampling

analyses [86]. A lognormalPrior with a mean of 1 × 10−6 and a standard deviation of 1.0 was

used for the substitution rate. Two independent runs of 30 million steps with 10% burn-in

were used to obtain the median and 95% high probability density intervals for the relevant

parameters in each model. In all cases, the effective sample size was> 200, as checked with

Tracer v. 1.5 (available from http://beast.bio.ed.ac.uk).

In addition, we used the recently developed method of Volz and Frost which uses maxi-

mum likelihood and least squares to estimate evolutionary rates and dates based on relaxed

molecular clocks. The method is implemented in the R package treedater [87].

Prediction of BKV epitopes

To predict BKV-encoded T-cell epitopes that can be presented by HLA alleles, HLA high-reso-

lution typing (2 fields) was done at the Etablissement Français du Sang Grand Est (Strasbourg)

using a sequence-specific oligonucleotide technology. High-resolution typing data of HLA-A,

-B and -C of 75 available donor / recipient pairs were used in each analysis, using the recipi-

ent’s viral populations in each case (S5 Table).

NetMHC 3.4 [88] was used to predict the peptide binding affinities of potential HLA class I

epitopes occurring in BKV Dunlop reference proteins to HLA class I alleles of the patients and

donors. Peptides eliciting a predicted IC50 of less than 50 nM were considered epitopes. IC50

values represent the concentration of the peptide that will displace 50% of a standard peptide

from the HLA molecule. The lower the IC50 value, the stronger is the affinity of the peptide for

the tested HLA molecule. According to the NetMHC parameters, peptides with IC50 < 50 nM

were considered high-affinity binders. IC50 values of 5 nM and 500 nM were also tested, but a

cutoff of 50 nM was chosen as the best indicator (at a 5 nM threshold not enough peptides

were predicted to bind; at 500 nM all possible peptides within a given proteins were predicted

to bind). Furthermore, all predicted epitopes were tested with NetChop 3.1 [89] to predict

whether the epitopes could have been produced by the human proteasome using default

parameters. All strong binding peptides with a high likelihood of being correctly cleaved

(score prediction higher than the default threshold of 0.5) were included in further analyses.

To calculate the fraction of substituted amino acids within and outside of HLA epitopes,

the substitutions detected in the specific viral populations of each patient were mapped onto
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viral reference proteins, and the number of substitutions that occurred within and outside of

the predicted epitopes were calculated for each protein and HLA allele of each patient and

donor respectively. The counts were normalized to the number of potentially mutable amino

acids per category (i.e., within or outside of epitopes), to make them comparable across pro-

teins of varying length.

Statistical comparison of the internal and external fractions was performed with a one-

sided Wilcoxon signed test for each HLA allele to identify the direction of the difference. The

P-values were Bonferroni corrected to account for multiple testing.

Supporting information

S1 Fig. BK polyomavirus proteins and location of predicted epitopes. (A) Agnoprotein, (B)

VP1, (C) VP2, (D) VP3, (E) large T antigen “LTA” and (F) small t antigen “stA”. Variable

amino acids are shown in yellow. Location of predicted epitopes for each protein presented by

HLA-A, -B and -C are presented in grey.

(TIF)

S2 Fig. Root-to-tip regression analysis for whole-genome BK polyomavirus sequences. The

root-to-tip genetic distance against sampling time is shown for the BK polyomavirus phylog-

eny with a maximum sampling time of 568 days. The sampling time is given in days (R2 =

0.086, P< 0.05).

(TIF)

S1 Table. Patients and samples enrolled in this study. The transplant organ, whether the

patient developed the associated nephropathy BKVAN, source (urine/blood), viral load, total

number of polymorphisms found in each sample and median coverage are represented.

(PDF)

S2 Table. Single nucleotide polymorphisms in the coding regions found in the 225 samples

(from 96 patients). The genomic position as well the reference and substitution nucleotides

and amino acids are shown. The percentage of samples in which the position was found is

indicated. The genomic position and the reference base and amino acid correspond to the

BKV Dunlop reference strain.

(PDF)

S3 Table. Insertions and deletions detected in the viral genomes of the 225 samples (from

96 patients). The positions, locus, reference and polymorphism, and percentage of samples

with the polymorphism are shown. The genomic position and the reference base according to

the BKV Dunlop reference strain.

(PDF)

S4 Table. Inter-patient substitution rates. Summary of interpatient evolutionary rate esti-

mates (substitutions/site/year, s/s/y) of BKV using different molecular clock (strict, relaxed

log-normal uncorrelated and relaxed exponential uncorrelated) and demography (constant

size and Bayesian skyline) models. Median and 95% high-density interval (HDI) intervals are

shown. Estimates were obtained after two independent runs of 30 million generations each

with a 10% burn-in. Convergence of the runs (ESS > 200) was checked with Tracer.

(PDF)

S5 Table. Allele frequencies of MHC class I in our cohort. Alleles are shown for HLA-A, -B

and -C at the 2nd field of resolution for donors and recipients.

(PDF)
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S6 Table. BK polyomavirus predicted epitopes presented by HLA-A, -B and -C by protein.

Agnoprotein, VP1-3, large T antigen “LTA” and small t antigen “stA” predicted peptides pre-

sented by HLA-A, -B and -C from the BK polyomavirus Dunlop reference strain are listed.

The starting and ending amino acid of the protein, length of the peptide, peptide sequence,

and HLA allele that can present peptide are shown. The IC50 for each peptide and specific

HLA allele are also included.

(PDF)
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las, Seiamak Bahram.

Writing – review & editing: Pilar Domingo-Calap, Benjamin Schubert, Mélanie Joly, Mor-
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