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Epigenetics refers to heritable changes in gene expression and chromatin structure
without change in a DNA sequence. Several epigenetic modifications and respective
regulators have been reported. These include DNA methylation, chromatin remodeling,
histone post-translational modifications, and non-coding RNAs. Emerging evidence has
revealed that epigenetic dysregulations are involved in a wide range of diseases including
cancers. Therefore, the reversible nature of epigenetic modifications concerning activation
or inhibition of enzymes involved could be promising targets and useful tools for the
elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural
products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs)
making them promising candidates for the development of lead structures for anticancer-
drugs targeting epigenetic modifications. However, most of the natural products targeting
HDAC and/or DNMT lack isoform selectivity, which is important for determining their
potential use as therapeutic agents. Nevertheless, the structures presented in this review
offer the well-founded basis that screening and chemical modifications of natural products
will in future provide not only leads to the identification of more specific inhibitors with fewer
side effects, but also important features for the elucidation of HDAC and DNMT function
with respect to cancer treatment.

Keywords: epigenetics, natural products, inhibition, DNA methyltransferases, histone deacetylases, cancer
INTRODUCTION

Natural products originating from diverse sources including plants, microorganisms, and marine
sponges are capable to influence epigenetic modifications (Deng et al., 2018; Lascano et al., 2018).
Epigenetics refers to heritable changes in gene expression as well as chromatin structure without
change in a DNA sequence (Dawson, 2017). Enzymes involved in these modifications were already
in.org August 2020 | Volume 11 | Article 9921
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identified and include DNA methyltransferases, histones
acetyltransferases/deacetylases, histone lysine as well as
arginine methyltransferases and histone demethylases (Deng
et al., 2018). The most common epigenetic modifications
include DNA methylation, chromatin remodeling, histone
post-translational modifications, and silencing of gene
expression through non-coding RNAs (Allis and Jenuwein,
2016). Epigenetic dysregulations have been shown to be
involved in several diseases such as cancers, neurodegenerative,
or parasitic diseases and obesity (Duraisingh and Skillman, 2018;
Ferioli et al., 2019). Cancer is a disease strongly tied to epigenetic
changes which lead to silencing of tumor suppressor genes and
thus promote tumor formation and proliferation (Jones and
Baylin, 2007; Esteller, 2008). Therefore, due to the reversible
nature of epigenetic modifications with respect to activation or
inhibition, the genes and proteins representing key epigenetic
players are considered as prime targets for the treatment and
prevention of cancers (Ellis et al., 2009). In this review, we focus
on natural products from plants, sponges, bacteria, and fungi
that may serve as leads for drug discovery and possible further
development for the treatment of cancers. We describe natural
compounds of all biosynthetic classes inhibiting enzymes
involved in the major epigenetic modifications regulating gene
Frontiers in Pharmacology | www.frontiersin.org 2
expression which include DNA methyltransferases (DNMTs)
and histone deacetylases (HDACs). Emphasis will be on their
biological properties and mode of action. Most of the natural
products seem to display an indirect effect on HDACs and
DNMTs and we aim to provide in this review all the data
reported in the literature. It is worth to mention that currently,
modifiers of DNMTs and HDACs are the only two classes of
epigenetic drugs under investigation in the clinical setting.
DNA METHYLTRANSFERASES
INHIBITORS (FIGURE 1)

The transfer of methyl groups to DNA is performed by DNA
methyltransferases (DNMTs). These enzymes create 5-
methylcytosines (5mCs) which lead to gene repression. The
development of novel drugs targeting cancer and other diseases
involve DNMTs as epigenetic targets (Medina-Franco et al.,
2015). DNMT1, DNMT3a, and DNMT3b were identified as
the three catalytically active DNMTs in mammals. DNMT1 is
described as the maintenance methyltransferase, while DNMT3a
and DNMT3b are de novo methyltransferases (Auclair and
FIGURE 1 | Structures of DNA methyltransferases inhibitors.
August 2020 | Volume 11 | Article 992
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Weber, 2012). A crucial epigenetic modification is the
modulation of the activity of DNA methyltransferases which
affect DNA repair mechanisms in the cells or gene expression.
The pathogenesis of human cancer is partly due to aberrant
modifications in the activity of DNMTs (Jasek et al., 2019).
DNMTs modulate DNA methylation and in general perform
methylation of nitrogen (N-methylation), oxygen (O-
methylation), and carbon (C-methylation). Those events are
universal processes critical to all organisms. The O-methylation
patterns of polyhydroxylated small molecules in plants, are
essential using the same or similar intermediates and substrates
to generate final product distribution through multiple branched
biosynthetic pathways (Okano et al., 1999; Zubieta et al., 2001).
In any organism, methylation is essential in the management of
normal biological activities (Esteller, 2007). Methylation can
cause direct suppression of gene expression even though it is
an heritable change in the DNA without a modification of the
sequence (Das and Singal, 2004). Hypomethylation and
hypermethylation of DNA are seen in cancer cells (Qi and
Xiong, 2018). The expression of pro-metastatic genes and
quiescent proto-oncogenes is assisted by hypomethylation, and
thus increase the progression of tumors. Silencing of genes
influencing important cellular signaling pathways can be due
to hypermethylation of the promoter regions of tumor-
suppressor genes which play an important role in neoplastic
transformation of cells (Qi and Xiong, 2018).

There are few drugs targeting DNA methyltransferase as
inhibitors (DNMTIs), such as azacytidine and decitabine which
are the most outstanding epigenetic drugs extensively utilized as
epigenetic modulators. However, their application for
oncological diseases is restricted by their relative toxicity and
poor chemical stability (Gnyszka et al., 2013). Promising results
in cancer treatment via influencing DNA methylation are
expected from natural products isolated from plant, animals,
and microorganisms. Indeed, bioactive phytochemicals that are
widely available and exhibit less systemic toxicity have shown
significant anticancer properties. The potential utilization of
natural products in cancer chemoprevention and/or therapy
and their plausible role as epigenetic modulators have been
diligently evaluated (Uramova et al., 2018). Moreover, diverse
epigenetic modifications such as DNA methylation patterns
including the global hypomethylation of oncogenes and the
hypermethylation of tumor-suppressor genes are influenced by
natural products from diverse origins. Nature is thus, a
promising source of DNMTIs that may be useful in the
treatment of cancer (Table 1). However, confirmation of the
potential advantageous epigenetic effects after extended
Frontiers in Pharmacology | www.frontiersin.org 3
utilization in humans is highly dependent on successful
delivery to allow for effective concentrations at the target cells
and requires well-controlled clinical studies (Jasek et al., 2019).
Moreover, most of the natural products target all DNMT
isoforms leading to a low specificity that might limit their
potential use in clinical development.

(–)-Epigallocatechin-3-gallate
Green tea contains (–)-epigallocatechin-3-gallate (EGCG) (1)
Figure 1) as the profuse catechin (Cabrera et al., 2006). Green
tea is a popular natural beverage worldwide known to possess
cancer preventive activities due to the presence of polyphenols
such as catechins (Yang and Wang, 2010). EGCG and green tea
polyphenols have demonstrated interesting chemopreventive
effects and probable cancer chemotherapeutic effects against
diverse cancers including liver, stomach, breast, lung, and skin
(Nihal et al., 2005; Zhou et al., 2013; Khan et al., 2014). EGCG
was first reported in 2003 to inhibit DNMT activity with an IC50

value of 20 μM and reactivate methylation-silenced genes in
cancer cells (Fang et al., 2003). The same study showed that
EGCG non-covalently binds to the DNMT1 catalytic active site.
Another study reported that EGCG was a more potent inhibitor
of DNA methyltransferase, compared to other polyphenols, with
IC50 values between 0.21 and 0.47 μM in a direct inhibition assay
(Lee et al., 2005). The authors demonstrated that the inhibitory
interaction with the catalytic site of human DNMT1, and the
high-affinity is due to the gallic acid moiety of EGCG (Lee et al.,
2005). Moreover, its binding with the enzyme is stabilized by
Mg2+ (Lee et al., 2005). Hussain and co-workers reported that
EGCG inhibits the growth of HeLa cancer cells in a dose- and
time-dependent manner through the induction of apoptosis
(Sharma et al., 2012). Later on, it was found that EGCG
inhibits DNA methyltransferases in HeLa cells in a time-
dependent manner by reversal expression of diverse tumor-
suppressor genes (Khan et al., 2015). Indeed, treatment
of HeLa cells with EGCG, displayed a reduced expression of
DNMT3b and docking studies indicated a direct binding of
EGCG in the substrate-binding pocket of this enzyme. Another
study also highlighted the potential of EGCG to inhibit DNMT
in a breast cancer cell line (Meeran et al., 2011). However,
Medina-Franco and co-workers contradicted the previous
results suggesting a negligible inhibitory activity of
(−)-epigallocathechin-3-gallate (EGCG) and curcumin
(Medina-Franco et al., 2011).

Curcumin
The polyphenol curcumin (2) has been isolated from Curcuma
longa and is a major yellow pigment extracted from the popular
Indian spice turmeric (Peng et al., 2017; Soleimani et al., 2018). It
has been reported in the treatment of skin wounds, certain
tumors, as well as inflammation (Maheshwari et al., 2006).
However, curcumin is known as a PAINS (pan-assay interference
compounds) and thus its bioactivities have to be analyzed with
care (Nelson et al., 2017). A recent report indicated an inhibition
of the growth of myeloma cells by curcumin with an IC50 value
of 10 μM (Chen et al., 2019a). Curcumin has been reported
to induce cell cycle arrest at G1/S phase in androgen-sensitive
TABLE 1 | Selected DNMT inhibitors.

Compound name IC50 Values DNMTIsoforms Reference

(-)-epigallocatechin-3-gallate 0.47 µM DNMT1 Lee et al., 2005
Curcumin 0.30 µM DNMT1 Kwon et al., 1998
Kazinol Q 7.00 µM DNMT1 Weng et al., 2014
Nanaomycin A 0.50 µM DNMT3b Kuck et al., 2010
Parthenolide 3.50 µM DNMT1 Liu et al., 2009a
Antroquinonol D 5.00 µM DNMT1 Wang et al., 2014
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prostate cancer LNCaP cells and androgen insensitive PC-3
cells (Srivastava et al., 2007). Curcumin was reported to
covalently block the catalytic thiolate of DNMT1 with an IC50

value of 30 nM after 72 h of treatment and leading to an
inhibitory effect on DNA methylation (Liu et al., 2009b). Yu
et al. (2013), showed a down-regulation in DNMT1 expression
caused by curcumin in acute myeloid leukemia (AML) cell lines,
both in vitro and in vivo (Yu et al., 2013). The same study
highlighted reduction in the expression of positive regulators of
DNMT1, Sp1 and p65 by curcumin. In AML cell lines, the latter
results correlated with a decrease in binding of these
transcription factors to the DNMT1 promoter. Curcumin
displayed an inhibitory effect on DNMT in three colorectal
cells lines including CT116, HT29 and RKO (Link et al., 2013).
The DNA methylation changes in the same study occurred only
in a subset of primarily partially methylated genes, and in a time-
dependent manner. As mentioned earlier, the DNMT inhibition
activity of curcumin has also been questioned (Medina-Franco
et al., 2011).

Quercetin
Quercetin (3), an ubiquitous dietary flavonoid, is commonly
found in fruits, vegetables, and beverages. It has attracted
considerable attention owing to its potent antioxidant and
antiproliferative activities. The induction of apoptosis and cell
cycle arrest by quercetin in several cancer cell lines among which
breast carcinoma, human esophageal squamous cell carcinoma,
and prostate cancer cell lines has been demonstrated (Nair et al.,
2004; Jeong et al., 2009; Zhang et al., 2009). Recently, it was
reported that the pro-apoptotic effect of quercetin was mediated
by inhibition of DNMT, especially DNMT1 and DNMT3a in
vitro and human xenograft models (Alvarez et al., 2018).
Another study displayed a concentration-dependent effect on
hypermethylation of the tumor suppressor gene, p16INK4a when
the human colon carcinoma RKO cells were treated by quercetin
(Tan et al., 2009). This led to the reversal of the abnormal
hypermethylation status of this gene after 120 h exposure to
quercetin. Quercetin is currently undergoing phase I clinical
trials in combination with green tea extracts (Zwergel et al.,
2016). However, in the last update at ClinicalTrial.gov, the status
is “recruiting” and no results have been published yet.
Furthermore, it was reported that quercetin could be used in
the treatment of diseases such as diabetes, in which its
methylglyoxal (MGO) adduct plays an important function (van
den Eynde et al., 2018).

Kazinol Q
Kazinol Q (4) is a natural flavan isolated from the root of
Broussonetia kazinoki which suppressed the proliferation of
MCF‐7 breast and LNCaP prostate cancer cells, due to its
capability to induce ROS-dependent cell death in gastric cells
(Wei et al., 2011). Later on, it was shown that kazinol Q inhibits
the growth of MCF‐7 breast and LNCaP prostate cancer cells, in
part, through apoptosis induction (Weng et al., 2014). The
antiproliferative activity of kazinol Q was found to be due at
least in part to its inhibition of DNMT1 with an IC50 value of 7
μM (Weng et al., 2014). It is worth to mention that kazinol Q was
Frontiers in Pharmacology | www.frontiersin.org 4
the only active compound among the 12 isolated from formasan
plants and used in this study.

Resveratrol
Resveratrol (3, 4′, 5-trihydroxystilbene) (5) is a naturally
occurring phytoalexin presents in grapes, berries, soy beans,
pomegranate and peanuts, produced by spermatophytes, in
response to an injury (Sinha et al., 2016). The source of
resveratrol in the human diet is red wine (Cal et al., 2003).
This compound has been shown to inhibit cancer initiation,
promotion, and progression (Jang et al., 1997). Resveratrol has
been reported to inhibit the activity of DNMT3b and DNMT1 in
mammary tumors in a dose-dependent fashion (Qin et al., 2005;
Qin et al., 2014). The combination of resveratrol with
pterostilbene, another stilbene found in the plant, revealed a
decrease of the activity of DNMT3b in HCC1806 triple-negative
cancer cells without affecting the control MCF10A breast
epithelial cell line (Kala et al., 2015). Another study showed
that resveratrol can down-regulate the activity of DNMTs, as well
as other proteins including HDAC1 and MeCP2 in MDA-MB-
231 and MCF7 breast cancer cell lines (Mirza et al., 2013).
However, the positive effects of resveratrol have been largely
demonstrated in vitro or animals studies, with only limited
effects reported in clinical studies (Shih et al., 2019).
Furthermore, a lower DNMT inhibition of resveratrol has been
observed when compared to other dietary bioactive compounds
such as EGCG.

Nanaomycin A
Nanaomycin A (6) is a quinone isolated from Streptomyces rosa
var. notoensis and first reported as an antibiotic (Tanaka et al.,
1975). The treatment of three different human tumor cell lines
including HCT116 (colon), A549 (lung), and HL60 (bone
marrow) cells with nanaomycin A resulted in growth
inhibition of all three cell lines and caused induction of
apoptosis (Kuck et al., 2010). Furthermore, an enzymatic assay
revealed that the antiproliferative activity of nanaomycin A was
due to its specific inhibition of DNMT3b with an IC50 value of
500 nM. This result was confirmed further by docking studies,
which established the non-covalent binding of nanaomycin A to
the active site of DNMT3b (seeMolecular Modeling and Docking
as a Tool for a Mode of Action Prediction of Natural Product
DNMTs and HDACs Inhibitors) (Kuck et al., 2010).
Furthermore, Nakamae and co-workers, recently suggested
that, DNMT3b inhibition by nanaomycin A can promote the
hepatoblast differentiation (Nakamae et al., 2018). The later
result should assist in the future generation of functional
hepatocyte-like cells for pharmaceutical research. Moreover,
the induction of genomic demethylation is caused by
nanaomycin A which is the first selective inhibitor of
DNMT3b (Caulfield and Medina-Franco, 2011). It has been
hypothesized that the inhibition arises from the nucleophilic
attack of the catalytic cysteine residue within the active site of
DNMT to the a,b-unsaturated carbonyl of nanaomycin A
(Caulfield and Medina-Franco, 2011). While the further
characterization is needed, the reactivity of the Michael
August 2020 | Volume 11 | Article 992
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acceptor moiety and toxicity of nanaomycin A may lead to
challenges in such characterization in the future.
Genistein
Genistein (7) is an isoflavone originally isolated from the dyer´s
broom Genista tinctoria (Mukund et al., 2017). It was reported to
be a potent inhibitor of cell proliferation on pancreatic cancer
cell lines through apoptosis induction, regulation of the signal
transducer and activator of transcription 3 (STAT3) signaling
pathway, and G0/G1 cell cycle arrest (Bi et al., 2018). Ralhan and
co-workers showed that genistein is able to induce a significant
decrease in the transcript levels of all the DNMTs including
DNMT1, DNMT3a, and DNMT3b, in breast cancer (Mirza et al.,
2013). Another study confirmed this antiproliferative activity on
the human breast cancers lines MCF-7 and MDA-MB-231 (Xie
et al., 2014). The latter activity was found to be due to the
inhibition of DNMT1 and molecular modeling indicated the
direct interaction of genistein with the catalytic domain of this
enzyme (Xie et al., 2014). However, only 40% inhibition of
DNMT activity was observed at 100 mM contradicting the
modeling data and thus indicating a low potential of genistein
for DNMT inhibition. This weak effect suggests an indirect
pathway of inhibition of DNA methylation, based on the
identification of multiple targets for genistein including
HDAC, tyrosine specific protein kinase, topoisomerase I and
II, and NF-kB (Akiyama et al., 1987; Okura et al., 1988; Li and
Sarkar, 2002; Sundaram et al., 2018). Despite the preclinical data
reported for genistein showing its remarkable efficacy against
prostate cancer in vitro with diverse molecular targets, there is no
convincing clinical proof or evidence that genistein might be
useful in prostate cancer therapy. Moreover, genistein is a multi-
target compound limiting, therefore, its potential clinical use
(Majid et al., 2009; Parker et al., 2009).
Sulforaphane
The isothiocyanate sulforaphane (SFN) (8) is found in
cruciferous vegetables, such as broccoli sprouts and broccoli
(Fahey et al., 1997). The strong inhibition of the growth of the
human breast cancer cells lines MCF-7, MDA-MB-231, and SK-
BR-3 by sulforaphane with IC50 values of 14.05, 19.35, and 16.64
μM respectively has been reported. Inhibition of cell growth was
accompanied by cell cycle arrest, elevation in the levels of the
tumor suppressors p21 and p27 and cellular senescence as well as
induction of apoptosis. The anticancer effects of sulforaphane
were found to be mediated by a global DNA hypomethylation,
decreased levels of DNMT1 and DNMT3b and changes in the
microRNA profiles of the three breast cancer cells lines
(Lewinska et al., 2017). A further study showed that
combination of sulforaphane and withaferin A, another natural
compound, significantly causes down-regulat ion of
overexpressed DNMT3a, DNMT3b, and HDAC1 and breast
cancer cell death (Royston et al., 2017). Recently, it has been
demonstrated that sulforaphane can suppress the growth of NPC
cells via the inhibition of DNMT1 and the restoration of the
expression of Wnt inhibitory factor 1 (WIF1) (Chen et al., 2019b).
Frontiers in Pharmacology | www.frontiersin.org 5
Na and co-workers reported that sulforaphane up-regulates
NrF2 expression and promotes its nuclear translocation
through decreasing levels of DNA methylation of the Nrf2
promoter in a cellular model of Alzheimer's disease (Zhao
et al., 2018). Furthermore, sulforaphane was shown to exert its
chemopreventive effect in lung cancer A549 cells partly through
the down-regulation of the activity of DNMT3a (Gao et al.,
2018). Reduction of the toxicity of the chemotherapeutic drug
cadmium selenide by sulforaphane in human hepatocytes
through induction of glutathione synthesis was shown, thereby
protecting the liver against toxicity and allowing the use of higher
doses (Wang et al., 2015). However, there is no proof that a
higher concentration could be achieved clinically using either
diet-derived or supplemented SFN. The use of phytochemicals
including SFN for patients with diagnosed cancers still need deep
studies whether or not the patient is undergoing chemotherapy
(Houghton, 2019). Furthermore, the presence of a highly
electrophilic chemical functionality will probably cause several
off-target effects despite that the downstream epigenetic effects
observed upon the use of sulforaphane are promising and may
improve chemopreventive activity (Cherblanc et al., 2013).
Boswellic Acids
Boswellic acids (BA) (9) are pentacyclic terpenoids extracted
from Boswellia serrata; a plant used traditionally to treat
inflammatory diseases (Zhou et al., 2017). Inhibition of cell
proliferation and apoptosis induction in colorectal cancer
(CRC) cell line through up-regulation of miR-34a and down-
regulation of miR-27a by the most active boswellic acid, acetyl-
11-keto-b-boswellic acid (AKBA), is well established (Takahashi
et al., 2012; Toden et al., 2015). AKBA induces demethylation
and concurrent up-regulation of tumor suppressor genes
including SAMD14 and SMPD3 in CRC cells (Shen et al.,
2012). Moreover, AKBA was reported inhibiting DNMT in
SW48 and SW480 CRC cell lines at a concentration of 40 μM.
BA has been established as a multitargeting agent involved in the
treatment of diverse chronic diseases including cancers (Roy
et al., 2019). Indeed, modulation by boswellic acids of diverse
molecular targets, such as kinases, enzymes, growth factors,
receptors, transcription factors, and others related to the
proliferation and survival of cells is possible (Roy et al., 2016).
However, the possible development of boswellic acids as an
effective drug has been tumbled down due to concerns
regarding the pharmacokinetic properties.
Z-Ligustilide
Z-ligustilide (10) is the most potent bioactive component found
in Angelica sinensis, a herb from traditional Chinese medicine
(TCM) used in the treatment of breast cancer (Ma et al., 2017).
This compound has been reported to induce apoptotic cell death
in human ovarian cancer cells (Lang et al., 2018). Z-ligustilide
was reported to inhibit the growth of murine prostate cancer
TRAMP C1 cells. The same study showed that Z-ligustilide
reduced the methylation level of the first five CpGs of the
NrF2 promoter. An enzymatic assay showed that Z-ligustilide
August 2020 | Volume 11 | Article 992
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blocks DNA methyltransferase activity of the CpG methylase
M.SssI in vitro (Su et al., 2013). The latter is structurally
significantly similar to the DNMT. This result suggests that Z-
ligustilide acts through an indirect mechanism of DNA
methylation inhibition limiting its potential use in clinical trials.
Parthenolide
Parthenolide (11) is a germacrane sesquiterpene lactone isolated
from the plant Tanacetum parthenium (Freund et al., 2019). This
plant is commonly used for its inflammatory properties and
suggested to be used in epigenetic cancer therapy (Akihisa et al.,
2003; Ghantous et al., 2012). Parthenolide inhibits the
detyrosination of microtubules and accelerates neuronal growth
(Freund et al., 2019). A recent report showed that parthenolide
induces apoptosis and inhibits proliferation of human 786-O
kidney cancer cells in vitro (Dong et al., 2019). The compound is
also known to induce apoptosis in primary acute myeloid leukemia
(AML) cells, including the stem and progenitor cell compartment
through inhibition of NF-kB and HSP70 (Pei et al., 2009).
Parthenolide has been reported to inhibit DNMT1 with an IC50

value of 3.5 μM. This inhibition is thought to be due to its gamma
methylene lactone which probably alkylates the proximal thiolate of
Cys1226 of the catalytic domain (Liu et al., 2009a). Recently, a new
parthenolide derivative, dimethylamino-parthenolide, has been
reported to inhibit the Nuclear chain factor kappa‐light‐chain
enhancer of activated B cells (NF-kB) pathway and causes
depletion of glutathione levels; the latter causing cancer cells to
be more susceptible to oxidative stress‐induced cell death (Pei et al.,
2009; Lamture et al., 2018). This result highlights the potential role
of this drug as a chemopreventive agent and in epigenetic cancer
therapy. Recently, it has been demonstrated that combination of
the anticancer drug actinomycin-D, which functions by
intercalating into DNA, and dimethylamino-parthenolide results
in a synergistic inhibition of Panc‐1 pancreatic cancer cell growth
(Lamture et al., 2018). However, the potential clinical use of
parthenolide is still not clear. Indeed, analysis of parthenolide
activity at Cancer Research Technologies, using a fluorescence
intensity assay for DNMT1 did not find DNMT1 activity
(Cherblanc et al., 2013). Moreover, the presence of several off-
target effects complicates the analysis of cell-based assays.
Antroquinonol D
Antroquinonol D (12) is an ubiquinone derivative isolated from
the mycelium of Antrodia camphorata (Wang et al., 2014). This
compound inhibited the growth of MCF7, T47D, and MDA-
MB-231 breast cancer cells without harming normal MCF10A
and IMR-90 31 cells with IC50 values of 8.01, 3.57, and 25.08 mM
respectively (Wang et al., 2014). The authors reported that
antroquinonol D can inhibit the activity of DNMT1 in MDA-
MB-231 breast cancer cells with an IC50 value lower than 5 μM.
This result was confirmed by molecular modeling which revealed
that antroquinonol D binds to the catalytic subunit of DNMT1
and competes for the same binding pocket in the DNMT1
enzyme as the cofactor SAM (S-adenosylmethionin) (Wang
Frontiers in Pharmacology | www.frontiersin.org 6
et al., 2014). Antroquinonol D was also found to reverse the
silencing of multiple tumor suppressor genes in the same study.
HDAC INHIBITORS

Histone deacetylases (HDACs) also called lysine deacetylases
(KDAC) are a family of hydrolases catalyzing removal of acetyl
groups from lysine residues on histone tails (Glozak and Seto,
2007). This removal of acetyl groups allows compacted chromatin
to reform and this process is associated with transcriptional
repression (Glozak and Seto, 2007). HDACs are classified in four
distinct subtypes: class I (HDACs 1, 2, 3, and 8 localized in the
nucleus), class II (IIa: HDACs 4, 5, 7, and 9; IIb: HDACs 6 and 10,
found in both nucleus and cytoplasm), class III (nicotinamide
adenine dinucleotide-dependent SIRT [sirtuin] enzymes [Sirt 1–
7]), and class IV (HDAC 11). The later shares structural similarities
with both class I and II HDACs as they are Zn-dependent enzymes
(Haberland et al., 2009; McKinsey, 2012). Class I HDACs play an
important role in cell survival and proliferation, while class II may
have tissue-specific roles (Li et al., 2015). It has been reported that
functional dysregulation of HDACs affects the expression of
numerous genes that have an impact on apoptosis and the cell
cycle (Hauser and Jung, 2008). Indeed, HDAC1 is overexpressed in
prostate cancer cells, while gastric carcinomas, colorectal
carcinomas, and cervical dysplasias overexpress HDAC2
(Halkidou et al., 2004; Huang et al., 2005; Song et al., 2005).

HDAC inhibitors (HDACi) are emerging therapeutic agents,
since their targets play an important role in cancer initiation and
progression (Lee et al., 2017). Indeed, histone deacetylation plays
a key role in tumor suppressor genes silencing (TGSs) in several
cancers, thus the restoration of the acetylation of lysine residues
by HDAC inhibitors will oppose the frequent HDAC
overexpression in cancer (Perri et al., 2017). HDACs are also
known to regulate non-histone proteins involved in cancer
development such as p53, and NF-kB and can affect their
function leading to modified expression of cancer-related genes
(Saunders and Verdin, 2007; Wilcox, 2016). HDACs can repress
the expression of receptors for growth-restraining signaling
molecules such as TGFb receptor (transforming growth factor
beta receptor), leading to unhindered cell growth, which is
preventable by HDAC inhibition (Glozak and Seto, 2007).

Thewell-known effect of HDACi is to lead to cell cycle arrest and
induction of cell senescence (Gołąbek et al., 2015). Since the
approval of suberanilohydroxamic acid (SAHA) by the US Food
and Drug Administration for the treatment of T-cell lymphoma in
2006, the relevance of HDACi in cancer therapy has been strongly
pointed out.HDACi are usually classified in twomain groups: group
I which displays the zinc-binding mode of action includes linear
inhibitors, cyclic tetrapeptides, and cyclic depsipeptides; and group
II with a non-zinc-binding mode of action includes miscellaneous
inhibitors (Lascano et al., 2018). It is worth mentioning that most
HDACi share the same overall structure including a cap terminus, a
linker region, and a zinc-binding group (ZBG) (Figure 2). As shown
in Table 2, nature is a promising source of HDACi that may inspire
the development of lead structures for the potential treatment of
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cancer. However, the lack of HDAC isoform selectivity for most of
the natural products may limit their clinical use.

Zinc-Binding Inhibitors
Linear HDAC Inhibitors (Figure 3)
Trichostatin A
Trichostatin A (TSA) (13) is the first natural product derived
HDAC inhibitor and was isolated from the bacterium
Streptomyces hygroscopicus (Tsuji et al., 1976; Yoshida et al.,
1990). Its structure consists of an aromatic group, a conjugated
diene linker region, and a hydroxamic tail. The first racemic
synthesis of TSA was reported by Krebs and co-workers in 1983
and this compound was first reported to display antifungal
activity (Tsuji et al., 1976; Fleming et al., 1983). Trichostatin A
Frontiers in Pharmacology | www.frontiersin.org 7
was reported to reversibly inhibit mammalian HDAC and
accordingly was found to induce accumulation of acetylated
histones in a variety of mammalian cell lines when applied in
nanomolar concentration (Yoshida et al., 1990; Yoshida et al.,
1995). The crystal structure showed that trichostatin A non-
covalently binds to the active site of HDACs through the
terminal hydroxamic acid group which chelates the Zn2+ in a
bidendate fashion (see Natural Product HDAC Inhibitor in the
PDB) (Finnin et al., 1999). Kinetic studies revealed that
trichostatin A is a competitive inhibitor (Sekhavat et al., 2007).
Yokoyama and co-workers reported that trichostatin A inhibits
HDAC in a dose-dependent manner in vascular smooth muscle
cells (VSMCs) with an IC50 value of 0.08 μM (Okamoto et al.,
2006). Trichostatin A is frequently used as a positive control and
a reference when compared to other HDAC inhibitors and
considered today as one of the most potent HDAC inhibitors
(Ying et al., 2008; Benelkebir et al., 2011). However, the observed
mutagenicity of the hydroxamic moiety along with lack of
HDAC isoform selectivity limits its clinical use (Khan et al.,
2008; Shen and Kozikowski, 2016).

Depudecin
Depudecin (14) is a linear polyketide containing two epoxide
groups isolated from the culture broth of the soil fungus
Alternaria brassiccicola (Matsumoto et al., 1992). The structure
of depudecin consists of a bis-trans-epoxide moiety and six
asymmetric centers. Depudecin has been reported to display an
in vitro inhibitory effect against HDAC1 in a dose-dependent
manner with an IC50 value of 4.7 μM (Kwon et al., 1998). The
relatively low potency of depudecin precluded further work on
this compound. Depudecin showed also the ability to induce
morphological reversion in NIH 3T3 fibroblast cells to their
normal flat phenotype (Kwon et al., 1998).

Psammaplin A
Psammaplin A (PsA) (15) is a monobrominated tyrosine derived
oxime containing cystamine isolated from several marine
sponges including Psammaplysilla sp. (Quiñoà and Crews,
1987; Tabudravu et al., 2002). Psammaplin A is one of the
members of the psammaplin class and was reported to
suppress carcinogenic properties of several human cancer cell
lines including lung, breast, colon, and ovarian cancer in vitro
(Park et al., 2003). Psammaplin A inhibited in vivo tumor growth
in the A549 lung xenograph mouse model while maintaining low
toxicity (Piña et al., 2003). Moreover, psammaplin A was
reported to inhibit the activity of HDAC and DNMT at
nanomolar levels in vitro (Piña et al., 2003). Hyperacetylation
of histone H3 by psammaplin A demonstrated that the
compound is a specific and potent inhibitor of class I HDAC
rather than class II (Kim et al., 2007). Moreover, psammaplin A
was found to be a natural prodrug. Its activation is caused by
reduction of the disulfide bond leading to a thiol. The latter thiol
chelates the Zn2+ ion in the active site of HDAC and precludes
access to the natural substrate (Kim et al., 2007). Indeed, the
reduced form of psammaplin A highly selectively inhibited
HDAC1 with an IC50 value of 45 nM (Baud et al., 2012). The
hyperacetylation of histone by psammaplin A was correlated
FIGURE 2 | Common features of HDAC inhibitors.
TABLE 2 | Selected HDAC inhibitors.

Compound name IC50 Values HDAC
Isoforms

Reference

Trichostatin A 0.08 µM NT Okamoto et al., 2006
Depudecin 4.70 µM HDAC1 Kwon et al., 1998
Psammaplin A 0.042 µM HDAC1 Baud et al., 2012
Sulforaphane 36.00 µM HDAC2 Choi et al., 2018

0.60 µM HDAC9
Bis(4-hydroxybenzyl)sulfide 1.43 µM NT Son et al., 2007
Azumamide E 0.05 µM HDAC1 Maulucci et al., 2007

0.10 µM HDAC2
0.08 µM HDAC3

Apicidin 0.001 µM NT Singh et al., 2002
Apicidin A 0.001 µM NT
Apicidin D1 0.004 µM NT
Apicidin B 0.01 µM NT Singh et al., 2001
Apicidin C 0.006 µM NT
FR235222 0.017 µM NT Sasamura et al., 2010
AS1387392 0.022 µM NT
Chlamydocin 0.00015 µM HDAC1 Furumai et al., 2001
1-alaninechlamydocin 0.0064 µM NT Du et al., 2014
Trapoxin A 0.00082 µM HDAC1 Furumai et al., 2001

0.524 µM HDAC6
Microsporin A 0.55 µM HDAC8 Gu et al., 2007
Romidepsin 0.036 µM HDAC1 Furumai et al., 2002

0.047 µM HDAC2
0.510 µM HDAC4

Largazole 0.0114 µM HDAC1 Souto et al., 2010
3.0 µM HDAC4

Epicocconigrone A 4.6 µM HDAC6 El Amrani et al., 2014
1.6 µM HDAC8
8.4 µM HDAC10
NT, Not Tested.
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with an up-regulation of tumor suppressors such as p21WAFI and
gelsolin (Kim et al., 2007; Ahn et al., 2008). Psammaplin A was
also reported to induce an increase of apoptosis, most likely by
inducing expression of p21WAF1. It is worth to mention that the
physiologic instability of the psammaplin class has precluded
further clinical investigations. However, an analogue of
psammaplin class, NVP-LAQ824, which induces apoptosis, has
entered phase I clinical trials (Remiszewski, 2003; Cuneo
et al., 2007).

Diallyl Disulfide (DADS)
Diallyl disulfide compounds are organosulfur compounds (OSC)
which are released by plants of the Allium genus including onion,
garlic, scallion, and leek (Bae et al., 2019). In general,
organosulfur compounds are known to modulate the activity
of several enzymes involved in the activation or detoxification of
carcinogens and inhibit the formation of DNA adducts in diverse
target tissues (Omar and Al-Wabel, 2010). DADS are known to
induce cell cycle arrest, differentiation, and apoptosis in several
cancer cell lines (Herman-Antosiewicz and Singh, 2004). In fact,
DADS belong to the group of dietary HDAC inhibitors. Allyl
mercaptan (16), a well-known DADS, induced histone
acetylation in the liver and this compound was also recognized
as the active HDAC inhibitor rather than the parent compound
DADS (Druesne et al., 2004). Indeed, the authors reported that
allyl mercaptan inhibits 92% of HDAC activity while the parent
compound, inhibited only 29% at the concentration of 200 μM.
DADS is also known to induce the hyperacetylation of histone
H4, the activation of caspase-3, and the modulation of the anti-
apoptotic paralogues including Bcl2, BAX ,and Bcl-xL in human
leukemia, lung cancer, and breast cancer (Herman-Antosiewicz
and Singh, 2004; Zhao et al., 2006). The latter result suggested
that the Bcl-2 family is targeted by DADS. Besides, DADS was
reported to cause hyperacetylation of H3 and H4 leading to an
increase of the expression of the tumor suppressor p21WAFI in
Frontiers in Pharmacology | www.frontiersin.org 8
human acute myeloid leukemia HL-60 cells and colon cancer
cells in vitro and in vivo.

S-allyl-mercapto-L-cysteine (SAMC) (17) is another
organosulfur compound which was also reported to induce
hyperacetylation of H3 and H4 in human colon and breast
cancer cells (Lea et al., 2002). The same study reported that
SAMC inhibits cell proliferation of DS19 mouse erythroleukemia
cells with an IC50 value of 0.5 μM (Lea et al., 2002). SAMC has
also been reported to inhibit the growth of the breast cancer cell
lines MCF-7 and MDA-MB-231 through cell cycle arrest in
the G0/G1 phase (Zhang et al., 2014). These findings support the
continue investigation of SAMC as an alternative agent in the
chemoprevention and chemotherapy of human breast cancer.
Despite the lack of direct inhibition of HDAC by SAMC, it can be
assumed that this compound displays this activity with the same
mechanism as other organosulfur compounds. However, the
stability of DADS causes difficulties in reproducibility offindings.

Sulforaphane (SFN)
The isothiocyanate sulforaphane (SFN) (8), as mentioned earlier,
is found in cruciferous vegetables, including broccoli sprouts and
broccoli (Fahey et al., 1997). Isothiocyanates result from the
hydrolysis of glucoraphanin by the plant enzymes myrosinases
(Kim and Park, 2016). Isothiocyanates are a family of
compounds including sulforaphane, allyl isothiocyanate, benzyl
isothiocyanate, phenetyl isothiocyanate, etc. (Kim and Park,
2016). Sulforaphanes have been reported to possess anticancer
activities in xenograft models of prostate cancer and in induced
animal models (Zhang et al., 1994; Fahey et al., 1997). Myzak and
co-workers reported that sulforaphane possesses anticancer
activity through the inhibition of HDAC activity and increase
in the histone acetylation in HCT116 human colorectal cancer
cells (Myzak et al., 2004). The same study showed that the
metabolite sulforaphane-cysteine which displayed greater
HDAC inhibitory effect than SFN at a concentration of 15 μM
FIGURE 3 | Structures of linear HDAC inhibitors. The colors are representative of different parts shown in Figure 2.
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is the active form of SFN and other isothiocyanates. This
observation was further confirmed by molecular studies which
revealed a plausible interaction for sulforaphane-cysteine within
the active site of the HDAC-like protein (see Natural Product
HDAC Inhibitor in the PDB) (Myzak et al., 2004). Moreover, 40%
of the growth inhibition of xenografts of human PC-3 prostate
cancer cell in mice by SFN was observed at a concentration of 15
μM, accompanied by as significant down-regulation of HDAC
activity in the xenografts (Myzak et al., 2007). Recently, SFN has
been reported to selectively inhibit HDAC2 and 9 with IC50

values of 36 and 0.6 μM respectively (Choi et al., 2018). In silico
studies confirmed that isothiocyanates can bind to allosteric
active sites of HDAC based on their similar structural features
with other HDAC inhibitors (Furumai et al., 2001; Ho et al.,
2009; Rajendran et al., 2013). However, isothiocyanates are
known to react preferably with diverse thiol and amine (bio)
nucleophiles (Jacob, 2006), which strongly suggest non-specific
and likely indirect effects on a given epigenetic target.
Frontiers in Pharmacology | www.frontiersin.org 9
Bis(4-Hydroxybenzyl)sulfide
Bis(4-hydroxybenzyl)sulfide (18) is a sulfur compound isolated
from the root extract of the Chinese medicinal plant Pleuropterus
ciliinervis (Son et al., 2007). In vitro, it displayed inhibitory
activity against HDAC in HeLa cells with an IC50 value of 1.43
μM (Son et al., 2007). Besides, this compound inhibited also the
growth of several cancer cells lines among which the prostate PC-
3 and breast MDA-MB-231 cell line with IC50 values of 7.86 and
1.45 μM respectively (Son et al., 2007). Like other organosulfur
compounds, stability is a big issue that may affect the
reproducibility of these findings.

Cyclic Tetrapeptides (Figure 4)
Azumamide E
The cyclic tetrapeptide azumamide E (19) was isolated from the
marine spongeMycale izuensis along with other azumamides (A,
B, C, and D) (Nakao et al., 2006). Structurally, azumamide E
include four D-a-amino acids (D-Phe, D-Tyr, D-Ala, D-Val) and
FIGURE 4 | Structures of cyclic tetrapeptides. The colors are representative of different parts shown in Figure 2.
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a unique b-amino acid assigned as the 13-membered macrocycle
[(Z)-(2S,3R)-3-amino-2-methyl-5-nonenedioc acid] (known as
Amnaa). Fusetani and co-workers reported that azumamide E
possesses a strong inhibition of HDACs in K562 human
leukemia cells, with an IC50 value of 0.064 μM (Nakao et al.,
2006). Another study reported that azumamide E selectively
inhibited class I HDAC in HeLa nuclear extracts, particularly
HDACs 1-3 with IC50 values of 0.05, 0.1, and 0.08 μM
respectively (Maulucci et al., 2007). Docking studies showed
that azumamide E inserts the Amnaa side chain into the active
site of HDACs, where the carboxylic acid will chelate the Zn2+ in
a bidentate fashion (Maulucci et al., 2007). Total synthesis of
azumamide E revealed that switching of the carboxylic acid
group to a hydroxamic acid leads to an increase in potency for
HDAC inhibition (Wen et al., 2007). A subsequent synthesis of
azumamide E by Villadsen et al., revealed that 19 is also a potent
inhibitor of HDAC10 and 11 evidencing its lack of isoform
specificity (Villadsen et al., 2013).
Apicidins
Apidicin (20) and apidicin A (21) are a family of natural
products first isolated from the endophytic fungus Fusarium
pallidoroseum (Singh et al., 1996). Structurally, all apicidins
contain N-methoxy-L-tryptophan, except for apidicin A.
Moreover, all apidicins contain D-pipecolinic acid, except for
apidicin B (22) which contains D-proline. Furthermore, apidicin
C (23) and F (28) contain L-valine and L-phenylalanine,
respectively, while the other apidicins including apicidin D1

(24), D2 (25), D3 (26), and E (27) consist of L-isoleucine at the
corresponding position. Another common feature of all the
apidicins is the presence of (2S)-amino-8-oxo-decanoic acid
(Aoda) or its derivative. These compounds displayed a high
inhibitory activity of protozoal HDAC and in HeLa cell extracts
in nanomolar range (Singh et al., 2001; Singh et al., 2002). A
selective inhibition of class I HDAC2, 3, and 8 in nanomolar
concentrations by apidicin A and D1 (24) has been reported as
well as the inhibition of class IIa HDAC 4 and 7 in ovarian cancer
cells (Khan et al., 2008; Ahn et al., 2012). The binding of apicidin
to the active site of HDAC is enabled through the insertion of the
acetylated lysine mimic. Indeed, the carbonyl group can chelate
the Zn2+ at the bottom of the active site precluding the binding of
the natural substrate as demonstrated by the lack of activity of
apicidin D2 (25) and D3 (26) (Colletti et al., 2001; Singh et al.,
2001). Apidicin inhibited the proliferation of diverse cancer cell
lines through the induction of transcriptional activation of
p21WAFI/Cip1 and gelsolin (Han et al., 2000; Kim et al., 2001).
The reversion of morphological changes of HeLa cells as well as
hyperacetylation of histone H4 accompanied antiproliferative
activity of apidicin on those cells (Han et al., 2000). Apicidin-
mediated growth inhibition of the promyelocytic leukemia cell
line HL60 was also reported to be due to a transiently increased
expression of Fas/Fas ligand. The latter resulted in activation of
caspase-3 and 9 and execution of apoptotic cell death (Kwon
et al., 2001).
Frontiers in Pharmacology | www.frontiersin.org 10
Helminthosporium carbonum (HC) Toxin
HC-Toxin (29) is a cyclic tetrapeptide isolated from the fungal
culture of Helminthosporium carbonum (Liesch et al., 1982). The
structure of HC-toxin consists of D-proline, D-alanine, L-
alanine, and (2S)-amino-8-oxo-9,10-epoxydecanoic acid (Aoe).
HC-Toxin is an inhibitor of HDAC in several organisms
including plants, insects, and mammals (Walton et al., 2006).
Its Aoe moiety has been reported to be relevant for HDAC
inhibition as well as the a-keto epoxide moiety (Walton and
Earle, 1983). Indeed, the latter binds covalently into the active
site of HDAC through epoxide opening by nucleophilic residues
of the active site (Walton and Earle, 1983). HC-toxin was
reported to induce G0/G1-cell arrest and apoptosis in
neuroblastoma (NB) cell lines and primary cell cultures in the
nanomolar range (Deubzer et al., 2008). In other studies, HC-
toxin displayed antiproliferative activity against intrahepatic
cholangiocarcinoma (ICC) cells and breast cancers cells lines
(Joung et al., 2004; Zhou et al., 2016).
FR235222
FR235222 (30) was initially reported from the fermentation
broth of the soil fungus Acremonium sp. No. 27082 (Mori
et al., 2003). The structure of FR235222 consists of L-Phe and
three unusual a-amino acids including (2R,4S)-4-methylproline
(4-MePro), and (2S)-isovaline (iva), and (2S,9R)-2-amino-8-
oxo-9-hydroxydecanoic acid (Aoh). This natural compound
showed potent inhibition of partially purified HDAC fractions
mammalian lymphoid cell lines (IC50 value of 17 nM) and
selective immunosuppressive activity. Indeed, the authors
found that FR235222 selectively inhibits both lymphocyte
proliferation and lymphokine production; the target was
identified as HDAC in T cells. The authors reported that
FR235222 caused G1 cycle arrest accompanied by an increase
of p21 and down-regulation of cyclin E, antiproliferative effects,
and accumulation of acetylated histone H4. Another study, in
which the prostate cancer cell line LNCaP was treated with
FR235222 at a concentration of 0.5 μM, revealed that the increase
in histone H4 acetylation is accompanied by caspase-3-
dependent induction of apoptosis (D’Acunto et al., 2010).
Besides, the authors demonstrated that FR235222 can increase
the level of the endogenous anti-inflammatory protein ANXA1
involved in apoptosis. It is worth mentioning that, the
restoration of ANXA1 expression in the prostate cancer cell
line LNCaP reduced cell viability and proliferative response and
induced caspase-mediated apoptosis (Hsiang et al., 2006).
FR235222, with an IC50 value of 60 nM, was also reported to
inhibit HeLa cell HDACs and HDAC3 was identified as its main
target in Toxoplasma tachyzoites (Yoshida et al., 1990; Bougdour
et al., 2009).

AS1387392 (31), a synthetic analogue of FR235222, in which
the MePro of FR235222 is replaced by proline, was also isolated
from the same fungus Acremonium sp. This compound showed
similar HDAC inhibitory effects as FR235222 with IC50 an value
of 22 nM (Sasamura et al., 2010). AS1387392 also displayed
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potent inhibitory activity against splenocyte proliferation, with
an IC50 value of 4.6 nM (Sasamura et al., 2010).

Chlamydocin
Chlamydocin (32) was first isolated from the fungus
Diheterospora chlamydospria and is a cyclic tetrapeptide
containing 2-aminoisobutyric acid (Aib), L-phenylalanine, D-
proline, and L-2-amino-8-oxo-9,10-epoxydecanoic acid (Closse
and Huguenin, 1974). Chlamydocin exhibited cytotoxicity
against mouse P-815 mastocytoma cells in vitro with a 10–100
times higher activity than clinical agents including actinomycin
D, vinblastine, vincristine, amethopterin, and colchicine in the
same assay (Stähelin and Trippmacher, 1974; Walton et al.,
1985). Chlamydocin has also been reported to inhibit the
proliferation of diverse cancer cell lines with IC50 ranging from
0.36 to 45 nM. In the same study, it was reported that
chlamydocin inhibits HDAC with an IC50 value of 1.3 nM and
the antiproliferative activity was found to be accompanied by an
increase in the accumulation of the acetylated histones H3 and
H4, the induction of p21Wafi/Cip1, and cell cycle arrest in the G2/
M phase (Schepper et al., 2003). Chlamydocin selectively
inhibited HDAC1 with an IC50 value of 0.15 nM (Furumai
et al., 2001). Chlamydocin may share a similar mode of action
as the aforementioned epoxide-based HDAC inhibitors such as
HC-Toxin.

The fungal culture Tolypocladium sp. produced a closely
related compound 1-alaninechlamydocin (33), which displayed
strong antiproliferative effects in a human pancreatic carcinoma
cell line MIA PaCa-2 in a nanomolar range (Du et al., 2014).
Besides, 1-alaninechlamydocin also inhibited the growth of
another human pancreatic carcinoma cell line (Panc-1) and
the immortalized pancreatic duct cell line hTERT-HPNE at
low-nanomolar concentration without induction of cytotoxicity
in both cell lines at a concentration up to 10 μM. It was found
that 1-alaninechlamydocin induces apoptosis and G2/M cell
cycle arrest by inhibiting HDAC activity with an IC50 value of
6.4 nM (Du et al., 2014).

Trapoxin (TPX)
Trapoxin A (34) and B (35) are cyclotetrapeptides originally
isolated from the fungal culture of Helicoma ambiens and caused
the increase of highly acetylated core histones in diverse
mammalian cell lines (Itazaki et al., 1990; Kijima et al., 1993).
Trapoxin A (34) (also known as trapoxin) induced cell
differentiation, cell cycle arrest, and reversal of transformed
cells morphology (Yoshida et al., 1995). Trapoxin (34) was first
reported to be an irreversible HDAC inhibitors (Taunton et al.,
1996). However, Horinouchi and co-workers demonstrated later
that trapoxin reversibly inhibits only HDAC6 through the ketone
moiety. The latter undergoes a nucleophilic attack to form a zinc-
bound tetrahedral gem-diolate without affecting the epoxide
moiety (Furumai et al., 2001). This mechanism is in contrast
to other epoxyketone that are commonly thought to be
irreversible HDAC inhibitors (Taunton et al., 1996). In the
same study, 34 displayed selective inhibition of HDAC1 and 6
with IC50 values of 0.82 and 524.0 nM respectively while 35
showed similar potency (Furumai et al., 2001). Also, trapoxin B
Frontiers in Pharmacology | www.frontiersin.org 11
(35) was reported to be more potent than trichostatin A in the
respective inhibition of H1299 and HCT116 cell proliferation
(Remiszewski et al., 2002). It has been reported that, trapoxin A
(34) binds to the active site of HDAC8 through the same mode of
action already known by its effect on HDAC6 (Porter and
Christianson, 2017).

Microsporin A
Microsporin A (36) which is closely related to the trapoxins was
produced by the fungus Microsporum cf. gypseum along with an
analogue Microsporin B (37) (Gu et al., 2007). Both natural
products harbor a nonproteinogenic moiety made of (2S)-
amino-8-oxodecanoic acid (Aoda) and (2S)-amino-8-
hydroxydecanoic acid respectively along with other units
including D-pipecolinic, L-phenylalanine, and L-alanine (Gu
et al., 2007). Microsporin A (36) showed potent in vitro
cytotoxicity against human colon adenocarcinoma HCT-116
and a mean IC50 value of 2.7 μM in the National Cancer
Institute’s diverse 60-cell line panel. Microsporin A (36) in the
same study showed greater in vitro inhibition against both a
mixture of HDACs and HDAC8 than the reference antitumor
agent HDAC inhibitor SAHA with IC50 values of 0.14 and 0.55
μM, respectively (Gu et al., 2007).

Cyclic Depsipeptides (Figure 5)
Romidepsin
The bicyclic depsipeptide romidepsin (38) was originally
produced by Chromobacterium violaceum that displayed
antitumor activity (Ueda et al., 1994). This natural product was
initially isolated under the name FR901228 and is now adays
known as romidepsin or IstodaxR (trade name), or FK228
(Vandermolen et al., 2011). In 2009, the prodrug romidepsin
(38) was approved for the treatment of cutaneous and/or
peripheral T-cell lymphoma by the US Food and Drug
Administration (FDA) (Prince et al., 2013). The chemical
structure of 38 consists of two valine units with opposite
configurations, D-cysteine, (Z)-dehydrobutyrine, and (3S)-
hydroxy-7-mercapo-4-heptenoic acid (Shigematsu et al., 1994).
Compound 38 acts as a potent and selective HDAC inhibitor of
class I HDACs in particular HDAC1, 2, and 4 with IC50 values of
36, 47, and 510 nM respectively (Furumai et al., 2002). This
compound has an internal disulfide bond of 38 that is reduced in
the presence of cellular glutathione to generate a sulfhydryl
(thiol) moiety, which is the active form of Romidepsin
behaving as a Zn2+ binding group in the active site.

Largazole
Largazole (39) was isolated through a bioassay-guided
fractionation of the crude extract of the cyanobacterium
Symploca sp. (Taori et al., 2008). Its structure consists of
uncommon features including a thiazole ring linearly fused to
a substituted (4R)-methylthiazoline and a (3S)-hydroxy-7-
mercaptohept-4-enoic acid like in FK228. Largazole (39)
selectively inhibited, at nanomolar concentration, the growth
of the human epithelial cancer cells MDA-MB-231 in a dose-
dependent manner. Indeed, non-transformed murine epithelial
cells NmuMG remained unsusceptible to 39 in this study (Taori
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et al., 2008). The authors reported the same selectivity for
transformed fibroblastic osteosarcoma U2OS cells (IC50 55
nM) over nontransformed fibroblast NIH3T3 (IC50 480 nM).
It has been reported that 39 selectively inhibits class I HDAC1
over class II HDAC4 with IC50 values of 11.4 nM and 3 μM
respectively (Souto et al., 2010). Largazole induced an increase of
H3 and a-tubulin acetylation, and an up-regulation of
p21WAF1CIP1 in NB4 cells (Souto et al., 2010). Increased
acetylation of H3 and up-regulation of p21WAF1XIP1 was also
observed in another study, in which 39 induced cell cycle arrest
at G1 phase at nanomolar range concentration in HCT116 cells
(Liu et al., 2010). Compound 39 is a prodrug that requires
activation through hydrolysis to form the thiol 40 as the active
form exhibiting high isozyme-selective HDAC inhibition activity
(Hong and Luesch, 2012).

Spiruchostatins
Spiruchostatin A (41) and B (42), both sharing several structural
features with romidepsin, were isolated from Pseudomonas sp. in
2001 (Masuoka et al., 2001). Another analogue, spiruschostatin C
(43), was isolated from Burkholderia thailandensis (Masuoka
et al., 2001; Klausmeyer et al., 2011). Spiruchostatin A–C (41–43)
demonstrated selective inhibition of class I HDACs, in particular
HDAC1, with low nanomolar IC50 values (Narita et al., 2009;
Narita et al., 2013). Moreover, 41 was reported inhibiting 14
cancer cell lines at nanomolar range (Shindoh et al., 2008). In the
latter study, it was found that 41 induces selective accumulation
of acetylated histones in tumor tissues, p21WAFI/Cip1 expression
and cell cycle arrest. Another study reported that a higher
increase in the formation of intracellular reactive oxygen
Frontiers in Pharmacology | www.frontiersin.org 12
species accompanied induction of apoptosis in human
lymphoma U937 cells by 41 and 42 (Rehman et al., 2014).
Non Zinc-Binding Inhibitors (Figure 6)
Ursolic Acid
The pentacyclic ursolic acid (44) can be found in fruits such as
blueberries, apple peels, olive, and cranberries as well as in
diverse herbs (Ikeda et al., 2008). Compound 44 was reported
to inhibit the growth of HL60 cells resulting from an increase in
the accumulation of acetylated histone H3 (Chen et al., 2009).
The increased acetylation of H3 was found to be induced by the
inhibition of HDAC 1, 3, 4, 5, and 6 (Chen et al., 2009). The
binding of 44 to the active site of class I HDAC and HDAC7
isoforms has been recently confirmed through docking studies
(Ishola and Adewole, 2019). Moreover, the same study showed
44 fulfills oral druggability of Lipinski rule five.

Epicocconigrones
Epicocconigrones A (45) and B (46) are polyketides isolated
from an endophytic fungus identified as Epicoccum nigrun in
2013 (El Amrani et al., 2014). Compound 45 displayed strong
inhibition of HDAC with an IC50 value of 9.8 μM (El Amrani
et al., 2014). In vitro test of 45 showed that this compound
inhibits several HDACs (1, 2, 3, 8, 6, 10, and 11) with IC50 values
between 1.6 and 12.9 μM. It is worth to mention that 45,
selectively inhibited HDAC8 with higher potency in
comparison to the reference compound SAHA in the same
study. Compound 45 also inhibited proliferation of the human
lymphoma cell line RAJI by 50% at a concentration of 5 μM after
FIGURE 5 | Structures of cyclic depsipeptides. The colors are representative of different parts shown in Figure 2. The black color is representative of the product
moiety.
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72 h of treatment. Moreover, 32% of the U937 cell line were also
inhibited at the same concentration (El Amrani et al., 2014).
Curcumin
The polyphenol curcumin (2), as mentioned earlier, was isolated
from the rhizome Curcuma longa (Soleimani et al., 2018).
Curcumin (2) is known to possess HDAC inhibitory activity in
different cancer cell lines (Soflaei et al., 2018). Indeed, induction
by curcumin of cell cycle arrest at G2/M phase, apoptosis, and
increase in tubulin acetylation in medulloblastoma cells, through
the inhibition of HDAC, in particular HDAC4 was reported (Lee
et al., 2011). It has been reported that 2 may be of considerable
value in synergistic therapy of cancer in a manner that the drug
dose level could be strongly minimized to reduce the associated
toxicity (Roy et al., 2011). Indeed, 2 combined with other HDAC
inhibitors such as vorinostat resulted in a marked enhancement
of the antiproliferative activity of the associated drug, and
sensitization to apoptosis (Giommarelli et al., 2010). A similar
observation was made when 2 was combined with
cyclophosphamide and paclitaxel (Roy et al. , 2011).
Nevertheless, curcumin is known to show pan-activities, which
is why any reported specificity needs to be seen with caution.
Frontiers in Pharmacology | www.frontiersin.org 13
n-Butyric Acid
n-Butyric acid (47) is a short-chain fatty acid reported as
metabolite of Staphylococcus epidermidis, a skin probiotic
bacterium (Claudel et al., 2019; Traisaeng et al., 2019). n-
butyric acid has been reported to inhibit HDAC, DNA
synthesis, and cell growth in colon tumor cell lines
(Andriamihaja et al., 2009; Zhang et al., 2010; Traisaeng et al.,
2019). Its poor pharmacological properties are due to a rapid
metabolism. Along with the multigram doses required to achieve
therapeutic concentrations in vivo, they precluded its use in
cancer therapy and other medical disorder (Miller et al., 1987;
Steliou et al., 2012). To overcome this limitation, butyric acid
prodrugs have been synthesized including pivaloylomethyl
butyrate (AN-9) (48) and butyroyloxymethyl butyrate (AN-1)
(49), which showed antineoplastic activity and radiosensitizing
capacity in the treatment of malignant gliomas (Entin-Meer
et al., 2005). However, these prodrugs did not succeed as viable
drugs (Steliou et al., 2012). Interestingly, the arginine salt of
butyrate gave successful results in clinical studies and is used for
the treatment of diseases such as thalassemia and sickle-cell
disease (Steliou et al., 2012). Other short-chain fatty acids such as
4-phenylbutyrate (50), 2,2-dimethlbutyric acid (51), and valproic
acid (52) have been synthesized and also displayed inhibition of
FIGURE 6 | Structures of the non Zinc-binding HDACs.
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HDAC (Steliou et al., 2012). Valproic acid (52) is currently used
in the treatment of epilepsy (Georgoff et al., 2018). Thus,
butyrate-based epigenetic compounds represent a promising
route for the development of new HDADi.

Aceroside VIII
Aceroside VIII (53) is a diarylheptanoid isolated from the
Japanese white birch Betula platyphylla. This compound
weakly but selectively inhibited the activity of HDAC6 in
HT29 CRC cells (Ryu et al., 2015). However, combination of
this compound with the well-known selective HDAC6 inhibitor
g-lactame A452 led to a significant increase of the levels of
acetylated a-tubulin. Furthermore, the treatment of HT29 CRC
cells with 10 μM aceroside VIII associated with 0.1 μM A452 led
to a significant decrease of cell growth up to 84% (Ryu et al.,
2015). The same study showed that cell death caused by
aceroside is partly dependent on caspase activation. This study
highlighted a synergistic effect of natural products and selective
HDAC6 inhibitors.
MOLECULAR MODELING AND DOCKING
AS A TOOL FOR A MODE OF ACTION
PREDICTION OF NATURAL PRODUCT
DNMTS AND HDACS INHIBITORS

Molecular docking is a computational method employed for
understanding, the interaction between a small molecule (e.g. a
potential drug) and its macromolecular target, e.g. a protein or
receptor. Docking simulations are often used to elucidate the key
binding interactions and binding modes of small molecules and
their drug targets (Kellenberger et al., 2008). Scoring functions
are mathematical/statistical methods implemented in docking
algorithms for quantifying the interactions, hence the putative
binding of a drug molecule to its target (Chen, 2015). When
properly trained, a scoring function could be used as a criterion
for selecting a subset of (best-scoring) ligands or small molecules,
which have been stored in electronic databases (often several
thousands or even millions). During a virtual screening
experiment via docking, a large electronic database of ligands
is docked into the binding site of a protein and putative binding
is characterized using a scoring method. For each ligand, several
conformers are stored as "docking poses" and the top-scoring
poses are chosen as potential binders. This selected subset of
compounds (called docking "hits") are then tested biologically.
Thus, the number of compounds to be tested is drastically
reduced, hence cutting down the cost of identification of a
lead compound.

Structure-based molecular modeling (e.g. molecular docking,
molecular dynamics, structure-based quantitative structure-
activity relat ions) and ligand-based modeling (e.g .
pharmacophore modeling, similarity searching) have assisted
the identification of novel natural product inhibitors and
modulators of DNMTs and HDACs and in explaining their
inhibitory effect. Some of these results have been summarized in
Frontiers in Pharmacology | www.frontiersin.org 14
recent reviews (Medina-Franco and Caulfield, 2011; Saldıv́ar-
González et al., 2018).

Interactions of Natural Compounds Within
the Binding Site of DNMT1
The anthraquinone derivative Nanaomycin A (6), from the
National Cancer Institute (NCI)/Developmental Therapeutics
Program Open Chemical Repository screening program (http://
dtp.cancer.gov), displayed potent antiproliferative effects on
HCT116, A549, and HL60 cell lines as mentioned earlier in this
review (Kuck et al., 2010). A study on the identification of DNMT1
inhibitors through a virtual screening showed that 6 induces
antiproliferative effects in three different tumor cell lines (Chen
et al., 2007). Furthermore, biochemical in vitro assay using DNMT1
or DNMT3b showed that nanaomycin A selectively inhibits
DNMT3b. A docking study of nanaomycin A towards a
homology model of the catalytic site of DNMT3b was conducted
in order to rationalize the biochemical activity at the molecular level
(Kuck et al., 2010). Indeed, docking studies confirmed that
nanaomycin A binds in the active site of DNMT3b in which its
carboxylic acid is capable of forming hydrogen bonds with the side
chain of arginine residues. Moreover, its carbonyl oxygen atom and
adjacent hydroxyl group were predicted to form an extensive
hydrogen bond network with the side chain of two arginine
residues. Besides, the side chain of a glutamic acid residue forms
a hydrogen bond with the hydroxyl. Furthermore, a possible
explanation of the selectivity of nanaomycin A for DNMT3b was
suggested. Indeed, docking studies of nanaomycin A with a
previously validated homology model for the catalytic site of
human DNMT1 did not shown similar H-bonds with the
equivalent glutamic acid and arginine residues (Siedlecki et al.,
2003). Thus, the anticancer effects of nanaomycin A could be
attributed to its ability to selectively inhibit DNMT3b. Thus, the
anthracycline group of nanaomycin A represents a valuable scaffold
for the development of future selective DNMT isoform inhibitors.
However, some lasting cardiotoxicity may prevent its clinical use. It
is worth to mention that nanaomycin A is the first non-SAH (S-
adenosylhomocysteine) DNMT3b-selective compound.

Based on the anticancer activity of the isoflavone genistein
toward MDA-MB-231 human breast cancer cells and MCF-7,
associated with the resulting decrease in the level of global
methylation, a docking study, similar to the aforementioned
nanaomycin A, was performed. Indeed, molecular modeling of
the interaction between genistein and the DNMT1 binding site,
as shown in Figure 7, revealed potential H-bond interactions
(Xie et al., 2014). This study demonstrated that genistein might
inhibit the binding of hemimethylated DNA, competitively to the
catalytic domain of DNMT1. Moreover, the authors also
demonstrated that genistein has a demetylation effect in the
region of multiple tumor suppressor genes (TSG) including
Adenomatous polyposis coli (APC), ataxia telangiectasia
mutated (ATM), phosphatase and tensin homolog (PTEN),
and increased the mRNA expression of these genes. It is worth
to mention that, silencing of the expression of TSGs in cancer
cells is mainly due to hypermethylation of CpG islands in the
promoter region (Xie et al., 2014). These results suggested that
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genistein could increase the expression of certain TSGs in human
breast cancer cells by reducing the activity of DNMTs and
mRNA expression of DNMT1. Thus, genistein or its structural
analogs could be potentially used as demethylation agents.

Similarly, molecular docking has been used to illustrate why
the phenolic derivative curcumin (2) inhibits the enzymatic
activity of an analogue of DNMT1 (M. SssI) at the lower nM
range, meanwhile a close natural analogue, hexahydrocurcumin
(54), showed no inhibition of the same enzyme up to 100 mM
(Liu et al., 2009b). This finding could be explained by docking of
curcumin and its tetrahydro analogue towards the catalytic
domain of DNMT1. Since it was suggested experimentally that
curcumin blocks the catalytic thiolate of Cys1226 of DNMT1
covalently to exert its inhibitory effect, docking validation
showed the absence of such interactions in docking pose with
the other docked curcumin ana logues , inc lud ing
demethoxycurcumin (55), bisdemethoxycurcumin (56),
tetrahydrocurcumin (57) (Figure 8, Liu et al., 2009b).
Compounds 2, 55, and 56 showed similar inhibitory effects,
indicating that either of bis-a,b-unsaturated ketones is required
for the observation of the activity. However, as mentioned
earlier, the bioactivity of curcumin should be analyzed with care.

Discovery of Novel DNMT Inhibitors by
Docking-Based Virtual Screening
Several isoforms of DNMTs occur in mammals, e.g. DNMT1,
DNMT3a, and DNMT3b as mentioned earlier in this review
(Chen et al., 2014). These are attractive targets in cancer
chemotherapy and several crystal structures are available in the
protein databank (Berman et al., 2000) for structure-based
virtual screening projects (e.g. PDB ID: 4DA4) (Song et al.,
2012). Several successful virtual screening campaigns via
docking have been conducted for the discovery of DNA
Frontiers in Pharmacology | www.frontiersin.org 15
methyltransferase inhibitors (Kuck et al., 2010; Medina-Franco
et al., 2011; Medina-Franco and Yoo, 2013; Chen et al., 2014).
These include, for example, 44 natural germacrolides docked
against the homology model of the human DNMT1 (Liu et al.,
2009b), and the lead-like subset of ~89,425 natural products
from the ZINC database (Irwin and Shoichet, 2005) which were
docked against the homology model of the human DNMT1
(Medina-Franco et al., 2011). Indeed, from the docking-based
screening performed by Liu and co-workers, it was observed that
g-methylactone compounds could be effective DNMT inhibitors.
Moreover, the same study resulted in the discovery of
parthenolide and curcumin mentioned earlier in this review.
This result was confirmed by Yoo and coworkers who
demonstrated that the binding models of compounds such as
curcumin and parthenolide suggest that these natural products
are covalent blockers of the catalytic site of DNMT (Yoo and
Medina-Franco, 2011). Thus, compounds such as parthenolide
are potential blockers of DNMT1.

Natural Product HDAC Inhibitor in the PDB
Based on the evidence of HDAC inhibitory effects along with
tumor-suppressing activities of SFN (8), Myzak et al. (2004)
carried out a molecular modeling study of the SFN-Cys HDAC
binding site on the HDAC crystal structure. It was shown that
the buried cysteine amino group is positioned to make a single
H-bond with His132 when 8 was made to interact with this
binding site (Myzak et al., 2004). The same study reported that a
combination of SFN (8) with trichostain A (13) led to an increase
in the inhibition of the HDAC activity. It is worth to mention
that 8 is metabolized into its major active form sulforaphane-
cystein. Indeed, studies with SFN and media treated from SFN-
treated cells indicated that the parent compound was not
responsible for the HDAC inhibition activity, and this was
FIGURE 7 | H-bond interactions between Genistein and binding site amino acid residues in the DNMT1 cavity. H-bond between genistein and DNMT1 are shown
(distance <3.2 Å) as red dotted lines that include the names of the residues and distances (Reproduced with permission).
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proven through the use of glutathione S-transferase that blocked
the first step in the metabolism of SFN (Myzak et al., 2004).
Therefore, SFN may be an effective stand alone chemotherapeutic
agent or work in synergy with other HDAC inhibitors. However,
the lack of isoform selectivity inhibition may limit its potential
clinical use.

Based on the known inhibitory activity of trichostatin A
(TSA) (13), Finnin et al. (1999) carried out a molecular
modeling study of this compound to establish the mechanism
of HDAC inhibition (Finnin et al., 1999). This study showed that
the binding of TSA proceeds by the insertion of its long aliphatic
chain into the HDLP pocket, thus making multiple tube-like
contacts to the hydrophobic portion of the pocket. Furthermore,
it was revealed that the hydroxamic acid group of TSA
coordinates the active-site zinc in a bidentate fashion using its
carbonyl and hydroxyl group. It is worth to mention that other
natural HDAC inhibitors such as HC-toxin (29) and trapoxin
(34) mentioned earlier in this review, contain groups that are
analogous to the active-site/zinc-binding groups and the cap
aliphatic chain of TSA. However, they have an epoxyketone
group instead of a hydroxamic acid group. It has been suggested
that the epoxy group may crosslink to an active site nucleophile
(Yoshida et al., 1995). Furthermore, interaction of their ketone
Frontiers in Pharmacology | www.frontiersin.org 16
group with polar residues and possibly the zinc, at the bottom of
the active-site pocket might be possible (Finnin et al., 1999).
Indeed, the reduction of the carbonyl to a hydroxyl group, or its
elimination, that led to a high decrease in the activity of 29,
supported this assumption (Shute et al., 1987). This mode of
action could be assumed to be identical for other HDAC
inhibitors including chlamydocin (32), 1-alaninechlamydocin
(32). Besides, the authors suggested that the larger size of the
macrocycle (cap group) of 34 and 29 compared to that of 13
could allow more extensive contacts at the rim of the pocket and
in the shallow grooves surrounding the pocket entrance.

HDAC Inhibitors Inspired From the Natural
Product Psammaplin A (PsA)
Inspired by the NP PsA (15), Baud et al. (2013) designed a new
set of picolinamide-based histone deacetylase inhibitors, i.e.
designing a focused library, which is based on the PsA core
(Baud et al., 2013). Based on the HDAC inhibitory and anti-
tumor (Garcıá et al., 2011) activities of this marine metabolite,
the authors proceeded by probing the features of this molecule,
which are responsible for its activity (Baud et al., 2012). In
searching for a molecular replacement for the oxime unit of
psammaplin A, Baud and coworkers were able to discover a new
A B

FIGURE 8 | Modeling docking poses towards the homology model of showing the interaction of curcumin (2) and its two analogs (50–51) (A) and
tetrahydrocurcumin (52, B) within the catalytic domain of DNMT1. The catalytic Cys1126, and anchoring Glu1668, Arg1312 are shown in the catalytic domain,
(Reproduced with permission).
August 2020 | Volume 11 | Article 992

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Akone et al. Natural Products, DNMTs, and HDACs
set easily synthesizable, isoform-selective, fragment-sized, and
highly ligand efficient N-2-(thioethyl)picolinamide HDAC
inhibitors bearing a chloropyridine motif, with low-nanomolar
potencies (Baud et al., 2013). The synthesized compounds
selectively inhibited HDAC1 with low-nanomolar potencies.
Because selective HDAC1 inhibition has been suggested to be
an effective anticancer strategy, this study showed that
compounds with the chloropyridine motif will be a valuable
design criterion for lead compound development of new and
chemical probes that target HDAC1.

Further molecular modeling of the compound PsA and its
most potent designed analogs as cytotoxic agent that act by
histone deacetylase inhibition (Wen et al., 2016) was conducted
against the HDAC1 binding site (PDB ID: 4BKX) (Millard et al.,
Frontiers in Pharmacology | www.frontiersin.org 17
2013). A comparison of the binding interactions was carried out,
for example, of the synthetic analogue; (2E,2′E)-N,N′-
(disulfanediylbis(ethane-2,1-diyl))bis(2-(hydroxyimino)-3-(2,4-
dichlorophenyl)propanamide, which showed better HDAC
inhibitory activity than PsA and comparable antiproliferative
activity with psammaplin A (15) against all four tested cancer
cells (Wen et al., 2016). Figure 9 shows that psammaplin A binds
to HDAC1, forming key interactions with the protein in several
areas. For example, the thiol group in PsA chelates the Zn2+ ion,
while the oxime group forms an H-bond with Asp99 bridged by a
water molecule. On the other hand, the 3-bromo-4-hydroxy
phenyl group in PsA forms a few hydrophobic contacts to
His178, Tyr204, and Phe205 around the surface recognition
motif, while the hydroxyl group is optically attached to the
A

B

FIGURE 9 | 3D view of the docking pose of reduced PsA (A) and its synthetic analogue (B) to HDAC1 (PDB ID: 4BKX). The ligands are shown in orange and green,
respectively. Important parts of the enzyme for interaction are shown in magenta sticks, while Zn2+ ion is shown as a light-yellow sphere (Reproduced with
permission).
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para-position of benzene. This enhances interaction with Glu203
at the entrance to the active site tunnel (Figure 9). Besides, it was
observed from molecular dynamics studies that the non-covalent
interactions between the inhibitor and target protein were quite
stable through 2.5 ns. The more potent synthetic analogue of this
NP (shown in Figure 9B) shared a similar binding mode as PsA,
with similar and stable interactions. However, as mentioned
earlier, the physiologic instability of PsA has precluded further
clinical investigations.
CONCLUSION

Despite intensive research efforts, cancer is yet one of the
primary global causes of death. Although numerous potent
anti-cancer drugs have been developed in recent decades, there
is still a huge need for specific agents with low side effects (Bray
et al., 2018). DNA methylation and histone acetylation are
important physiological mechanisms that maintain genome
integrity. Altered DNA methylation and/or histone acetylation
patterns have consistently been documented as the earliest
molecular changes occurring upon tumor establishment. Since
the presence of HDACs are important in both the development
and progression of cancer, addressing the related epigenetic
processes with HDAC inhibitors (HDACi) is a promising
starting point for developing new and potent anticancer drugs
(Li and Seto, 2016). HDAC inhibitors have already proven their
fundamental efficacy against cancer in preclinical and clinical
studies, which has led to the FDA approval of vorinostat
(SAHA), romidepsin (FK288), panobinostat (LBH589), and
belinostat (PXD101) for cancer therapy (Nguyen et al., 2013;
Suraweera et al., 2018; Mehndiratta et al., 2020). Besides, a
double-digit number of other HDAC inhibitors are currently
under investigation in Phase II or III trials (Suraweera et al.,
2018). Nevertheless, it should be noted that many HDAC
inhibitors fail in clinical development due to lack of efficacy or
too many side effects (Slingerland et al., 2014). Another major
drawback is the fact that the majority of the already established
HDAC inhibitors are only approved for the treatment of T-cell
lymphomas, due to insufficient efficacy against solid tumors
(Slingerland et al., 2014). Consequently, the identification of
new HDAC inhibitors that are both potent and specific is of great
importance to adequately address the pathophysiological
importance of epigenetic mechanisms in modern cancer
therapy. Many compounds are made chemically in academia
and industry for the development of new HDACi. However,
nature also offers an almost inexhaustible pool of new bioactive
substances, often exhibiting novel and unexpected chemical
scaffolds (Herrmann et al., 2017; Chen et al., 2018). Countless
drugs based on natural products are impressive proof of the
healing power hidden in nature (Dias et al., 2012). For these
reasons, it seems highly advisable to screen newly discovered
natural products for HDAC inhibitory activity to identify new
and superior lead compounds for the development of a new
generation of HDAC inhibitors. Moreover, emerging reports
show that intelligently designed combination therapies with
Frontiers in Pharmacology | www.frontiersin.org 18
common cytostatic drugs can synergistically increase the
efficacy of the inhibitors (Suraweera et al., 2018).

Many of the points discussed for HDACi apply in a similar or
even the same way to DNA methyltransferase inhibitors
(DNMTIs). For example, DNMTIs are most effective in
hematological diseases such as myelodysplastic syndromes,
whereas treatment success in solid tumors is limited (Gurion
et al., 2010). Similar to HDACi, the aim is therefore to use wisely
designed combination treatments to synergistically enhance the
effect of well-established anti-cancer drugs through HDACi
(Gnyszka et al., 2013). This approach is certainly functional, as
shown by the combination with oxaliplatin or doxorubicin (Flis
et al., 2009; Vijayaraghavalu et al., 2013). One problem associated
with the clinical use of classical DNMTIs is that they often
exhibit mutagenic effects, such as 5-azacytidine or zebularine
(Amacher and Turner, 1987; Lee et al., 2004). Here, natural
product-based DNMTIs such as epigallocatechin-3-gallate
appear to be more advantageous, since the latter is not
incorporated into the DNA, but binds directly to the catalytic
region of DNMTs (Fang et al., 2003).

Natural products endowed with DNMTs and HDACs
inhibition functions were reviewed in this article. Indeed, a
wide range of natural compounds from plants, microorganisms,
and marine sponges was presented and their potential to inhibit
DNMTs and HDACs discussed. Furthermore, this study showed
that compounds possessing a strong zinc-binding group are more
promising HDAC inhibitors even though the presence of the
latter is not a prerequisite for HDAC inhibition. Molecular
modeling and docking increasingly shows to be a powerful tool
for studying the interactions between the drug target and its
potential inhibitors, paving the way towards the further
development of novel HDAC and DNMT inhibitors as anti-
tumor agents which could be natural product-inspired. However,
most of the natural products presented showed an indirect effect
and lack isoform selectivity, which may limit their development
into clinical use. The capability to selectively inhibit single HDAC
or DNMT isoforms currently represents a major challenge in the
design of HDAC and DNMT inhibitors. This approach could
represent an opportunity to derive improved agents which could
target specific types of cancer. It is worth to mention that,
combination of HDACs or DNMTs inhibitors with anti-EZH2
could increase their efficacy without overlapping toxicity
(Shahabipour et al., 2017). This implies the identification of
natural products that could target other epigenetic regulatory
enzymes which is beyond the scope of this review.

HDACi are important for innate defense function,
macrophage differentiation, and polarization (Han and Lee,
2009). Indeed, treatment of B16/F10 murine melanoma cells by
the natural HDACi romidepsin showed that HDACi are
promising agents in the human melanoma immunotherapy
pretreatment (Murakami et al., 2008). A study by Cabanel
et al. (2015) showed the importance of TsA in the regulation
of macrophage differentiation and elongation (Cabanel et al.,
2015). Another study also highlighted that TsA treatment
inhibits inflammatory cytokine secretion and improves both
CD1d and class II MHC-mediated antigen presentation. Thus,
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this treatment may enhance the suppression of antitumor NK T
cell responses (Tiper and Webb, 2016). The same study showed
that the restoration of antitumor responses to mantle cell
lymphoma could be improved by treatment with HDACi.
Based on these observations and despite the need of additional
preclinical data to access the efficacy and toxicity of HDACi,
several clinical investigations have started by associating HDACi
with immunotherapeutics for patients with advanced prostate,
renal, or urothelial cell carcinoma (Mazzone et al., 2017).
Another study suggested that SAHA might improve the
activity of the immunotherapeutic avelumab in both
tumor and NK cells (Hicks et al., 2018). It is worth to
mention that SAHA possesses also a hydroxamic acid function
such as trichostatin A indicating that a possible derivatization of
the latter could improve its efficacy. Thus, these studies
suggest that combination of natural HDAC inhibitors with
immunotherapeutics could improve the treatment of cancer.
However, preclinical studies to access the efficacy and toxicity
of this combination are still needed. A particular interest should
be given on class I-specific HDACi, which are believed to provide
a promising future in the cancer treatment (Mazzone et al.,
2017). Indeed, combination of natural selective HDAC inhibitors
might increase the anticancer drug efficacy as demonstrated in
the case of the natural HDAC6-selective inhibitor aceroside VIII
(Ryu et al., 2015) .

However, the multitarget effects of natural products is a serious
limitation of their use in the area of epigenetic drugs. Thus,
chemical derivatization and molecular studies could improve
their effects for a better understanding of their mechanism of
action. On the other hand, the multi-target property of natural
products could be utilized for the treatment of diseases including
cancer, Alzheimer’s disease, and diabetic cardiomyopathy. Indeed,
Frontiers in Pharmacology | www.frontiersin.org 19
promising multi-target molecules have been studied for the
aforementioned diseases (Musso et al., 2015; Badal et al., 2017;
Karuppagounder et al., 2017). In addition, only few virtual
screenings studies have been performed yet and their increase
will provide hope for the discovery of potential DNMT and
HDAC inhibitors. Nonetheless, the structures presented in this
review offer the well-founded basis that screening and chemical
modifications of natural products will in future provide not only
leads to the identification of more specific inhibitors with fewer
side effects, but also important features for the elucidation of
HDAC and DNMT function for cancer treatment.
AUTHOR CONTRIBUTIONS

SA and RM edited and reviewed the manuscript. SA wrote the
first draft of the manuscript. SA, FN-K, FS, ME, AN, and SM
wrote sections of the manuscript. All authors contributed to the
article and approved the submitted version.
ACKNOWLEDGMENTS

SA expresses his gratitude to the Alexander von Humboldt (AvH)
Foundation for a postdoctoral research fellowship. FS cordially
thanks the GRK 2158 (Deutsche Forschungsgemeinschaft) for
financial support. FN-K acknowledges a return fellowship and an
equipment subsidy from the Alexander von Humboldt
Foundation, Germany. FN-K is currently a guest Professor at
TU Dresden, a position funded by the German Academic
Exchange Services (DAAD).
REFERENCES

Ahn, M. Y., Jung, J. H., Na, Y. J., and Kim, H. S. (2008). A natural histone
deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in
human endometrial cancer cells. Gynecol. Oncol. 108, 27–33. doi: 10.1016/
j.ygyno.2007.08.098

Ahn, M. Y., Kang, O. D., Na, J. Y., Yoon, S., Choi, S. W., Kang, W. K., et al. (2012).
Histone deacetylase inhibitor, apicidin, inhibits human ovarian cancer cell
migration via class II histone deacetylase 4 silencing. Cancer Lett. 325, 189–199.
doi: 10.1016/j.canlet.2012.06.017

Akihisa, T., Yasukawa, K., and Tokuda, H. (2003). “Potentially Cancer
Chemopreventive And Anti-Inflammatory Terpenoids From Natural
Sources,” in Studies in Natural Products Chemistry : Bioactive Natural
Products (Part J). Ed. Atta-ur-Rahman, (Elsevier), 73–126.

Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., et al.
(1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases.
J. Biol. Chem. 262, 5592–5595.

Allis, C. D., and Jenuwein, T. (2016). The molecular hallmarks of epigenetic
control. Nat. Rev. Genet. 17, 487–500. doi: 10.1038/nrg.2016.59

Alvarez, M. C., Maso, V., Torello, C. O., Ferro, K. P., and Saad, S. T. O. (2018). The
polyphenol quercetin induces cell death in leukemia by targeting epigenetic
regulators of pro-apoptotic genes. Clin. Epigenet. 10, 1–11. doi: 10.1186/
s13148-018-0563-3

Amacher, D. E., and Turner, G. N. (1987). The mutagenicity of 5-azacytidine and
other inhibitors of replicative DNA synthesis in the L5178Y mouse lymphoma
cell.Mutat. Res./Fundam. Mol. Mech. Mutagenesis 176, 123–131. doi: 10.1016/
0027-5107(87)90259-4
Andriamihaja, M., Chaumontet, C., Tome, D., and Blachier, F. (2009). Butyrate
metabolism in human colon carcinoma cells: implications concerning its
growth-inhibitory effect. J. Cell. Physiol. 218, 58–65. doi: 10.1002/jcp.21556

Auclair, G., and Weber, M. (2012). Mechanisms of DNA methylation and
demethylation in mammals. Biochimie 94, 2202–2211. doi: 10.1016/
j.biochi.2012.05.016

Badal, S. A. M., Aiken, W. D., and Chin, S. N. (2017). Molecular Targets and
Angiogenesis in Renal Cell Carcinoma, A Multitarget Approach: Mini Review.
Curr. Drug Targets 18, 1204–1213. doi: 10.2174/1389450117666160502152518

Bae, J., Kumazoe, M., Fujimura, Y., and Tachibana, H. (2019). Diallyl disulfide
potentiates anti-obesity effect of green tea in high-fat/high-sucrose diet-induced
obesity. J. Nutr. Biochem. 64, 152–161. doi: 10.1016/j.jnutbio.2018.10.014

Baud, M. G. J., Leiser, T., Haus, P., Samlal, S., Wong, A. C., Wood, R. J., et al.
(2012). Defining the mechanism of action and enzymatic selectivity of
psammaplin A against its epigenetic targets. J. Med. Chem. 55, 1731–1750.
doi: 10.1021/jm2016182

Baud, M. G. J., Haus, P., Leiser, T., Meyer-Almes, F.-J., and Fuchter, M. J. (2013).
Highly ligand efficient and selective N-2-(Thioethyl)picolinamide histone
deacetylase inhibitors inspired by the natural product psammaplin A.
ChemMedChem 8, 149–156. doi: 10.1002/cmdc.201200450

Benelkebir, H., Marie, S., Hayden, A. L., Lyle, J., Loadman, P. M., Crabb, S. J., et al.
(2011). Total synthesis of largazole and analogues: HDAC inhibition,
antiproliferative activity and metabolic stability. Bioorg. Med. Chem. 19,
3650–3658. doi: 10.1016/j.bmc.2011.02.024

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242. doi: 10.1093/
nar/28.1.235
August 2020 | Volume 11 | Article 992

https://doi.org/10.1016/j.ygyno.2007.08.098
https://doi.org/10.1016/j.ygyno.2007.08.098
https://doi.org/10.1016/j.canlet.2012.06.017
https://doi.org/10.1038/nrg.2016.59
https://doi.org/10.1186/s13148-018-0563-3
https://doi.org/10.1186/s13148-018-0563-3
https://doi.org/10.1016/0027-5107(87)90259-4
https://doi.org/10.1016/0027-5107(87)90259-4
https://doi.org/10.1002/jcp.21556
https://doi.org/10.1016/j.biochi.2012.05.016
https://doi.org/10.1016/j.biochi.2012.05.016
https://doi.org/10.2174/1389450117666160502152518
https://doi.org/10.1016/j.jnutbio.2018.10.014
https://doi.org/10.1021/jm2016182
https://doi.org/10.1002/cmdc.201200450
https://doi.org/10.1016/j.bmc.2011.02.024
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Akone et al. Natural Products, DNMTs, and HDACs
Bi, Y., Min, M., Shen, W., and Liu, Y. (2018). Genistein induced anticancer effects
on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell
cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 39,
10–16. doi: 10.1016/j.phymed.2017.12.001

Bougdour, A., Maubon, D., Baldacci, P., Ortet, P., Bastien, O., Bouillon, A., et al.
(2009). Drug inhibition of HDAC3 and epigenetic control of differentiation in
Apicomplexa parasites. J. Exp. Med. 206, 953–966. doi: 10.1084/jem.20082826

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68,
394–424. doi: 10.3322/caac.21492

Cabanel, M., Brand, C., Oliveira-Nunes, M. C., Cabral-Piccin, M. P., Lopes, M. F.,
Brito, J. M., et al. (2015). Epigenetic Control of Macrophage Shape Transition
towards an Atypical Elongated Phenotype by Histone Deacetylase Activity.
PloS One 10, e0132984. doi: 10.1371/journal.pone.0132984
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