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Abstract
Antibiotics have been widely used for a number of decades for human therapy
and farming production. Since a high percentage of antibiotics are discharged
from the human or animal body without degradation, this means that different
habitats, from the human body to river water or soils, are polluted with
antibiotics. In this situation, it is expected that the variable concentration of this
type of microbial inhibitor present in different ecosystems may affect the
structure and the productivity of the microbiota colonizing such habitats. This
effect can occur at different levels, including changes in the overall structure of
the population, selection of resistant organisms, or alterations in bacterial
physiology. In this review, I discuss the available information on how the
presence of antibiotics may alter the microbiota and the consequences of such
alterations for human health and for the activity of microbiota from different
habitats.
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Introduction
Antibiotics are among the most successful drugs used in human 
therapy. In addition, they have been used for several decades in 
animal growth promotion, prophylaxis, metaphylaxis, treatment, 
and general farming production1–4. This wide antibiotic use has led 
to different habitats becoming polluted by a large range of concen-
trations of antibiotics5. Since antibiotics are inhibitors of bacterial 
growth, this situation has an impact on the structure and the activ-
ity of bacterial populations. The effect of antibiotics on bacterial 
populations has mainly focused on the aspects related to human 
health, in particular the selection of antibiotic-resistant mutants 
and the acquisition, selection, and spread of antibiotic resistance 
genes6–8. While this has obvious relevance to the treatment of infec-
tious diseases, other aspects of the roles that antibiotics may play 
in bacterial populations are much less studied in comparison9,10. In 
the field of human health, some studies have addressed the impact 
of antibiotic treatment on the global structure of the human gut 
microbiome11–18. These articles focus particularly on the general 
description of changes at the population level as well as on the 
selection of resistance genes. However, with recent work consider-
ing the gut microbiome itself as an organ, and taking into considera-
tion that microbial composition may impact human physiology at 
different levels, more information on the consequences that changes 
to the human microbiome in the presence of antibiotics have on 
human health is still needed19–22. One aspect to be taken into con-
sideration is that, when antibiotic treatment is needed, the effects 
of the antimicrobial on the microbiome should be considered as 
unavoidable side effects. Nevertheless, some work indicates that 
these effects can be mitigated by using compounds able to adsorb 
antibiotics in the gut23. By using these compounds together with 
antibiotics, the concentration of the drug at the point of infec-
tion (unless in gut infections) will not change; however, it will be 
much lower at the gut and the microbiome should not be strongly 
altered.

One aspect that has received more attention in the last few years 
is the effect of antibiotics in environmental microbiota5,9,24. Also, 
in this case, most studies focus on the aspects of this topic closer 
to human health, in particular how natural ecosystems, polluted or 
not with antibiotics, may be involved in the acquisition, selection, 
and spread of antibiotic resistance among human pathogens9,24–30. 
This “one-health” approach is, of course, needed if we wish to 
fully understand the spread and maintenance of clinically relevant 
antibiotic-resistant microorganisms31. Nevertheless, it is worth 
mentioning that fewer studies focus on the overall effect of antibi-
otics on the structure and productivity of environmental, not path-
ogenic, bacteria. Taking into consideration that all basic nutrient 
cycles in nature (carbon, nitrogen, oxygen, etc.) are based on the 
metabolism of microorganisms, learning whether or not antibiotic 
pollution may alter the right functioning of these cycles is of 
relevance. However, only some studies have addressed this 
relevant topic32–35. It is true that the concentrations of antibiotics 
are low in most ecosystems, but even low concentrations of anti-
biotics may trigger specific bacterial responses36–39, and analyzing 
such responses is a topic of interest.

In this review, I will discuss the multiple levels at which the pres-
ence of antibiotics may alter the structure of bacterial populations. 
Although the focus of the review will be the impact of such changes 

on human health, other more general aspects of the topic will be 
discussed as well.

Antibiotics, natural compounds, and pollutants
Humankind has been using antimicrobial compounds for treating 
infections even before the discovery of microorganisms. However, 
these compounds did not belong to the type of chemical entities 
that are now known as antibiotics. Compounds such as mercury, 
lead, silver, or arsenic derivatives have been widely used. Even 
when the search for antimicrobials focused directly on inhibitors 
of microorganisms, the first industrially produced antibiotic was 
an organic derivative of arsenic, salvarsan. The first natural anti-
biotic was penicillin. However, the idea that soil (and water) can 
be a source of antimicrobials came from an ecological reflection: 
if soils are constantly polluted by pathogenic microorganisms, but 
soils are not a source of epidemics, there must be something in 
soils capable of killing human bacterial pathogens. This approach, 
proposed by Waskman and Woodruff40, led to the identification of 
most of the antibiotic families currently in use in clinical practice. 
Indeed, although several natural antibiotics are chemically modified 
to improve their efficacy, few families, such as quinolones, have a 
synthetic origin, and even in this case, natural quinolones, some 
of them involved in cell-to-cell communication41, have been found. 
Differing to xenobiotic compounds, which were not previously 
present in nature and can be refractory for their biodegradation, 
natural antibiotics are degradable. In addition, some microorgan-
isms can subsist using antibiotics as a food resource42. Since antibi-
otics are natural compounds, pollution by these drugs and the effect 
they have on bacterial populations are concentration-dependent 
problems. It is worth mentioning that we include under the name of 
antibiotics just those compounds that are useful for treating infec-
tions – in other words, those bacterial inhibitors without problems 
of toxicity and with pharmacokinetic/pharmacodynamic properties 
that allow their use in clinics. This does not necessarily mean that 
antibiotics are always inhibitors of microbial competitors at the 
low concentrations that they are naturally produced38. Conversely, 
different microbial-produced compounds without the pharmaco-
logical properties required for treating an infection may serve in 
nature to inhibit the growth of competitors. Under this circum-
stance, it has been proposed that the effect of antibiotics on bacterial 
populations can be hormetic43–45 in character, beneficial at low 
concentrations and deleterious at the high ones usually present 
inside patients during treatment38,46. Distinguishing between 
these two situations is then critical for understanding the effect of 
antibiotics on bacterial populations.

Multi-hierarchical antibiotic selection of bacterial 
populations
Since antibiotics are naturally produced compounds, it is expected 
that environmental microbial populations have adapted along their 
evolution to the presence of the natural concentrations of these 
antimicrobials47. However, the constant discharge of antibiotics in 
nature may alter this homeostasis. Particularly important are the 
allocations in which antibiotic concentrations are higher: treated 
patients and animals. Other habitats in which high-level concen-
trations of antibiotics (and of resistance genes) can be found are 
waste-water treatment plants or rivers receiving domestic, hospi-
tal, farm, and industrial waters, soil at farms, water and sludge at 
fish farms, and manure5,48. In all cases, antibiotics can affect the 
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structure of bacterial populations at different levels. First will 
be the population composition itself. Any bacterial species has a 
characteristic level of susceptibility to any given antimicrobial, 
which has been dubbed “intrinsic resistance”49–51. This means that, 
for any given concentration of antibiotic, a part of the population 
present in the microbiota (the most susceptible one) will be inhib-
ited and another part will consequently increase their abundance. 
It is expected that a strong stressor (such as the presence of an 
antibiotic) will reduce diversity28,52, and this is likely to be true 
when the concentrations of the inhibitor are high. However, mild 
concentrations of antibiotics may produce an apparent increase in 
biodiversity, or at least the emergence of new taxons whose pres-
ence was minor before antibiotic stress53, if the most predomi-
nant species present in the microbiome are susceptible and hence 
inhibited by such concentrations. The most detailed studies of the 
effect of antibiotics on the global composition of the microbiota 
have been performed studying the gut microbiota of humans and 
of experimental mammal models as well11,12,16,18. In all cases, a 
misbalance in the composition is observed upon treatment. Once 
treatment ends, a recovery of the composition of the microbiome 
is observed after some time. However, recent information indi-
cates that, although the structure of the taxonomic groups is similar 
three months after treatment to the one observed before antibiotic 
application13, the specific clones that re-colonize the gut are not the 
same as those before treatment. This means that while the overall 
structure of the population remains, the overall genomic content 
largely varies13. These results indicate that the effect of antibiot-
ics on the structure of the populations will remain long after they 
disappear from the polluted habitat. The disruption of the system as 
a consequence of antibiotic use can be followed by its reconstruc-
tion by an eco-equivalent microbiome. However, it does not mean 
that the functionality of the new clones is the same as the previ-
ous ones, a feature that may be of relevance for not only human 
health but also the productivity and biodegradative potential of 
environmental microbial populations.

At very high concentrations of antibiotics, the system may collapse 
and can be open for colonization by antibiotic-resistant microor-
ganisms that otherwise would not be present in this ecosystem. 
This is the situation with Clostridium difficile, a major cause of 
gut infection in individuals following antibiotic treatment54,55 and 
whose infection is associated with a reduction in gut microbiota 
diversity56. Given C. difficile’s low susceptibility to antibiotics, the 
best way for fighting recurrent infections caused by this patho-
gen is restoring the functionality of the gut microbiota via fecal 
transplantation57–60.

In addition to altering the overall structure of bacterial populations, 
the best-studied effect of antibiotics is the selection of antibiotic- 
resistant microorganisms. As stated above, selecting for intrinsic 
resistance will modify the taxonomic structure of a given eco-
system. Differing to that situation, the selection of mutants or 
bacteria carrying resistance genes acquired through horizontal gene  
transfer (HGT) will enrich some specific lineages that have acquired 
resistance. Here it is important to distinguish between mutation-
driven and HGT-acquired resistance. The first is just vertically 
inherited and hence allows clonal expansion, whereas the second 
can be transferred both vertically and horizontally and hence can 
spread among the global population. In the case of HGT-driven 

resistance, different levels of selection can be foreseen. The gene 
is selected by the antibiotic, which produces the selection of the 
mobile genetic element (MGE) carrying it, the clone carrying the 
plasmid, and eventually the gene-exchange community to which 
this clone belongs if the resistance element spreads among its 
members61–63. As the consequence of this second-order selection, 
antibiotics may increase the success of some species and even 
of some specific clones in the community, somehow altering the 
overall physiology of the microbiome through the selection of a 
set of clones and genes. In this regard, it is worth mentioning that 
the number of genes present in nature and capable of conferring 
resistance upon their transfer to a heterologous host is several 
orders of magnitude larger than those currently found in human 
pathogens64,65. The human use of antibiotics has produced an 
explosive enrichment of a few so-called resistance genes present in 
MGEs, and now these are widespread all around the world66.

Short-term and long-term effects of antibiotics in 
bacterial populations
As stated above, antibiotics can alter the population structure of the 
microbiome (immediate effect), and while the overall structure of 
such microbiomes is recovered after some (usually a long) time, 
the genomic structure is not fully equivalent. As in the case of other 
strong stressors, this could be predicted; once an organism has been 
displaced, the same one will rarely re-colonize the habitat. This 
is not particularly relevant in the case of multicellular organisms. 
If a fire destroys a pine forest, obviously different pines will 
re-colonize the soil, but this does not have an impact on the overall 
activity of the system. However, in the case of microorganisms, the 
situation is dramatically different. Bacteria present a core genome 
that is shared by all members of the species and an accessory genome 
that is specific to each member of the species. The first encodes 
the most basic processes of the organism, and the second encodes 
the most adaptive ones: for instance, those that make the commen-
sal bacteria Escherichia coli become a dangerous pathogen, those 
dealing with antibiotic resistance, or several involved in the bio-
degradation of toxic compounds. In this regard, although the 
basic activities encoded in the core genome will be restored, other 
activities can be lost when one clone is replaced by another. As 
stated, this situation is relevant for human health but can also be 
of relevance in other habitats such as waste-water treatment plants, 
where degradative bacteria can be important33,53. Current metagen-
omic techniques allow a broad taxonomic analysis of the popula-
tions as well as of the presence of specific genes in the microbiome. 
However, although some strategies have been implemented67–73, 
studies on genome reconstruction as well as gene-taxon binning 
(mainly in the case of mobile elements) are not easy to perform 
using currently available tools, at least in complex microbiota, 
which are the most frequently found. Under these circum-
stances, full information on the long-term effect of antibiotics in 
microbiome composition at the clonal level is still lacking.

Another (and better-studied) effect of antibiotics is the selection of 
antibiotic-resistant microorganisms. In this case, antibiotic pollu-
tion selects a set of mutants or genes (antibiotic resistance genes) 
that can be considered as pollutants themselves66,74 because they 
were not present (at least at the level they are now) in nature. The 
main difference between classical pollutants and resistant bacteria 
(or any type of microorganism at large) is that the first disappear 

Page 4 of 10

F1000Research 2017, 6(F1000 Faculty Rev):51 Last updated: 17 JAN 2017



over time and across space, whereas microorganisms and resist-
ance genes are auto-replicative pollutants that can travel across 
long distances and remain over time75. It has been proposed that 
the acquisition of antibiotic resistance confers a fitness cost that 
is reflected in a lower competitivity of the resistant microorgan-
isms as compared with the susceptible one76,77. While this is true on 
occasion, it has been shown that antibiotic resistance might not 
reduce fitness but can even increase bacterial competitivity77,78. On 
top of that, resistant microorganisms can acquire compensatory 
mutations or physiological changes that restore their fitness79–81. 
Upon these conditions, it is not rare that bacteria carrying resistance 
genes are found in nearly any tested habitat, including domestic 
and wild animals, natural ecosystems, or untreated human volun-
teers, such as isolated Yanomami Amerindians, among others82–92. 
Human travel, interchanging of goods, climate alterations such 
as El Niño, and migratory birds, among other vectors, allow the 
intercontinental distribution of the auto-replicative pollutants that 
are antibiotic resistance and antibiotic resistance genes93–97.

While the acquisition of resistance may have the same ecologi-
cal consequences for a human pathogen or for a non-pathogenic 
environmental microorganism, the consequences for human health 
are very different. Mutation-driven resistance is not a health risk 
if the resistant microorganism is not pathogenic. However, the 
acquisition of a resistance gene by an MGE is a risk for human 
health even when the MGE is present in an environmental  
microorganism64,65. It is important to remark that resistance genes 
currently present in MGEs were not present in human patho-
gens before the industrial production of antibiotics98; they have 
originated from environmental microorganisms99–101. The farm- 
animal–to–human transfer of resistance has been discussed in 
detail, and farm animals are considered to be a reservoir of antibi-
otic resistance2. Since the use of antibiotics for fish-farming chal-
lenges the fish, the water, and the sediment microbiota, this kind of 
multi-habitat selection situation might have had a relevant role in 
the first event of resistance acquisition by bacterial pathogens3. In 
favor of this possibility is the finding that Shewanella, a waterborne 
organism, is likely the origin of antibiotic resistance determinants 
such as QnrA102 or carbapenem-hydrolyzing oxacillinases103, which 
are now widespread among human pathogens.

Effect of subinhibitory concentrations of antibiotics 
on bacterial populations
Most studies on the effect of antibiotics on bacterial populations 
focus on inhibitory concentrations of the drugs. However, most 
populations confronted with antibiotics are challenged by subin-
hibitory concentrations of them. The study of the effect of such 
concentrations has shown that they can have deep effects on 
bacterial physiology. Indeed, in addition to triggering the expres-
sion of shock-response systems104–107, the antibiotics can induce 
specific bacterial responses. Some of them, dealing with the expres-
sion of virulence factors or motility, are specific to each family of 
drugs36; however, some others seem to be more general. One of 
them is biofilm formation, which has been described to be trig-
gered by different antibiotics36,108–111. Since biofilms are more 
resistant to the action of antibiotics, it seems that this can be a 
protective response. In addition, it is important to remark that 

these physiological alterations may improve the bacterial coloniza-
tion of surfaces. This improvement might have consequences for 
human health in the case of surface-associated infections (catheters, 
prosthesis, bladder, lung, etc.) and could also be relevant in 
natural ecosystems and in industries in which clogged pipelines 
can be problematic. All of these effects are transient and will 
disappear soon after removal of the antibiotic. However, even 
transient effects might produce an inheritable wave. It has been 
shown that antibiotics can increase mutation, recombination, 
gene transfer, and prophage induction, all of which have inherit-
able consequences112–121. Of course, to be evolutionarily relevant, 
these changes need to be fixed, and fixation is achieved only if 
bacteria are under selection. In this regard, although subinhibitory 
concentrations of antibiotics are not always considered to be direct 
drivers of evolution, it has been proposed that they can increase 
the evolvability of bacterial populations117,122.

This panorama has changed in the last few years. The classical 
view indicates that the selection of resistance can happen in a 
range of concentrations from the minimal inhibitory concentra-
tion, under which susceptible and resistant bacteria will grow, to 
the minimal preventive concentration, which inhibits the growth 
of resistant mutants. However, recent information indicates that 
subinhibitory concentrations of antibiotics can select antibiotic-
resistant microorganisms123–125. While selection at high concentra-
tions of antibiotics is based on the inhibition of the susceptible 
cells and hence a resistant population can be selected after few 
duplication events, both susceptible and resistant microorganisms 
grow at subinhibitory concentrations and selection is based on the 
differential fitness they present in the presence of the antimicrobial. 
This means that the selection of resistance requires, in this case, 
several duplications to allow the displacement of the susceptible 
population by the resistant one, which is fitter in the presence of 
an antibiotic. While it is true that there are several situations in 
which bacteria are under subinhibitory concentration, such as in 
the human body after treatment, these concentrations tend to be 
transient and it is difficult for a resistant population to be selected 
unless a constant selection pressure is implemented. There are, 
however, some situations in which this type of selection can be 
foreseen. One is in waste-water from hospitals or from antibiotic-
producing plants. Another is in animal production when antibiotics 
are used as growth promoters. Indeed, the study of the metagen-
omes of pigs treated with antibiotics for long periods of time has 
shown their guts present an increase in Proteobacteria as well as 
in abundance and diversity of resistance genes, even some of them 
conferring resistance to antibiotics not administered in the 
study126. These results raise the possibility that non-therapeutic use 
of antibiotics can be a major element in the selection of antibiotic- 
resistant bacteria in animals, which will eventually be more 
important than their therapeutic use.

Work on the effect of antibiotics on the behavior of bacterial 
populations usually takes into consideration just the antibiotic 
itself. However, recent work has shown that the presence of other 
stressors may modulate such effects. Usually, a second stressor 
increases the chances of acquiring resistance, but on other 
occasions the stressor antagonizes the selective pressure of the 
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antibiotic127. In the case of human health, this is particularly rel-
evant when resistance to one antibiotic enhances the susceptibility 
to another (collateral sensitivity) because the use of such antibiotics 
together or in combination should reduce the chances of antibiotic 
resistance acquisition by human pathogens128–130.
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