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Abstract: Mammalian cells utilize a wide spectrum of pathways to antagonize the viral replication.
These pathways are typically regulated by antiviral proteins and can be constitutively expressed
but also exacerbated by interferon induction. A myriad of interferon-stimulated genes (ISGs) have
been identified in mounting broad-spectrum antiviral responses. Members of the interferon-induced
transmembrane (IFITM) family of proteins are unique among these ISGs due to their ability to prevent
virus entry through the lipid bilayer into the cell. In the current study, we generated transgenic
chickens that constitutively and stably expressed chicken IFITM1 (chIFITM1) using the avian sarcoma-
leukosis virus (RCAS)-based gene transfer system. The challenged transgenic chicks with clinical dose
104 egg infective dose 50 (EID50) of highly pathogenic avian influenza virus (HPAIV) subtype H5N1
(clade 2.2.1.2) showed 100% protection and significant infection tolerance. Although challenged
transgenic chicks displayed 60% protection against challenge with the sub-lethal dose (EID50 105),
the transgenic chicks showed delayed clinical symptoms, reduced virus shedding, and reduced
histopathologic alterations compared to non-transgenic challenged control chickens. These finding
indicate that the sterile defense against H5N1 HPAIV offered by the stable expression of chIFITM1 is
inadequate; however, the clinical outcome can be substantially ameliorated. In conclusion, chIFITM
proteins can inhibit influenza virus replication that can infect various host species and could be a
crucial barrier against zoonotic infections.

Keywords: transgenic chickens; chIFITM1; HPAIV H5N1; zoonotic infections

1. Introduction

The interferon-inducible transmembrane proteins (IFITMs) are a family of small
transmembrane proteins induced by interferon (IFNs) and mount a profound antiviral
state against multiple viruses [1]. The IFITM proteins restrict viral infections by blocking
the viral entry and restrict the fusion of the viral and host membranes, thereby interfering
with viral entry and replication [2,3]. It has been shown that IFTIM1, 2, and 3 are immune-
related genes, critically involved in immune defense against a variety of viruses, including
influenza virus, dengue virus, filoviruses, coronavirus, hepatitis C virus, lyssaviruses, and
West Nile virus [4–8].
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IFITM genes belong to a wider family known as dispanins with a common trans-
membrane domain configuration [5]. The IFITMs are genetically well characterized in
vertebrates, and homologs are known to be present in bacteria [9] while IFITMs in birds
have been given limited attention. IFITM proteins contain N- and C-termini, two trans-
membrane domains, and a conserved cytoplasmic domain [10]. IFITM1 has a shorter
N-terminal region and is found on the periphery of cells and early endosomes [5]. Chicken
IFITM (chIFITM) locus is clustered on chromosome 5 and contains five genes, namely,
chIFITM1, 2, 3, 5, and 10 [7,11]. The clustering profiles of gene expression reported the
anti-viral response for IFITM1 and IFITM2 while IFITM3 action might be before fusion
of viral membrane leading to viral entry blockage [7]. Previous studies have shown that
host responses to avian influenza infection have varied significantly from chickens and
ducks [7]. The IFITM1, 2, and 3 are strongly upregulated in response to highly pathogenic
avian influenza virus (HPAIV) infection in ducks, whereas little response was seen in
chickens [7]. In vitro overexpression of chIFITM1 has been shown to increase the resistance
of avian cells to AIV infection [7].

Highly pathogenic avian influenza viruses (HPAIVs) are causing devastating economic
and welfare impacts on poultry and have significant human health implications around
the globe with concerns on the emergence of new strains that lead to pandemics [12].
Understanding the host factors related to the virus’s pathobiology in their natural hosts
may help to develop effective intervention strategies and define the genetic markers for
disease resistance. Genetic analysis has suggested that host restriction factors play a
major role for influenza virus replication [13]. However, only recently have the molecular
functions and mechanisms been unraveled. Interactions between viral proteins and host
factors are generally thought to play a major part in viral fitness and pathogenicity, and
adaptive virus mutations lead to optimum interaction with host factors [14].

To map host restriction factors that determine the zoonotic potential and pathobiology
of influenza viruses, we generated transgenic chickens that express chIFITM1 using the
avian sarcoma-leukosis virus (RCAS)-based gene transfer system. The present study shows
that chIFITM1 can inhibit H5N1 HPAIV at the clinical challenge dose while improving the
clinical outcome of a sub-lethal challenge dose, which provides proof of an inhibition of
the spread of zoonotic viruses to humans by virus resistant transgenic chickens.

2. Results
2.1. Efficient Expression of chIFITM1 Using RCAS Vector System

In order to determine the in vivo antiviral ability of chIFITM1 protein against avian in-
fluenza virus subtype H5N1, we generated transgenic chickens stably expressing chIFITM1
protein. To achieve this transgenesis, we exploited avian retroviruses (RCAS; Replication
Competent ALV LTR with a Splice acceptor) vector-based expression system to gener-
ate mosaic transgenic chicken [15,16]. The full-length open reading frame of chIFITM1
was cloned between two unique restriction sites to efficiently express a caped and poly-
adenylated transcript (Figure 1A). Correspondingly, RCASBP(A)-WT was used as negative
control in the transgenesis process. Both RCASBP(A)-chIFITM1 and RCASBP(A)-WT
recombinant viruses were rescued using chicken embryo fibroblasts (DF-1) to generate
mosaic-transgenic chicken embryos for constitutive expression of chIFITM1. The virus
replication was assessed by immunofluorescence staining for the viral structural protein
(gag) and flag-tagged chIFITM1 by confocal microscopy indicating stable expression of the
protein (Figure 1B). Infectious DF1 cells expressing RCAS-mediated chIFITM1 were further
expanded to obtain the required stock density for transgenic embryo generation.
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Figure 1. Generation and rescue of recombinant retroviruses expressing chIFITM1. (A) A schema 
for the generation of recombinant RCASBP virus in which src gene was replaced with chIFITM1. 
(B) Retroviruses were rescued in DF-1 cells and stained for retroviral structural gag protein and 
flag-tagged fused to the chIFITM1. 

2.2. Generation of Transgenic Chicks Expressing chIFITM1 
For generation of mosaic transgenic chickens, 2-day-old embryonated SPF eggs were 

inoculated with recombinant RCAS viruses (RCASBP(A)-chIFITM1 or RCASBP(A)-WT) 
infected DF1 cells (Figure 2A). The hatched chicks were kept in isolators until challenge 
with clinical dose of HPAIV H5N1 at 12 days of age, and sub-lethal dose on day 20 of 
chick’s age (8 days post first infection) (Figure 2A). In two independently performed ex-
periments, we confirmed that the chIFITM1 expression did not have any detrimental ef-
fect on the chick’s embryonic development and hatchability of RCAS-chIFITM1 transgenic 
eggs compared to mock groups (Figure 2B; Supplementary data file 1). In addition, it was 
noted that all transgenic RCASBP(A)-chIFITM1 or RCASBP(A)-WT chicks had a non-sig-
nificant body weight reduction (Figure 2C; Supplementary data file 2) and progressively 
regained their body weight until equal to weights of mock inoculated group (negative 
control, inoculated with PBS) on the 10th day post-hatch (Figure 2C). All chicks, regardless 
of nature of transgenesis either with RCASBP(A)-chIFITM1 or RCASBP(A)-WT, ate (Fig-
ure 2D; Supplementary data file 3) and drank (Figure 2E; Supplementary data file 4) 
equally comparable to the negative-control group indicating general growth parameters. 

  

Figure 1. Generation and rescue of recombinant retroviruses expressing chIFITM1. (A) A schema
for the generation of recombinant RCASBP virus in which src gene was replaced with chIFITM1.
(B) Retroviruses were rescued in DF-1 cells and stained for retroviral structural gag protein and
flag-tagged fused to the chIFITM1.

2.2. Generation of Transgenic Chicks Expressing chIFITM1

For generation of mosaic transgenic chickens, 2-day-old embryonated SPF eggs were
inoculated with recombinant RCAS viruses (RCASBP(A)-chIFITM1 or RCASBP(A)-WT)
infected DF1 cells (Figure 2A). The hatched chicks were kept in isolators until challenge
with clinical dose of HPAIV H5N1 at 12 days of age, and sub-lethal dose on day 20 of
chick’s age (8 days post first infection) (Figure 2A). In two independently performed exper-
iments, we confirmed that the chIFITM1 expression did not have any detrimental effect
on the chick’s embryonic development and hatchability of RCAS-chIFITM1 transgenic
eggs compared to mock groups (Figure 2B; Supplementary data file 1). In addition, it
was noted that all transgenic RCASBP(A)-chIFITM1 or RCASBP(A)-WT chicks had a non-
significant body weight reduction (Figure 2C; Supplementary data file 2) and progressively
regained their body weight until equal to weights of mock inoculated group (negative
control, inoculated with PBS) on the 10th day post-hatch (Figure 2C). All chicks, regard-
less of nature of transgenesis either with RCASBP(A)-chIFITM1 or RCASBP(A)-WT, ate
(Figure 2D; Supplementary data file 3) and drank (Figure 2E; Supplementary data file 4)
equally comparable to the negative-control group indicating general growth parameters.

2.3. Challenge Experiments and In Vivo Efficacy of chIFITM1 against Challenge with Clinical and
Sub-Lethal Doses of HPAIV

There is a direct correlation between the infectious virus dose and the severity of the
clinical infections. Therefore, the nature of HPAIV H5N1 virus and host genetics determine
the clinical outcome of infection [17,18]. It was critical to determine the inoculum titer of
HPAIV H5N1 that was able to induce clinical disease in chickens. Based on our previous
study, we used the pre-optimized doses 104 EID50 (hereafter called clinical) and 105 EID50
(hereafter called sub-lethal) of HPAIV H5N1 strain A/chicken/Egypt_128s_2012 (clade
2.2.1.2) (accession number: JQ858485.1) [13,19,20] as a challenge virus to demonstrate the
antiviral potential of chIFITM1 in transgenic chicks.
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hatched chicks. (A) Schema representing the time of transgenesis and challenge experiments. Comparison of hatchability 
percentage (B), body weight (C), feed intake (D), and water consumption (E) of chIFITM1-expressing transgenic chicken 
and control chicks (RCASBP(A)-WT and negative control) post-hatching (PH), pre-challenge and post-challenge. Statisti-
cal analyses between different inoculated groups were provided within Supplementary Data files 1, 2, 3, and 4. Values of 
p value < 0.05 were considered statistically significant. 
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Figure 2. Generation of transgenic chickens and impact of chIFITM1 on hatchability and physiological parameters of
hatched chicks. (A) Schema representing the time of transgenesis and challenge experiments. Comparison of hatchability
percentage (B), body weight (C), feed intake (D), and water consumption (E) of chIFITM1-expressing transgenic chicken
and control chicks (RCASBP(A)-WT and negative control) post-hatching (PH), pre-challenge and post-challenge. Statistical
analyses between different inoculated groups were provided within Supplementary Data files 1, 2, 3, and 4. Values of
p value < 0.05 were considered statistically significant.

Interestingly, the transgenic chicks expressing chIFITM1 when challenged with the
clinical dose (104 EID50) of H5N1 HPAIV (Figure 3A) were fully protected from clinical
signs. Moreover, the mock inoculated group (positive control-H5N1 HPAIV) showed
severe clinical signs starting from the 3rd day post-virus inoculation which were further
exacerbated when chicks exposed to sub-lethal dose of H5N1 HPAIV compared to chicks
in mock transgenic non-challenged (negative control) which remained healthy. Corre-
spondingly, transgenic chicks expressing chIFITM1 were completely protected (100%) from
clinical challenge without any apparent clinical disease (Figure 3A). While, the transgenic
challenged group with sub-lethal dose of HPAIV showed mild disease signs with 60%
protection (survival) with delayed clinical signs apparent by at least 4 days suggesting
that the sub-lethal dose of H5N1 HPAI can override the overexpression of chIFITM1. Our
results revealed that transgenic chicks overexpressing chIFITM1 were protected from the
clinical challenge and substantially from the sub-lethal challenge, which also manifested by
delayed clinical signs by at least 7 days. While as expected, 100% HPAIV mock transgenic
challenged chicks (mock inoculated sub-lethal challenge) showed severe clinical signs and
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were culled or suddenly died due to infection within five days of challenge. Taken together,
our results showed that the overexpression of chIFITM1 has a substantial impact on the
appearance of the HPAIV infection clinical outcome. Likewise, chIFITM1 can protect chicks
from clinical doses of influenza viruses; however, it is insufficient to completely protect
chickens against the sub-lethal dose of HPAIV.

To confirm that chIFITM1 was successfully expressed in transgenic chickens, a
chIFITM1-specific quantitative PCR was developed. Owing to expression of codon opti-
mized chIFITM1 through RCASBP(A) (thus different codon usage), the PCR distinguished
the transgene from endogenously expressed chIFITM1. Using this system, we found
a significantly increased level of chIFITM1 in tracheal RNA obtained from transgenic
chickens RCASBP(A)-chIFITM1 compared to control groups of either transgenic group
with RCASBP(A)-WT or non-transgenic chickens (mock treated neg. ctrl) (p < 0.0001)
(Figure 3B) indicating the successful expression of chIFITM1.

In addition, we explored whether the increased protection in transgenic chicken
with RCASBP(A)-chIFITM1 was mediated by innate immunity because of the correlation
between chIFITM1-mediated induction of innate immunity [7,11]. The expression levels
of four innate immune genes were evaluated and were chosen based on their antiviral
expression dynamics. Our results revealed that there were no significant differences in
innate immune gene expression levels between transgenic chickens (RCASBP(A)-chIFITM1)
and non-transgenic (mock treated neg. ctrl) (Supplementary Table S1). These findings
suggest that chIFITM1-mediated protection is not linked to enhanced secondary innate
immune responses, and is specific to chIFITM1’s direct antiviral actions.
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Figure 3. Survival rates and chIFITM1 expression quantification. (A) Percentage survival rates of RCASBP(A)-chIFITM1 and
RCASBP(A)-WT challenged chicks with clinical and sub-lethal doses of H5N1 HPAIV compared to mock inoculated chicks
(negative and positive control groups). (B) Expression of chIFITM1 in HPAI H5N1 challenged transgenic chickens with
RCASBP(A)-chIFITM1 compared to transgenic chickens (RCASBP(A)-WT) and non-transgenic chicken (mock inoculated
neg. ctrl), asterisks indicate significant difference.
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2.4. Virus Shedding Evaluation in Transgenic Chickens Expressing IFITM1 Challenged with
HPAIV H5N1

Cloacal and oropharyngeal swabs were collected from all groups (RCASBP
(A)-chIFITM1, RCASBP(A)-WT, and mock treated (Neg. Ctrl)) before challenge and every
alternative day post-clinical and sub-lethal challenges to evaluate if chIFITM1 can mediate
reduction in virus shedding through oropharyngeal and cloacal routes. Our results revealed
that transgenic chickens expressing chIFITM1 following clinical and sub-lethal challenge
with HPAIV showed significant reduction in virus shedding in both oropharyngeal (Figure
4A) and cloacal swabs (Figure 4A) and the duration of shedding period compared to mock
transgenic (Pos. Ctrl) (Figure 4A,B). These results indicate that chIFITM1 is a key factor in
virus replication that contributes to lowering influenza viral shedding.
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Figure 4. Evaluation of viral shedding from (A) oropharyngeal and (B) cloacal swabs of RCASBP(A)-chIFITM1 and
RCASBP(A)-WT challenged chicks with clinical and sub-lethal doses of H5N1 HPAIV compared to mock inoculated chicks
(negative and positive control groups). Each data point represents the virus titers detected in oropharyngeal and cloacal
swabs on day 0, 3, 5, 7, 10, and 14 DPI. Bars represent the standard deviation means. * indicates the level of significance at
p value < 0.05.

2.5. Virus-Induced Histopathologic Lesions Amelioration for Transgenic Chickens
Expressing IFITM1

Trachea and lung organs were collected from inoculated challenged chicks with
clinical and sub-lethal doses followed by histopathological examination compared with
non-inoculated mock controls (positive and negative control groups) to assess the level of
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protection offered by a stably expressing chIFITM1 in face of challenge with H5N1 HAPIV
along with the induced histopathological changes. Severe histopathological alterations
were noticed in tracheal sections from mock transgenic challenged control chicks (after
sub-lethal challenge) including necrosis of lamina epithelialis associated with mononu-
clear cells infiltration and edema in the lamina propria/submucosa layer (Figure 5A).
While, necrosis of some mucous secreting glands and edema in lamina propria in sections
from mock transgenic challenged control chicks were observed (after clinical challenge).
On the other hand, tracheas collected from transgenic chicks expressing chIFITM1 and
challenged with HPAIV showed no histopathological changes (clinical challenge) while
mild histopathological alterations as slight edema in lamina propria and few inflamma-
tory cells infiltrating lamina propria (sub-lethal challenge) were observed (Figure 5A and
Supplementary Table S2). Meanwhile, lungs of transgenic chicks challenged with either
clinical or sub-lethal challenge showed normal parabronchus with slight congestion of
pulmonary blood vessels (Figure 5B and Supplementary Table S2) while lungs of mock
transgenic chicks challenged with either clinical or sub-lethal challenge showed pneumonia
described by inflammatory exudate occluding the air capillaries. These findings indicate
that the defense offered by the substantial expression of chIFITM1 may contribute to its
antiviral activity against influenza virus replication [7,11], which collectively reflect upon
the ameliorated clinical outcome and health improvement.
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Figure 5. Photomicrographs representing H & E-stained sections of tracheas (A) and lungs (B) collected from RCASBP(A)-
chIFITM1 and RCASBP(A)-WT challenged chicks with clinical and sub-lethal doses of H5N1 HPAIV compared to mock
inoculated chicks (negative and positive control groups); showing edema (ED), focal necrosis (NE), inflammatory cells
infiltration (IF), congestion (CO) (scale bar 25 µm).
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3. Discussion

With the increasing global human population, poultry production is critical for the
economy and food security. Although over the years, poultry production has improved sig-
nificantly by selective breeding and better genetics, threats raised by evolving and emerging
pathogens have significantly increased, particularly after intensive poultry breeding sys-
tems were implemented [13]. Innate immune responses are mainly regulated by cytokines,
chemokines, and interferon, which are either induced by direct viral infection or induced
by intrinsic activation against pathogens. Mapping cross-species host restriction factors
that determine the zoonotic potential and pathobiology of influenza viruses is fundamental
to understand the molecular factors that regulate the virus-mediated innate immune re-
sponses and mechanistic observations, varying between avian and mammals. Meanwhile,
additional investigation and better understanding of the alternative approaches will pro-
vide a framework against avian viral diseases and emergency of zoonotic infections such
as influenza viruses by chicken immune regulation and antiviral protection [21,22].

The role of interferon stimulating genes (ISGs) against viruses of medical, zoonotic,
and veterinary significance has recently been extensively explored [2]. Many of the IFITM
family members have been identified in chicken, including IFITM1, IFITM2, IFITM3, and
IFITM10 [11] and are differentially expressed upon stimulation by type I and type II IFNs [2].
The IFITM proteins obstruct the cytoplasmic entry for viruses. The mechanistic actions
of IFITM proteins are dependent on inhibition of the virus membrane fusion because of
the decreased membrane fluidity, and hence the curvature in the cell membrane outer
leaflets [3]; or disruption of the homeostatic cholesterol intracellular activity by precluding
the interaction of oxysterol-binding protein with the vesicle-membrane-protein associated
protein A [23]. Chicken IFITM1 and IFITM3 were recently described functionally [7]
although most of these studies were carried out either in cells or in ovo, which highlights
the ability of chIFITM1 as an important host antiviral limitation factor

The RCAS retrovirus gene transfer method offers a simple, cheaper, and less labora-
tory intensive method for retroviral-mediated transgenic expression [16,24]. While a non-
significant reduced body weight in transgenic chicks at hatching was observed, hatched
chicks regained the weight swiftly and obtained comparable sizes to non-transgenic chicks.
In the current study, we generated mosaic transgenic chickens, which stably and constitu-
tively express chIFITM1 to further explore the in vivo antiviral function of IFITM1 against
highly pathogenic avian influenza virus subtype H5N1. The transgenic chickens overex-
pressing chIFITM1 provided strong evidence for its ability to fully protect chickens against
doses of H5N1 avian influenza viruses that cause clinical disease signs in chickens. Because
of differing pressures in field environments and poultry susceptibility to environmental
stresses leading to pathological symptoms caused by the influenza virus, we further investi-
gate the impact of chIFITM1 on the predetermined clinical and sub-lethal dosages [13]. Our
results revealed that chIFITM1 alone is inadequate for complete morbidity and mortality
coverage when the “sub-lethal dosage” (105 EID50) was applied. However, the clinical
outcome was considerably enhanced when “clinical dose 104 EID50” was used in transgenic
chickens. Nevertheless, these finding specifically ruled out the likelihood that “clinical
dose” pre-exposure could induce adaptive immune response to mask the impact of a
“sub-lethal dose”. These observations clearly indicate the ability of innate immunity to
protect against HPAIV. It is important to mention that the defensive function of chIFITM1
has been tested against extremely virulent viruses; highly pathogenic influenza A viruses
(IAVs) that can trigger deaths rates of up to 100% in infected poultry flocks. Consequently,
it is likely to be believed that chIFITM1 could have significant impacts on comparatively
less virulent viruses, which cause only clinical diseases and low deaths such as H9N2
strains of influenza viruses.

Overexpression of chIFITM1 has not only alleviated the manifestation of clinical dis-
ease signs in HPAIV-infected chickens but also reduced the virus-induced pathological
lesions and virus shedding. Since the RCAS-based retroviral gene transfer system is pre-
dominantly effective in organs that are rich in endothelial cells [16,22,25], we realized the
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complete blockage of virus shedding in trachea. This substantially reduced virus shedding
correlated with the improved tracheal tissue health, which may highlight the expression
and functional importance of chIFITM1 in mucosal surfaces. Meanwhile, chIFITM1 not
only alleviates the clinical outcome of HPAIV infected chickens with symptoms of patho-
logical illness, but it also decreases the pathology and viral shedding induced by viruses.
As the RCAS propagation mechanism focus is primarily successful in endothelial cell-rich
tissues, that might explain why the lower virus replication and shedding in transgenic
chicken overexpressed chIFITM1 compared to wild type chickens. This decreases virus
accumulation in tandem with the greater protection of tracheal tissues and may demon-
strate the presence and functional value of chIFITM1 on mucosal surfaces. To conclude,
the antiviral activities of chIFITM1 against HPAI H5N1 was defined by the use of the
animal transgenic model. These findings indicate the ability of the innate immune system
to impart tolerance to viruses in chicken and provide proof of the capacity to produce
virus-resistant transgenic chickens for food protection and to inhibit the spread of zoonotic
viruses to humans. In addition, gaining more understanding of the genetic factors that
determine the susceptibility of poultry to avian influenza viruses will help to diminish
risks to animal and human health via outbreak preparedness, enhancing food security, and
animal health and welfare. However, understanding these factors will not only help to
understand how influenza viruses evolve but also provide evidence as to how such a host
spectrum contributes to circulation of influenza viruses in chickens and their potential risk
to humans.

4. Materials and Methods
4.1. Ethics Statement

All animal studies and procedures were carried out in strict accordance with the guide-
lines of the Animal Ethics Committees, Department of Poultry Viral Vaccines, Veterinary
Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Egypt.
The study was conducted according to the guidelines of the Declaration of the Veterinary
Serum and Vaccine Research Institute (VSVRI) and approved by the Institutional Review
Board (VSVRI-20180206).

4.2. Cells, Viruses and Antibodies

DF1 cells (chicken fibroblast line; ATCC CRL-12203) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, Carlsbad, CA 92010, USA) supplemented
with 10% inactivated fetal bovine serum (FBS) 120 (Gibco), 2 mM l-glutamine (Gibco),
and 100 U/mL penicillin/streptomycin (Gibco) at 37 ◦C in 5% CO2. Influenza A virus
strain A/chicken/Egypt_128s_2012 (clade 2.2.1.2) (accession number: JQ858485.1) was
propagated in 9-day-old specific pathogen free (SPF) chicken eggs and the median egg
infectious doses 50 (EID50) were determined in SPF eggs using the Reed and Muench
method [26]. AMV-3C2-S (gag) antibodies were purchased from Hybridoma Bank of Iowa,
University of Iowa. The α-flag antibodies for the detection of FLAG tag-fused chIFITM1
were purchased from Sigma (Sigma-Aldrich, MA, USA). Alexa-fluor 568 and 488 secondary
antibodies were purchased from Invitrogen (Carlsbad, CA, USA).

4.3. Construction and Rescue of RCAS Viruses Expressing chIFITM1

The open reading frame of chIFITM1 codon-optimized and chemically synthesized
in-fusion with Flag-tag and sub-cloned to an improved form of RCASBP(A)-∆F1 (kindly
provided by Stephen H. Hughes, National Cancer Institute, Maryland USA) using ClaI
and MluI restriction sites. This restriction digestion excised the src gene and replaced
it with chIFITM1 while maintaining the splice accepter signals. This new vector was
designated as RCASBP(A)-chIFITM1. In order to generate reporter RCASBP(A) system,
the GFP coding sequence was cloned between ClaI and MluI and the resulting plasmid
was labelled as RCASBP(A)-eGFP [23]. The sequence integrity and orientation were
confirmed by Sanger’s sequencing. To rescue recombinant RCASBP(A) retroviruses, we
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followed previously described methods [23]. Briefly, DF1 cells transfected with each of the
RCASBP(A)-eGFP and RCASBP(A)-chIFITM1 plasmids using Lipofectamine 2000 in Opti
MEM with a predetermined optimized ratio of 1:3 (Invitrogen, Carlsbad, CA, USA). Media
were changed 6 h post transfection and replaced DMEM supplemented with 5% FCS and
1% penicillin/streptomycin for 48 h. Cells were expanded until the desired number of cells
(106 cells/egg) was achieved.

4.4. Confocal Microscopy

Expression of the reporter gene (GFP) was monitored using fluorescence microscopy
(Figure S1) whereas replication efficiencies of chIFITM1 expressing retroviruses were
assessed by staining the gag protein of RCASBP(A) and chIFITM1-Flag tag. DF1 cells grown
on coverslips in 24-well plates, were infected with retroviruses (RCASBP(A)-chIFITM1)
for 48 h. Cells were then fixed for 1 h using 4% paraformaldehyde and permeabilized
using 0.01% Triton-X100 before incubation with primary antibodies raised against either
Flag tag, gag protein of retroviruses, or both. Afterwards, cells were incubated with
corresponding secondary antibodies for 2 h at room temperature. Cell nuclei were stained
with 4′, 6-diamidino-2-phenylindole (DAPI), and the images were taken using a Zeiss
confocal laser-scanning microscope (Zeiss, Kohen, Germany). The confocal images were
taken with 40× and 63× high numerical-aperture oil immersion objective lenses on an
upright Zeiss LSM800 confocal microscope. The image size was set 1024 × 1024 pixels. To
eliminate inter-channel cross talk, multitrack sequential acquisition settings were used. A
568 nm diode-pumped solid-state laser and an argon ion laser’s 488 nm line were used for
excitation. Zeiss Zen control software, which provides numerous viewing features for the
observation and creation of high-quality confocal images, was used to establish optimized
emission detection bandwidths.

4.5. Generation of Transgenic Chickens and H5N1 HPAIV Challenge

SPF eggs were acquired from a local supplier in co-operation with the Department of
Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agricul-
ture Research Centre (ARC), Egypt. Mosaic-transgenic chicken embryos were generated by
inoculation of 106 RCASBP(A)-chIFITM1 or empty RCASBP(A)-WT infected DF-1 cells into
SPF chicken eggs through the intra-yolk sac using 24G needles at day 2 post-embryonation
(ED2). Eggs were fixed for 2 h post-inoculation before incubation at 37 ◦C with 60–80%
humidity in a rotating incubator (twice daily). Transgenic embryos were allowed to hatch
naturally at 21 days of incubation (ED21) (Figure 2A). Each group of transgenic chickens
was housed separately in containment level 3 isolators. Food and water were provided ad
libitum, and general animal care was provided by the animal house staff as required.

The virus dosage optimization (clinical and sub-lethal doses) for HPAIV H5N1 was car-
ried out in our previously study [13]. A total of 20 RCASBP(A)-chIFITM1, 20 RCASBP(A)-
WT transgenic chicks, and 15 mock-inoculated chicks (positive control) were challenged
with 104 EID50 H5N1 HPAIV (clinical dose) 12 days post-hatching (PH12). On the other
hand, 10 chicks were kept as a naïve negative control group (non-inoculated-non chal-
lenged, inoculated with PBS). Before second challenge with the sub-lethal dose (105 EID50
H5N1 HPAIV) on day 20 post-hatching (PH20), three chicks from all groups were sacrificed
for histopathological examination. All birds in all groups were monitored for the following
15 days to monitor the appearance of clinical signs, weight gain (Figure 2C), feed intake
(Figure 2D) and water intake (Figure 2E), and mortalities in all groups. The experiment
was terminated on day 35 (PH35) and all remaining chicks were euthanized.

4.6. Confirmation of chIFITM1 Expression and Quantitative Assessment of the Chicken Antiviral
Immune Responses

Total RNA was extracted from tracheas and lungs, which were collected from trans-
genic (RCASBP(A)-chIFITM1) and non-transgenic chickens (mock treated neg. ctrl) using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). A total of 150 ng of RNA was used in the
PCR reactions using SuperScript III Platinum SYBR Green One-Step qRT-PCR Kit (Invit-
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rogen, Carlsbad, CA, USA) as described earlier [24]. The abundance of specific chIFITM1
mRNA was compared to the 28S rRNA. The reactions were run using a CFX96 Real-Time
PCR machine (Bio-Rad, Hercules, CA, USA) and the data were analyzed using the ddCt
method [27].

In order to determine the expression of innate immune genes, total RNA was extracted
as described above using TRIzol reagents (Invitrogen, Carlsbad, CA, USA). Invitrogen
SuperScript III Platinum One-Step qRT-PCR Kit (Invitrogen, Carlsbad, CA, USA) was
used for quantification of the abundances of specific innate immune genes’ mRNA in
tracheas of transgenic chickens with RCASBP(A)-chIFITM1, non-transgenic (mock treated
pos. ctrl) chicks challenged with HPAIV H5N1, and negative control birds compared
to corresponding 28S rRNA (housekeeping gene) and the average fold changes were
determined as provided in Supplementary Table S1. Primers for innate immune genes are
provided in Supplementary Table S1.

4.7. Virus Shedding and Histopathology

Cloacal and oropharyngeal swabs were collected separately, placed in virus transport
medium, filtered through a 0.2 µm filter and then aliquoted and stored at −70 ◦C until
all samples were collected before analysis using hemagglutination assay as previously
described [28]. Selections of tissues including trachea and lung were collected and fixed
at room temperature for 48 h by immersion in 10% neutral buffered formalin followed
by paraffin wax embedding. The 5 µm tissue sections were stained using hematoxylin
and eosin stain before examination under light microscope for any microscopic lesions.
Quantitative scoring for histopathological lesions for the trachea and lungs were evaluated
on a scale from 0 to 3 based on the lesion severity grade (mild, moderate, and severe) as
follow: 0 = no changes, 1 = mild, 2 = moderate, and 3 = severe [29].

4.8. Statistical Analysis

Pairwise comparisons of challenged (clinical and sub-lethal doses) and control groups
(positive and negative) were performed using Student’s t-test. Kaplan–Meier analysis
was performed to calculate the survival rates. Two-tailed Student’s t-test and one-way
analysis of variance (ANOVA) were used to determine differences between groups. Sta-
tistical significance is shown with values of p < 0.05. All data were represented as the
mean ± standard deviation (SD). Statistical analyses were conducted using GraphPad
Prism 7 (GraphPad Software, La Jolla, CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168456/s1, Figure S1. Generation and rescue of recombinant retroviruses expressing
marker gene (eGFP). Supplementary data 1 file represents the statistical analysis for hatchability
between different inoculated groups. Supplementary data file 2 represents the statistical analysis for
the average body weight between different inoculated groups during the experiment. Supplementary
data file 3 represents the statistical analysis for the average feed intake between different inoculated
groups during the experiment. Supplementary data file 4 represents the statistical analysis for the
average water consumption between different inoculated groups during the experiment. Supple-
mentary Table S1: Expression of innate immune genes in transgenic and non-transgenic chicken
challenged with HPAI H5N1. Supplementary Table S2: Histopathological lesion scores for tracheas
and lungs of different experimental groups.
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