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Abstract: Insects recognize odorous compounds using sensory neurons organized in olfactory
sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant
binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by
multigene families. Most functional proteins seem to be broadly tuned, responding to multiple
chemical compounds with different, but mostly quite similar structures. Based on the hypothesis that
insects recognize host volatiles by means of general odorant binding proteins (GOBPs), the current
study aimed to characterize GOBPs of the yellow peach moth, Conogethes punctiferalis (Guenée).
In oviposition preference tests, it was found that the yellow peach moth preferred volatiles from
Prunus persica (peach) in finding their host plant. Exposure of the moth to volatiles from peaches
affected the expression level of GOBP genes. Binding affinity of GOBPs from yellow peach moth was
assessed for 16 host plant volatiles and 2 sex pheromones. The fluorescence ligand-binding assays
revealed highest affinities for hexadecanal, farnesol, and limonene with KD values of 0.55 ± 0.08,
0.35 ± 0.04, and 1.54 ± 0.39, respectively. The binding sites of GOBPs from yellow peach moth
were predicted using homology modeling and characterized using molecular docking approaches.
The results indicated the best binding affinity of both GOBP1 and GOBP2 for farnesol, with scores of
−7.4 and −8.5 kcal/mol. Thus, GOBPs may play an important role in the process of finding host plants.

Keywords: Conogethes punctiferalis; GOBPs; fluorescence competitive binding assays; circular
dichroism; molecular docking

1. Introduction

Sensing volatile chemical compounds is crucial for insects to navigate in their environment and
to recognize congener. The detection of appropriate compounds and the primary sensory reactions
takes place in hair-like structures of the antennae, called sensilla. The sensilla cavity is filled with
fluid bathing the dendritic processes of the olfactory sensory neurons. The transfer of hydrophobic
odorant molecules through the aqueous sensillum lymph towards the sensory dendritic membrane is
supposed to be mediated by odorant binding proteins (OBPs) [1,2]. OBPs are small, water-soluble
proteins in the sensilla lymph and depending on the structure, different types of OBPs have been
identified, including pheromone binding proteins (PBPs), general odorant binding proteins (GOBPs),
and antennal binding proteins (ABPs) [3–6]. So far, only two GOBP subtypes (GOBP1 and GOBP2) have
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been identified in lepidopteran species [7]. In previous studies it has been demonstrated that GOBP1
and GOBP2 were highly expressed in antennae and it has been suggested that they are involved in
sensing host plants and oviposition sites [8,9]. More recent studies demonstrated that GOBPs also bind
sex pheromones [10]. The results of Khuhro et al. [11] indicate high binding affinity of GOBPs for both
host plants and the sex pheromones (Z9-16:Ald, Z11-16:Ald and Z13-18:Ald) from Chilo suppressalis
and also a general odorant binding protein from Sitotroga cerealella showed high binding affinity for the
pheromone HDA (7Z, 11E-hexadecadien-1-ol acetate) [12]. These studies suggested the GOBPs may
also play a role in pheromone reception.

Growth conditions and sensory stimuli can cause physiological changes in a wide range of
insects [13,14], including changes in the chemosensory responsiveness. It has been observed that in
flies (Drosophila melanogaster) the responses to plant odors are depending on age [15]; similarly, in
female moth (Manduca sexta) the response to plant odorants became more intense with increasing age
and was altered upon mating [16]. Moreover, there is recent evidence that exposure to semiochemicals
can elicit changes in the expression levels of distinct OBP subtypes [17]. Since the responsiveness of the
olfactory system is primarily based on an interplay of different families of antennal proteins [18], it will
be of fundamental interest to elucidate the structural and functional features of the molecular elements.

The yellow peach moth, Conogethes punctiferalis Guenée (Lepidoptera: Crambidae), mainly occurs
in tropical and subtropical countries [19]. The distribution of yellow peach moth extends from Asia to
Australia [20]. It is a polyphagous insect pest causing severe crop losses owing to the direct larval
damage to reproductive or economically important plant parts [21]. It attacks fruits of 30 plant species
belonging to 15 families [22]. It is considered the most serious insect pest of fruits and maize crop
in China [23]. The main sex pheromone compounds of yellow peach moth are (E)-10-hexadecenal
(E10-16:Ald), along with the two minor components (Z)-10-hexadecenal (Z10-16:Ald) and hexadecenal
(16:Ald) [24–26]. Field trials indicate that Z10-16:Ald and 16:Ald alone do not attract males. A blend of
these compounds (two or three) was more attractive [25]. Since the first discovery of insect OBP in the
male antennae of the giant moth Antheraea polyphemus [9], a large number of olfactory genes have now
been identified in numerous insect species through molecular cloning, cDNA library sequencing and
genome-wide transcriptional analyses [27,28]. With regard to molecular cloning, a large number of
OBP genes have been recently identified in the antennae of the yellow peach moth. In total, 15 putative
odorant binding proteins (OBPs), 46 putative odorant receptors (ORs), and 7 putative ionotropic
receptors (IRs) were annotated and identified as olfactory-related genes of yellow peach moth [7].
So far, binding specificity of two PBP genes in the yellow peach moth has been investigated by Ge et al.,
2018 [29]. A better understanding of the molecular mechanisms of sex pheromone perception would
improve the use of pheromones to control this pest. In this study, we have evaluated the expression
profiles of GOBPs in yellow peach moth and analyzed the binding properties of GOBPs by fluorescence
ligand-binding assays as well as molecular docking approaches.

2. Materials and Methods

2.1. Insects

Pupae of yellow peach moth were provided by the Institute of Plant Protection (IPP), Chinese
Academy of Agricultural Sciences. Female and male pupae were separately kept in plastic cages
(L 31 ×W 26 × H 28 cm) [30]. All the tests were conducted in a controlled environment chamber at
27 ± 1 ◦C, with 60–70% relative humidity (RH) and 16:8 h (L:D) photoperiod. The moths were feed
with 10% honey solution [31].

2.2. RNA Extraction and cDNA Synthesis

Total RNA extracted from different tissues of male and female adults, tissues namely antennae,
head, wing, abdomen, thorax, and legs were dissected and RNA samples were extracted using the
Quick-RNATM MicroPrep Kit (ZYMO Research, Irvine, CA, USA) according to the manufacturer’s
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instructions. Ten adults were used from both the sexes to extract antennae and legs and other
tissue mentioned above was extracted using three adults per sample. The dissected tissue sample
was transferred into sterile mortar/pestle and grounded with RNA lysis buffer Then the mixture
was transferred to the column placed on the collection tube and centrifuged (10,000 rpm, 30 s), the
flow-through was discarded. 40 µL of DNase I reaction mix was added to the tube for trace DNA
removal. RNA prep buffer was added to the column and centrifuged (10,000 rpm, 30 s), following
this step a wash buffer provided in the kit was added to the column and spun down. Finally, the
column was placed carefully on a RNase-free tube and 15 µL DNase/RNase-free water was added and
centrifuged (10,000 rpm, 30 s), the total RNA was eluted and tubes are stored at −80 ◦C. The integrity of
the total RNA was analyzed using 1.5% agarose gel electrophoresis [32]. The quality and concentration
were analyzed on a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). RNA samples were
used for cDNA synthesis at absorption ratios of A260/A280 = 1.80 − 2.10. The cDNA was synthesized
using RTTM All-in-One Master Mix Kit (Herogen Biotech, Shanghai, China). The first strand cDNA
synthesis reaction was carried out from 1 µg of total RNA. Anchored oligo (dT) from the kit is used
and cDNA was synthesized by following the manufacturer’s protocol. The final cDNA samples were
stored at −20 ◦C until further analysis.

2.3. Quantitative Real-Time PCR (qRT-PCR)

Expression of GOBPs in different tissues were analyzed using qRT-PCR. SYBR green (Premix Ex
TaqTM, Takara, Japan) method was used to evaluate the expression level of GOBP genes in different
tissues (ABI 7500 Fast, Applied Biosystems, Waltham, MA, USA). The primers efficiency was tested by
using 10-fold diluted cDNA samples and standard curve was generated. The Ct values are plotted
against the Log of the cDNA dilutions, efficiency percentage and R2 values are within the acceptable
range [33]. The details of the primers and obtained efficiency values were listed in the Supplementary
Table S1. Two-step program was adopted; reaction volume was set to 20 µL. The program was designed
as follow: after denatured at 95 ◦C for 30 s, then followed by 40 cycles of 95 ◦C for 5 s, 60 ◦C for
30 s; melting curve analysis was performed from 60 ◦C to 95 ◦C to determine the specificity of PCR
products. Three independent biological replicates were maintained for all the sample and four technical
replicates were performed form each biological sample. 2−∆∆CT method was used to calculate the
relative expression of GOBP genes to the reference gene RP49 (accession number KX668533) [34,35].

2.4. Oviposition Preference Test

The oviposition preference of yellow peach moth was examined using the three hosts, peach
(Prunus persica), sweet corn (Zea mays L. var. saccharate), and apple (Malus pumila Mil). The hosts were
wrapped using wet cheesecloth and placed inside the plastic cages (one host/cage), newly emerged
male and female moths (30:30) were allowed into the cage and these cages are placed inside the
climate controlled chambers (one cage/chamber, 27 ± 1 ◦C, RH 60–70% with 16:8 h (L:D) photoperiod).
Moderately ripen hosts (apple, peach) and fresh sweet corn were used, fully ripened hosts cannot
withstand the chamber conditions. The test continued up to 10 days, the positions of these hosts and
honey solution inside the cages were changed in order to eliminate any possible effects of environmental
factors [36]. The cheesecloth was changed every day, number of eggs laid on the cheesecloth by the
30 adults were counted and accounted for the oviposition preference results. Triplicate processes were
maintained through the course of the experiment.

2.5. Effects of Host Stimulation on the Expression Profiles of GOBP Genes

Based on the oviposition results, peach was used as a stimulant. The pupae of male and female
were separated and maintained in different chambers. The newly emerged male and female adults
were introduced in separate cages and maintained in separate climate-controlled chambers. Totally,
150 adults were introduced in the cages and one peach was placed per cage, the host was unchanged
throughout the experiment. The same set without peach was maintained and it served as the control
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(non-induced). The antennae from both the sexes were excised (10 adults/sample) at 0, 1, 2, 4, 6, 8, 12,
24, 48, 72, and 96 h and RNA samples were extracted.

2.6. Preparation of Recombinant GOBPs

The signal peptides of GOBP1 and GOBP2 (accession number: KY130468 and KT983812) were
predicted by SignalP 4.1 server [37]. Signal peptides were removed from complete ORF sequences of
both genes and primers were designed, using antennal cDNA as the templates the GOBP1 and 2 were
amplified and cloned using pEASY-T vector (TransGen Biotech, Beijing, China). The sense and antisense
primers designed for GOBP1 and GOBP2. GOBP1 sense primers: 5′-CGGGATCCGACCACAAGATC
AT-3′ and antisense primer: 5′-CCAAGCTTCTAAGTCTCCGACTG-3′ (BamH I and Hind III restriction
sites are underlined); GOBP2 sense primer: 5′-AGCGAATTCGTGAAGAGCACTGCT-3′ and antisense
primer: 5′-CCGAAGCTTTCAGTATCTCTCCAT-3′ (EcoR I and Hind III restriction sites are underlined).
The expected sequences were purified and cloned into the bacterial expression vector pET-30a (+)
digested with the same enzymes. Then the plasmid was transformed into BL21 (DE3) competent cells
(TransGen, Beijing, China) and the positive clone was inoculated in a liquid LB medium (4 L/protein)
induced by 1 mM isopropyl-b-d-thiogalactoside (IPTG, Coollaber Science and Technology, Beijing,
China) and placed in shaking incubator at 37 ◦C for 6 h. The induced bacterial cells were harvested
from volume of 4 L liquid LB medium and centrifuged at 4 ◦C for 10 min (10,000 rpm). The pellets
were subjected to ultrasonication and the recombinant GOBPs protein were purified by the Ni2+-IDA
column (His tagged) with a gradient concentration imidazole washing. The precipitate was resolved
using 8 M carbamide and proteins were dialyzed in PBS buffer (pH 7.4) to remove the remaining
chemical impurities from the protein. Purified protein concentrations of GOBP1 and GOBP2 was
determined by the method of Bradford using BSA as standard [38] The western blot method was
performed to analyze the correct expression. 10 µL of purified protein sample was electrophoresed in
12% gel (ExpressPlusTM, Piscataway, NJ, USA). The gel was sandwiched with a polyvinylidene fluoride
(PVDF) membrane and sample in the gel was transferred to the PVDF (electrophoresis; 100 V, 200 mA,
1 h). The film was washed four times using PBST (1% Tween-20 in 0.5 M Phosphate-buffered saline).
5% skim milk powder in PBST was used as blocking buffer. The PVDF membrane was incubated
in primary antibody His (1:1000) and placed on shaker for overnight at 4 ◦C. The membrane was
washed again using PBST and treated with second antibody sheep anti-rabbit antibody (1:5000) at
37 ◦C for 1 h. A final wash was given to the membrane and developed in ImageQuant LAS 4000 (GE,
Pittsburgh, PA, USA) using western optimized HRP (horseradish peroxidase) reagent (Pierce, ELC kit,
Thermoscientific, USA).

2.7. Fluorescence Binding Assays

Fluorescence binding assay was used to measure the affinity of the GOBP1 and GOBP2 to 2 sex
pheromones and 16 volatile compounds (Table 1) [29,39]. The fluorescence intensity was recorded on a
FluoroMax-4 spectrophotometer (Horiba Scientific, Piscataway, NJ, USA) at room temperature using a
1 cm light path fluorimeter quartz cuvette. The fluorescent probe N-phenyl-1-naphthylamine (1-NPN)
and all the tested chemicals were dissolved in HPLC purity methanol. The final concentration was
prepared 2 mM. To measure the affinity of florescent ligand 1-NPN to each protein, a 2 µM solution of
the protein in 50 mM Tris-HCl, pH 7.4, was titrated with aliquots of 1 mM ligand in methanol to final
concentrations of 1–8 µM. The fluorescence of 1-NPN was excited at 337 nm and emission spectra were
recorded between 300 and 450 nm. The affinity of other ligands was measured in competitive binding
assays, using 1-NPN as the fluorescent reporter at 2 µM concentration and different concentrations
of each ligands [40]. The GraphPad Prism 5 (GraphPad Software, Inc. San Diego, CA) was used to
estimate the K1-NPN (KD of complex protein /1-NPN) values by nonlinear regression for a unique site of
binding. It was assumed that the proteins were 100% active, with a stoichiometry of 1:1 (protein:ligand)
at saturation. For other competitor ligands, the dissociation constants were calculated from the
corresponding IC50 (concentrations of ligands halving the initial fluorescence value of 1-NPN) values
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using Microsoft Office Excel 2010, with the formula: KD = [IC50]/(1+[1-NPN]/K1-NPN). In the equation,
[1-NPN] in the free concentration of 1-NPN, and K1-NPN is the dissociation constant of the complex
protein/1-NPN.

Table 1. IC50 values (µM) and dissociation constants (KD) (µM) of GOBP1 and GOBP2 to different
ligands at pH = 7.4

Ligand GOBP1 GOBP2

Intensity (%) IC50 (µM) KD (µM) Intensity (%) IC50 (µM) KD (µM)
ALDEHYDES

Heptanal 75.78 ± 5.17 13.52 ± 3.22 5.76 ± 0.64 96.80 ± 1.33 55.95 ± 1.54 23.12 ± 4.68
Hexadecanal 48.64 ± 4.35 1.29 ± 0.14 0.55 ± 0.08 67.94 ± 1.79 21.06 ± 1.83 8.70 ± 0.74

Nonanal 71.04 ± 8.80 13.35 ± 2.41 5.69 ± 0.36 96.99 ± 2.63 92.79 ± 3.83 38.34 ± 1.09
Benzaldehyde 83.58 ± 6.61 20.62 ± 1.31 8.79 ± 0.59 94.76 ± 7.32 77.12 ± 1.40 31.86 ± 3.03
Undecanal 78.33 ± 2.89 16.81 ± 2.41 7.17 ± 0.67 98.12 ± 1.92 96.67 ± 2.41 39.94 ± 9.70
n-Hexanal 45.50 ± 4.58 7.31 ± 1.43 3.11 ± 0.71 96.44 ± 1.50 68.07 ± 3.70 28.13 ± 0.62
Z10-16:Ald 20.88 ± 0.48 2.82 ± 0.44 1.20 ± 0.09 58.63 ± 2.72 8.65 ± 1.87 3.58 ± 0.62
E10-16:Ald 47.29 ± 7.52 4.90 ± 0.54 2.09 ± 0.45 84.05 ± 2.25 21.44 ± 4.15 8.86 ± 0.93

ALCOHOLS
Linalool 74.52 ± 2.42 15.71 ± 1.61 6.70 ± 0.69 91.86 ± 0.71 44.85 ± 1.16 18.53 ± 0.48
Farnesol 41.45 ± 2.51 0.83 ± 0.09 0.35 ± 0.04 55.64 ± 1.78 3.98 ± 0.36 1.64 ± 0.03

Cis-3-hexen-1-ol 94.99 ± 1.78 78.63 ± 0.23 33.53 ± 1.21 96.93 ± 0.99 51.33 ± 1.60 21.21 ± 1.14
n-Hexanol 97.23 ± 0.89 60.35 ± 2.44 25.73 ± 0.43 94.24 ± 1.82 95.19 ± 1.68 43.88 ± 2.41

1-Amyl
alcohol 95.2 ± 1.12 33.50 ± 1.02 14.28 ± 1.74 96.54 ± 1.39 98.67 ± 2.30 75.89 ± 1.39

1-Tetradecanol 45.8 ± 0.56 4.81 ± 0.72 2.05 ± 0.43 85.52 ± 1.47 54.02 ± 2.56 22.32 ± 1.89
OLEFINES

α-Pinene 64.96 ± 3.26 11.10 ± 3.47 4.73 ± 0.48 98.57 ± 1.13 67.95 ± 4.66 28.07 ± 4.06
β-Pinene 66.21 ± 2.96 9.94 ± 2.72 4.24 ± 0.69 97.15 ± 3.95 33.70 ± 3.29 13.92 ± 1.36

Caryophllene 68.98 ± 3.16 9.09 ± 2.42 3.88 ± 0.91 89.93 ± 2.15 20.98 ± 2.10 8.67 ± 1.12
Limonene 43.27 ± 2.47 3.62 ± 0.89 1.54 ± 0.39 92.62 ± 1.21 35.47 ± 1.14 14.65 ± 2.78

The results are based on mean ± SD, through the experiment triplicates were maintained.

2.8. CD Spectra, 3D Modeling, and Molecular Docking Studies

The secondary structures of the GOBP1 and GOBP2 proteins were analyzed by investigating the
far-UV region (190–270 nm) of CD spectra recorded by MOS 450 AF/CD (Biologic, Grenoble, France),
using 1 mm quartz cuvette. The GOBP1 and GOBP2 proteins were dissolved in sodium phosphate
(20 mM, pH 7.2) to a final concentration of 0.2 mg/mL. The protein samples were measured three times
independently. ClustalX was used to align a multiple protein sequence alignment and drawn with
ESPript (http://espript.ibcp.fr/ESPript/ESPript/) [41]. A blast search of the amino acid sequence of
GOBP1 and GOBP2 was conducted against the current Protein Data Bank (PDB; http://www.rcsb.org)
to find structural templates. The sequence of Bombyx mori GOBP2 [42] was found to be more similar
to the both GOBP1 and GOBP2 of yellow peach moth and used as a template to construct the
3-D structures. Modeller v9.19 (http://salilab.org/modeller) software was used to construct the 3-D
structures. The template structure and protein alignment was done utilizing Modeller v9.19 software
using align2d facility of Modeller [43] and Ramachandran plot was obtained by Procheck online
server for model evaluation [44]. The GOBP1 and GOBP2 modeled structure were validated using
the Ramachandran plot to check the structural stability of these proteins. Compounds were selected
for molecular docking based on the IC50 values obtained through fluorescence binding assay, the
compounds with least IC50 value were chosen for the docking studies (E10-16: Ald, Z10-16:Ald,
farnesol, hexadecanal, and limonene). The SDF (structure data file) of these compounds are retrieved
from PubChem database and using Open Babel v2.4.0 the files are converted into the Mol2 format.
Autodock Vina suit v 4.0 associated with Chimera v1.13 was selected for the molecular docking analysis.
The configuration file was loaded with grid generation parameter (Center X = 16.50, Y = 54.0 and
Z = 13.50; Size X = 16, Y = 18, Z = 20.50), exhaustiveness value =24, energy range at =3 and number of
modes =100 was set in the configuration file to run multiple iterations and obtain consistent results.

http://espript.ibcp.fr/ESPript/ESPript/
http://www.rcsb.org
http://salilab.org/modeller
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3. Results

3.1. qRT-PCR

The qRT-PCR was performed to localize the GOBP1 and GOBP2 genes in different tissues (antennae,
head, wing, abdomen, thorax, and legs) used in the study. The tested genes were highly expressed in
the antenna of both male and female adults compared with other tissues (Supplementary Figure S1).

3.2. Oviposition Preference

Females of the yellow peach moth started to oviposit on the second day after emergence with
rather few eggs. In the following days, the rate of oviposition rapidly increased and peaked on days 5
to 7. The fecundity rapidly declined in following days and mortality in adults was started at day 7; a
maximum number of adults died on day 10 (Figure 1). Comparing the different host plants, it becomes
immediately clear that the female moths preferred to lay eggs on peach. The maximal fecundity per
day was 342 eggs on peach, 198 on corn, and 139 on apple (Figure 1).
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Figure 1. Oviposition of yellow peach moth on peach, corn and apple. Vertical bar under different
letters are significantly different and same letters are not significantly different (Tukey’s, P < 0.05).

3.3. Expression Levels of GOBP1 and GOBP2 Genes

GOBPs are supposed to be closely related to the reception of host volatiles. qRT-PCR experiments
were performed to determine the expression level of the GOBP genes relative to the reference gene
RP49 in males and females. The male and female adults were induced by the peach and compared with
the non-induced individuals. The results depicted in Figure 2 indicate that upon exposure to peaches a
significant increase in the expression level of GOBP1 occurred in male antennae within the first hour
(Figure 2a). Subsequently, the expression level gradually declined to the baseline. However, upon
long-term exposure (72 h and 96 h) there was a significantly enhanced expression level for GOBP1
(Figure 2b). For GOBP2 no significant changes in the expression levels were observed; neither upon
short term or long term exposure to peaches. Interestingly, for females, no evidence for any significant
changes in the expression levels were found.
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Figure 2. Expression profiles of GOBP genes in yellow peach moth antennae in different times. (a) and
(b) showed the expression of GOBP genes in male and female moth antennae, respectively. The gene
expression level between the inducted and non-inducted adults at different hours was statistically
significant (t-test, ** P < 0.01).

3.4. Heterologous Expression and Structure Analysis GOBPs

The GOBPs proteins were expressed successfully in an inclusion bodies expression system
(Supplementary Figure S2). The estimated protein concentrations were 1.0 (GOBP1) and 0.8 (GOBP2)
mg/mL. The molecular weight of the heterologously expressed GOBP1 and GOBP2 was determined as
about 22 kDa. In order to explore the secondary structures of GOBPs, CD spectroscopy analyses were
performed. The results indicated that GOBP1 and GOBP2 shared several features in their secondary
structure. Similar CD spectra at three regions were found at 197, 205, and 224 nm; these regions
may comprise folds with major α-helical secondary structures (Supplementary Figure S3). Structural
models of the GOBPs from yellow peach moth were built based on the crystal structure of BmorGOBP2
from Bombyx mori [42]. The two GOBPs, CpunGOBP1 and CpunGOBP2 shared 48% and 74% identity,
respectively (Figure 3a). Both predicted 3D structures of the GOBPs consisted of seven α-helices with
similar amino acid sequences in this region (Figure 3b, c). Totally, eight and seven cysteines were
identified in GOBP1 and GOBP2, these disulphide bonds are predicted at three positions in both
proteins. In GOBP1, the Cysteines1_2 position was predicted between 119–139, 12–41, 72–130 and in
GOBP2 117–137, 39–70, 74–128.
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3.5. Flourescent Ligand-Binding Assays

In order to explore the binding characteristics of the GOBPs titration experiments were
performed using N-phenyl-1-naphthylamine as fluorescent ligand. Incubating GOBPs with increasing
concentrations of N-phenyl-1-naphthylamine (1-NPN) allowed to determine the affinity of both GOBPs
for 1-NPN. Scatchard plot analyses of the data revealed dissociation constants of 0.74 ± 0.41µM and
0.70 ± 0.38µM for GOBP1 and GOBP2, respectively (Supplementary Figure S4).

To estimate the binding affinities of GOBP1 and GOBP2 for a variety of different ligands, the
decrease of 1-NPN fluorescence monitored, which resulted from the ability of various compounds to
displace 1-NPN (Figure 4); from the resulting data the IC50 and KD values for the different compounds
were determined (Table 1). From the 18 analyzed compounds both GOBPs showed the highest affinity
for farnesol; a KD value of 0.35 ± 0.04 µM was determined for GOBP1 and a value of 1.61 ± 0.03 µM for
GOBP2 (Table 1). Besides, GOBP1 showed relative high affinity for some semiochemicals, most notably,
hexadecanal KD 0.55 ± 0.08 and limonene KD 1.54 ± 0.39. In addition, some pheromonal compounds
(Z10-16:Ald; E10-16:Ald) showed a reasonable binding affinity to GOBPs (Table 1).
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3.6. Molecular Docking Studies

Based on the nucleotide sequence of GOBP1 and GOBP2 a homology modeling was performed
using the Protein Databank (PDB) and the Swiss Model server to search for the perfect template
which possesses the right configuration of structural conformation in each atom. GOBP1 and GOBP2
from Bombyx mori (PDB ID-2WCK, 2WC5) were used as template proteins for the construction of the
structure. GOBP1 and GOBP2 from yellow peach moth shared 88.30% and 83.22% similarity with
template proteins, respectively. Totally, 94.20 and 93.70% of amino acid residues were viewed in
the core regions (most favored region) of Ramachandran plot for GOBP1 and GOBP2 modeled files.
Remaining 5.85 and 6.30% of amino acid residues were found in additional or generously allowed
regions. No residues found in disallowed region.

Compounds selected for molecular docking studies (E10-16:Ald, Z10-16:Ald, farnesol, hexadecanal,
and limonene) were analyzed which showed the highest affinity in the fluorescent binding assays.
For GOBP1 the resulting docking scores were for hexadecanal, farnesol, and limonene −5.9, −7.4, and
−6.6 kcal/mol, respectively and for Z10-16:Ald and E10-16:Ald, −5.9 and −6.2, kcal/mol. For GOBP2
the docking score for farnesol was −8.5 kcal/mol and for Z10-16:Ald −6.9 kcal/mol (Figure 5).
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4. Discussion

Insects rely on olfaction to recognize chemical signals, which are important in controlling their
behavior, including essential processes, such as mate choice and host finding. The process of odorant
recognition begins when the chemical compounds encounter the odorant binding proteins in the
sensillum lymph. GOBPs are considered to be involved in transferring regular odorants towards the
sensory neurons. Towards an understanding of the molecular mechanisms of olfaction in the yellow
peach moth, this study was concentrating on the GOBPs of this species. In order to identify relevant
odorants for this species, it was found in oviposition tests that female yellow peach moth preferred
the smell from peaches when searching for an oviposition site. In some species, the females prefer
host plants based on the concentration of particular chemical compounds, whereas in other species the
response rely on the relative proportions of volatiles emitted from plants [45–47]. There is also evidence
that the yellow peach moth exhibits some preference for host plants based on the effects of caterpillars’
performance [48]. Further studies are needed to elucidate the parameters, which determine the host
choice of yellow peach moth.

While plants often emit a large variety of volatiles, in most cases only few distinct compounds are
responsible for attracting insect [49,50]. Moreover, significant changes in the responsiveness of insects to
volatiles have been observed, although the underlying mechanisms are mostly unknown [51,52]. In this
study, different tissues of yellow peach moth were tested firstly, and the genes were highly expressed
in the antenna of both male and female adults, similar with previous studies [12,42]. Therefore, the
antenna was selected for the following studies in this paper (Supplementary Figure S1). The exposure
of the moth to volatiles from peaches elicited an increased expression rate of GOBP1 in males during
the first hour of exposure (Figure 2a) as well as after a few days (Figure 2b). The gene expression
studies showed the expression of GOBP1 in male at different hours, particularly increased expression
was observed at first hour of induction and gradually decrease and again increase in expression was
observed at 72nd and 96th hours. We postulate two possible reason for the fluctuation, on introducing
the peach to the newly emerged male moths stimulated at the first hour, later the adults were adapted
to the environment and exhibited decrease in expression. We also noticed the expression was triggered
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at 72nd and 96th hours, this change might cause by the host due to host remained unchanged (no
fresh host provided) in the climate-controlled chamber, possible aroma released from the host might
stimulated the GOBP1 once again. Another possible effect was inferred from the previous literatures,
virgin male moth Vitacea polistiformis exhibited four-fold higher electroantennogram responses to
pheromones than mated male [53]. Eager for mating also a potential reason for the male adults to have
timely fluctuation in GOBP1 gene expression. In opposite, Plutella xylostella female adult’s response
towards some green leaf volatiles was stronger than the unmated females [54]. The data obtained in
our oviposition assay connects the qRT-PCR results, although we did not check the expression pattern
of GOBP1 after mating. The expression of GOBP1 in female might related to the after-mating process,
where the mated female adults seeks host to lay the eggs. The exact underlying mechanisms are poorly
understanding. However, an elevated expression levels of distinct OBP subtypes upon exposure to
semiochemicals has recently been reported by Paula et al. (2018) for the boll weevil, Anthonomus
grandis Boheman [17]. A similar result was not observed for females, which may indicate a sex specific
reaction to some of the compounds in the volatile blend emitted from the peaches.

The secondary structure of GOBP is important for the protein-ligand interactions and the
disulphide bridges are supposed to play a vital role in providing the structural integrity. The CD
spectroscopic study revealed the overall secondary structure of the GOBPs and allowed to predict
a few folds with major α-helical secondary structures (Figure 3). The structure of insect OBPs is
characterized by its compact structure with seven α-helix, thus forming a potential binding pocket for
interacting volatile compounds [40,55]. GOBP1 and GOBP2 possess eight respectively seven cysteines
which form three disulphide bridges; the prediction suggested interactions for GOBP1: 119–139, 12–41,
and 72–130; for GOBP2: 117–137, 39–70, and 74–128. Similar results concerning the structure and
the importance of the disulphide bridges have been reported for the binding proteins from Bombyx
mori [56,57]. Analyzing the CD spectroscopic results facilitated to obtain good 3D models of GOBP1
and GOBP2. Thus, 3D modelling aided us to visualize and study the protein-ligand interactions.

In order to explore the protein/ligand interaction the binding studies using a displacement
approach with a fluorescent ligand were extended by molecular docking experiments employing the
Autodock Vina tool. This approach focuses on the total negative force that acts on ligands; it includes
calculation of position, orientation, and torsions angle [58]. The binding energy between protein and
ligands tended to be in a similar range. However, when comparing the different volatiles, it turned
out that farnesol showed the highest binding score with GOBP1 and GOBP2, with values of −7.4 and
−8.5 kcal/mol. In this context it is interesting to note, also that both GOBPs from the rice striped stem
borer Chilo suppressalis [11] and Orthaga achatina [59] showed the highest binding affinities for farnesol.
The GOBPs affinity to farnesol is more interesting, the farnesol was reported as a constituent of sex
pheromone in some insects [60–62]. The interactions with GOBPs provides major insight (1) These
GOBPs might have dual functions like recognizing the host or sex pheromones; (2) Recognizing other
insects sex pheromones would help them to avoid their predators, further studies are required to
analyze these sex phenomena.

There are evolutionary facts were put forth that the GOBPs are evolved from PBP by gene
duplication, PBP and GOBP2 in Manduca sexta have close relationship and play an important role in
coordinated olfactory behaviors [63,64]. Previous research published in Bombyx mori [41], Spodoptera
litura [65], and Dendrolimus tabulaeformis [66] olfaction system states that the binding affinity of GOBP2
with sex pheromones was high as PBPs. More interestingly in our study, the data obtained from
fluorescence binding assays indicated that GOBP1 from yellow peach moth can interact with both tested
volatile compounds as well as the sex pheromones (Z10-16:Ald and E10-16:Ald), while GOBP2 did not
exhibited the binding affinity. Similarly, GOBP1 from oriental fruit moth Grapholita molesta showed
interaction with both host volatiles and sex pheromones, this effect inferred as GOBP1 might have
dual function in recognizing both host plant volatiles and sex pheromone components, while GOBP2
seems to be mainly tuned to interact with the minor sex pheromone component like dodecanol [67].
Vice versa, PBP2 and PBP5 from yellow peach moth can bind sex pheromones with higher affinities
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and also could interact with some odorants [29]. In our research, we find the GOBP1 can interact
potentially with sex pheromones and other volatiles tested. Overall results indicated that GOBP1 plays
a key role in yellow peach moth and might possess dual functions. Our results are exactly opposite to
Huang’s findings, this may indicate that GOBPs genes between different species may differ in function.
Further intensive molecular techniques like gene knockdown studies are needed to prove the functions
of the GOBPs.

5. Conclusions

We have evaluated the expression of the two GOBP types from the yellow peach moth and have
studied the secondary and tertiary structure of these proteins. The more detailed information about
the molecular elements of the olfactory system together with the available chemical database and
ecological knowledge will contribute to elucidate the principles and mechanisms underlying the
chemical communication of the yellow peach moth. The overall results of this study imply that GOBP1
may play a prominent role in the chemosensory processes involved in tracking the host and mating
partners. Although the specific functional role of insect GOBPs is still elusive, detailed analyses of
their interaction with relevant plant odorants, as exemplified in this study by fluorescence binding
assays and molecular docking studies, will contribute in the search for bioactive chemicals. Recent
advance in computational biology will help to identify or design bioactive compounds that may allow
to specifically interfere with chemical communication of pest insects. Such approaches may eventually
lead to more insect-specific and environmentally-friendly control agents.
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