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Feature extraction of motor imagery electroencephalogram (MI-EEG) has shown good application prospects in the field of
medical health. Also, multivariate entropy-based feature extraction methods have been gradually applied to analyze complex
multichannel biomedical signals, such as EEG and electromyography. Compared with traditional multivariate entropies, refined
composite multivariate multiscale fuzzy entropy (RCmvMFE) overcomes the defect of unstable entropy values caused by the scale
factor increase and is beneficial towards obtaining richer feature information. However, the coarse-grained process of RCmvMFE
is mean filtered, which weakens Gaussian noise and is powerless against random impulse noise interference. *is yields poor
quality feature information and low accuracy classification. In this paper, RCmvMFE is improved (IRCmvMFE) by using
composite filters in the coarse-grained procedure to enhance filter performance. Median filters are employed to remove the
impulse noise interference from multichannel MI-EEG signals, and these filtered MI-EEGs are further smoothed by the mean
filters. *e multiscale IRCmvMFEs are calculated for all channels of composite filtered MI-EEGs, forming a feature vector, and a
support vector machine is used for pattern classification. Based on two public datasets with different motor imagery tasks, the
recognition results of 10×10-fold cross-validation achieved 99.43% and 99.86%, respectively, and the statistical analysis of
experimental results was completed, showing the effectiveness of IRCmvMFE, as well. *e proposed IRCmvMFE-based feature
extraction method is superior compared to entropy-based and traditional methods.

1. Introduction

Brain-computer interface (BCI) is a new type of human-
computer interaction technology that enables the brain to
control external devices [1, 2]. Motor imagery electroen-
cephalogram- (MI-EEG-) based BCI has great prospects in
the field of rehabilitation medical engineering. One of the
key technologies of BCI is the ability to effectively extract
features from complex multichannel MI-EEG signals.

Previous studies focus on time-frequency methods in
MI-EEG feature extraction, including wavelet transform
(WT) [3], discrete WT (DWT) [4], Hilbert–Huang trans-
form (HHT) [3], dual-tree complex WT (DTCWT) [5],
empirical mode decomposition (EMD) [6], and common
spatial pattern- (CSP-) based methods, including CSP, filter
bank CSP (FBCSP), discriminant FBCSP (DFBCSP), sparse

FBCSP (SFBCSP), and spectrally weighted CSP (SWCSP)
[7–9]. With the development of nonlinear dynamics,
entropy-based methods have been widely utilized in the
analysis of biomedical signals. Specifically, the most prev-
alent methods are approximate entropy (ApEn) and sample
entropy (SampEn) because of the power these methods have
to quantify the complexity of a time series [10–12]. Nev-
ertheless, sensitivity to selected parameters will lead to
entropy mutation. To solve this weakness, fuzzy entropy
(FE) was proposed for EEG analysis, where fuzzy mem-
bership functions replace Heaviside functions [13–15]. Re-
search shows that FE alleviates the problem of entropy
mutation; however, these methods analyze at a single scale,
which loses useful information. *erefore, multiscale
SampEn (MSE) [16–19], multiscale FE (MFE) [20, 21], and
improved MFE (IMFE) [22] were put forward to explore
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deeper information. Unfortunately, using larger scale factors
for short time series may cause inaccurate MSEs and MFEs.
To achieve more reliable results, composite MFE (CMFE)
[23, 24] was developed as a rolling bearing fault detection
method.

Although the above univariate methods have shown
good performance, they are only suitable for single-channel
recording analyses. *ey fail to measure multichannel data
synchronously and ignore the dynamic characteristics
across channels [25]. So, SampEn was extended to produce
multivariate SampEn (mvSE) [26] and multivariate MSE
(mvMSE) [26–29] to analyze multichannel signals more
effectively. Considering the disadvantages of SampEn in
mvSE andmvMSE, multivariate FE (mvFE) andmultivariate
MFE (mvMFE) [30, 31] were yielded by replacing SampEn
with FE. Recently, as an improvement of mvMFE, a refined
composite mvMFE (RCmvMFE) was proposed to analyze
fault signals and biomedical signals [32, 33]. In RCmvMFE,
the entropy stability is improved and the signals’ length
sensitivity is reduced. However, the coarse-grained process
of RCmvMFE is a mean filter that smoothens signals but
does not eliminate random impulse noise interference. It is
inevitable to produce high-amplitude electrooculogram and
electromyography interference during the acquisition of MI-
EEG. *is is not conducive to extracting valid feature in-
formation frommultichannel MI-EEG signals. In this paper,
improved RCmvMFE (IRCmvMFE) is developed by com-
bining median [34] and mean filters in the coarse-grained
process to further improve filter effect, i.e., first the median
filter is applied to each channel to remove pulse interference,
and then the mean filter is used for further smoothing.
Subsequently, IRCmvMFE is proposed to extract features
from multichannel MI-EEG signals. *e experimental re-
search shows the effectiveness of IRCmvMFE.

*e rest of the paper is described as follows: Section 2
introduces the process of extracting MI-EEG features using
IRCmvMFE, Section 3 describes the experiments performed,
Section 4 discusses the results, and Section 5 provides the
conclusions.

2. Feature Extraction with IRCmvMFE

By combining median filters and mean filters in coarse-
grained processes, RCmvMFE is improved to produce
IRCmvMFE, which is applied to extract features of MI-EEG.
*e main steps are as follows: preprocessing, optimal channel
selecting, performing multivariate coarse-grained analysis of
preprocessed MI-EEG data, calculating IRCmvMFE, and
constructing a feature vector. *e support vector machine
(SVM) was used to classify the feature vector. *e block
diagram of the proposed method is displayed in Figure 1.

2.1. Preprocessing MI-EEG Signals. For two-class motor
imagery tasks, assume that X0

T,Ci
� [X0

T,Ci
(1), X0

T,Ci
(2), . . . ,

X0
T,Ci

(e)]T represents the ith channel MI-EEG sequence of
the Tth task, where T ∈ 1, 2{ }, i � 1, 2, . . . , p; e and p rep-
resent the sample points and the number of total channels,
respectively. X0

T,Ci
is bandpass filtered to the frequency band

associated with the tasks and is expressed as X1
T,Ci

�

[X1
T,Ci

(1), X1
T,Ci

(2), . . . , X1
T,Ci

(e)]T. *e motor imagery time
period [a, b] is taken as the optimal sampling interval, and
MI-EEG signals in the segment are summarized as X2

T,Ci
�

[X2
T,Ci

(1), . . . , X2
T,Ci

(N)]T, where N � b− a + 1 represents
the sampled MI-EEG points within the optimal sampling
interval.

2.2. Channel Selection. When the brain is engaged in motor
imagery, only parts of channels are activated in the form of
the power spectrum. Extracting the features of all channels
not only increases the computational complexity but also
increases the feature information redundancy and reduces
the classification accuracy [35]. *erefore, the choice of
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Figure 1: Block diagram of the proposed method.
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optimal channels is important. In this paper, the Fisher score
of the average power spectrum of X2

T,Ci
is calculated to select

channels according to the following equation:

F(i) �
P1(i)−P2(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

var P1(i)( 􏼁 + var P2(i)( 􏼁
, (1)

where P1(i) and P2(i) represent the average power spectrum
on the ith channel of class 1 and class 2 motor imagery tasks,
respectively. var() is the variance and F(i) represents the ith
channel Fisher score. *e larger the F(i), the greater con-
tribution of the ith channel. *e signals of p′ channels with
the top F(i) are selected for subsequent research. X2

T,Ci
is

rewritten as XT,Ci
� [XT,Ci

(1), . . . , XT,Ci
(N)]T, where i �

1, 2, . . . , p′, in which p′ stands for the number of selected
channels.

2.3. Coarse-Graining of IRCmvMFE

Step 1. In the coarse-grained process of IRCmvMFE, the
median filter is first performed on XT,Ci

. Supposing the filter
size is j � 2k or j � 2k + 1, the data in the window would be
sorted in ascending order with the filter output being

yT,Ci
(s) � med XT,Ci

(s)􏼐 􏼑

�

XT,Ci
(k + 1), j � 2k + 1,

1
2

XT,Ci
(k) + XT,Ci

(k + 1)􏽨 􏽩, j � 2k,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where s ∈ 1, . . . , N{ } and XT,Ci
(k) means the kth maximum

value in the window.

Step 2. For the scale factor τ, the kth coarse-grained se-
quence on Ci channel of Tth class task is

y
k,τ
T,Ci

(j) �
1
τ

􏽘

j∗τ+k−1

s�(j−1)τ+k

yT,Ci
(s), 1≤ j≤N′, 1≤ k≤ τ, (3)

where N′ � int[N/τ] represents the sample points of the
coarse-grained sequence. *erefore, τ multivariate coarse-
grained sequences are obtained and described as Y1,τ

T,Ci
�

[y1,τ
T,Ci

(1), y1,τ
T,Ci

(2), . . . , y1,τ
T,Ci

(N′)], Y2,τ
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(N′)].

2.4. IRCmvMFE Calculation

Step 1. *e multivariate coarse-grained sequence Yk,τ
T,Ci

is
executed for multivariate embedded reconstruction, with the
multivariate composite delay vectors Zk,τ

T,m(i) calculated as

Z
k,τ
T,m(i) � 􏼔y

k,τ
T,C1

(i), . . . , y
k,τ
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i + m1 − 1( 􏼁λ1( 􏼁,
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p′
(i), . . . , y

k,τ
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p′
i + mp′ − 1􏼐 􏼑λp′􏼐 􏼑􏼕,

(4)

where i ∈ [1, N′ − n] and M � [m1, m2, . . . , mp′] and
λ � [λ1, λ2, . . . , λp′] are the embedding dimension vector
and time delay vector, respectively. Additionally,
m � 􏽐

p′
i�1mi and n � max M{ } × max λ{ }.

Step 2. *e distance of any twomultivariate composite delay
vectors Zk,τ

T,m(i) and Zk,τ
T,m(j) is computed in the following

equation:

d Z
k,τ
T,m(i), Z

k,τ
T,m(j)􏽨 􏽩 � d

ij,k,τ
T,m � max􏼚

􏼌􏼌􏼌􏼌􏼌􏼌y
k,τ
T,Cg

(i + l− 1),

y
k,τ
T,Ch

(j + l− 1)

􏼌􏼌􏼌􏼌􏼌􏼌, l � 1, 2, . . . , m􏼛,

(5)

where i, j ∈ [1, N′ − n], i≠ j, and g, h ∈ [1, p′].

Step 3. Given a threshold r, suppose the fuzzy membership
function is μ(x, r) � e−d

2/r, the similarity D
ij,k,τ
T,m between

Zk,τ
T,m(i) and Zk,τ

T,m(j) is

D
ij,k,τ
T,m � μ d

ij,k,τ
T,m , r􏼐 􏼑 � exp

− d
ij,k,τ
T,m􏼐 􏼑

2

r
⎛⎜⎝ ⎞⎟⎠. (6)

Step 4. *e average membership grade ϕk,τ
T,m(r) can be

obtained using the following equation:

ϕk,τ
T,m(r) �

1
N′ − 1

􏽘

N′−n

i�1

􏽐
N′−1
j�1,j≠iD

ij,k,τ
T,m

N′ − n− 1
. (7)

Step 5. Repeat the above steps, extend the dimension of
the multivariate composite delay vector from m to m + 1
and derive ϕk,τ

T,m+1. For each Zk,τ
T,m(i), we get τ ϕk,τ

T,m(r) and
τ ϕk,τ

T,m+1(r). *e average ϕk,τ
T,m(r) and ϕk,τ

T,m+1(r) are calcu-
lated. *e definition of IRCmvMFE is as follows:

IRCmvMFE XT,Ci
, M, τ, n, r􏼐 􏼑 � −ln

ϕτ
T,m+1(r)

ϕτT,m(r)
⎡⎣ ⎤⎦. (8)

*e procedure for calculating IRCmvMFE is summa-
rized in Algorithm 1.

2.5. Determination of a Maximum Scale Factor. As the
number of scale factors increases, multivariate coarse-
grained sequences become smoother. Scale factors that
are too large omit useful information and reduce classifi-
cation accuracy. *erefore, the impact on sequence
smoothness and classification accuracy should be considered
comprehensively to determine its maximum scale factor
τmax.

2.6. Construction of a Feature Vector. For τ ∈ [1, τmax],
IRCmvMFE at τ scale in the Tth class task, i.e., IRCmvτT, is
estimated and combined to form the feature vector FT:

FT � IRCmv1T, IRCmv2T, . . . , IRCmvτmax
T􏽨 􏽩 ∈ R

τmax . (9)
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*e feature vectors of the two tasks are fused in parallel
to obtain the feature vector of MI-EEG:

F �
F1

F2
􏼢 􏼣 ∈ R

2×τmax . (10)

3. Experimental Research

3.1. Data Description and Preprocessing. MI-EEG data were
obtained from dataset III in the BCI Competition II [36] and
dataset IVa in the BCI Competition III [37]. MI-EEG signals
on channels C3, Cz, and C4 were recorded in dataset III of
BCI Competition II, where the data were from a healthy
subject who imagined left-right hand movement. Left- and
right-motor imagery tasks were each performed 140 times
for a total of 280 experimental trials. *e signals were
sampled at 128Hz and filtered to 0.5–30Hz. *e MI-EEG
collection timing scheme is shown in Figure 2(a).*e subject
was at rest for the first 2 s, and the corresponding motor
imagery task was completed according to the screen prompts
from 3 s to 9 s. To better distinguish the two-class tasks, this
paper used the sampling interval [451, 900].

*e dataset IVa of BCI Competition III recorded the MI-
EEG signals of five healthy subjects using 118 channels
during right-hand (RH) and right-foot (RF) motor imagery
tasks. *e original sampling rate was 1000Hz, but we
downsampled these data to 100Hz. *e subjects performed
the corresponding imaginary movement according to the
prompts in the first 3.5 s and then rested for a random epoch
between 1.75 s and 2.25 s. *e timing scheme of MI-EEG
collection during the right-hand-foot motor imagery task is
shown in Figure 2(b). Each subject performed 280 trials,
with 140 each of the RH and RF motor imagery tasks. In this
paper, MI-EEG related to mu rhythm (8–13Hz) and beta
rhythm (14–32Hz) related to motor imagery tasks were
selected, i.e., the original MI-EEG signals were preprocessed
by a bandpass filter of 8–32Hz. *e data between 0.5 s and
3.5 s were used for subsequent experimental research.

3.2. Channel Selection. Channel selection directly affects the
quality of feature information and classification accuracy. It

is essential to select the optimal channels before extracting
MI-EEG features. *ere was a close relationship between the
signals on channels C3, Cz, and C4 in the left-right-hand
motor imagery task, so the data of these three channels were
used for feature extraction.When RH and RFmotor imagery
tasks were conducted in dataset IVa from BCI Competition
III, the Fisher Score of each channel was calculated by
equation (1). *e scores of different subjects are shown in
Figure 3.

For each subject, the score of each channel is different
and for different subjects, scores from the same channel are
different. *us, the optimal channels for each subject are
different due to individual differences.*e channels with the
top three Fisher scores can be used as the optimal channels.
*e detailed information is shown in Table 1.

3.3. Comparison of Coarse-Grained Sequences between
IRCmvMFE and RCmvMFE Methods. To confirm the
effectiveness of IRCmvMFE in extracting MI-EEG fea-
tures, the coarse-grained processes of RCmvMFE and
IRCmvMFE were compared. *e relevant parameters
were selected as follows: mk � 2, λk � 1, r � 0.2SD, and
τ � 10, where SD represents the standard deviation of
XT,Ci

. According to Table 1, the channel k with the highest
Fisher score of each subject was selected. *e experimental
process was as follows: when a motor imagery task was
performed, at τ scale, the first j(0≤ j≤N− τ) points of
XT,k were removed in turn. *e RCmvMFEs of the
remaining points were calculated separately, and they were
composed of time series recorded as RCT,k,i � [RCT,k,i(1),

RCT,k,i(2), . . . ,RCT,k,i(N− τ + 1)], where T ∈ 1, 2{ }, i ∈
[1, ne], and ne represents the number of experiments. *e
RCT,k,i of ne experiments were superimposed and averaged
to obtain the average time series RCT,k. *e average
time series of IRCmvMFE was obtained the same way as
IRCT,k. When imaging left-right-hand motor imagery,
training set data were used for analysis, i.e., ne � 70.
Similarly, ne was selected as 140 when the RH and RFmotor
imagery were performed.*e amplitude of the original MI-
EEG signals and coarse-grained sequences of RCmvMFE
and IRCmvMFE during left-right-hand motor imagery are

Input: Channels selected data XT,Ci

(1) Coarse-graining of IRCmvMFE
Step 1. Calculate the output of median filter on XT,Ci

: yT,Ci

Step 2. Calculate the output of mean filter on yT,Ci
: yk,τ

T,Ci

(2) IRCmvMFE calculation
Step 1. Set embedding dimension m and scale factor τ, calculate the multivariate reconstruction vectors: Zk,τ

T,m

Step 2. For k� 1 to τ
Calculate the distance and the similarity of Zk,τ

T,m(i) and Zk,τ
T,m(j) using equations (5) to (6)

Calculate ϕk,τ
T,m(r) by equation (7)

End
Step 3. Repeat the above steps, extend the dimension from m to m + 1, and calculate ϕk,τ

T,m+1
Step 4. Set ϕk,τ

T,m(r) � 􏽐
τ
k�1ϕ

k,τ
T,m(r)/τ and ϕk,τ

T,m+1(r) � 􏽐
t
k�1ϕ

k,τ
T,m+1(r)/τ, and calculate IRCmvMFE

Output: IRCmvMFE at τ scale

ALGORITHM 1: *e procedure for calculating IRCmvMFE.
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displayed in Figure 4. Similarly, the experimental results
from imaging right-hand-foot movement are shown in
Figure 5.

It can be seen from Figure 4 that the original MI-EEG
signals had larger fluctuations, which was obviously im-
proved after the coarse-grained process of both RCmvMFE
and IRCmvMFE; and the smoothness of IRCmvMFE was
better than RCmvMFE. In Figure 5, there are different in-
tensity impulse noise interferences for different subjects.*e
coarse-grained sequences of both RH and RF motor imagery
tasks using the RCmvMFE and IRCmvMFE of each subject
changed with the fluctuations of the original MI-EEG but
oscillated more smoothly. For subject “aw,” the impulse
noise is not obvious, and the coarse-grained sequence of
IRCmvMFE had larger fluctuations than that of RCmvMFE.
But the intensity of impulse noise interference is higher for
other subjects. Both RCT,k and IRCT,k showed better
smoothness, and IRCT,k was superior to RCT,k for rapid MI-
EEG changes. *e reason is that the coarse-grained process
of RCmvMFE is equivalent to a mean filter, which has the
effect of low-pass filtering and smoothing and can remove
some random interference. However, it is helpless against
impulse noise caused by sudden factors such as eye-
movements, blinks, and motion. In the coarse-grained
IRCmvMFE, the median filter is assigned to remove the
impulse noise interference, and then the filtered signals are
smoothed by a mean filter.

3.4. Selection of Parameters in IRCmvMFE. *e parameter
selection will affect the estimate of IRCmvMFE. According
to equation (8), the estimation of IRCmvMFE is not
only related to the preprocessed MI-EEG but also
involves selecting an embedding dimension vector M �

[m1, m2, . . . , mp′], time delay vector λ � [λ1, λ2, . . . , λp′],
threshold r, and scale factor τ. *e selection of parameterM
was similar to reference [32], i.e., mk � 2. Parameter λ does
not have any proven standards, so for simplicity, λk was
selected as 1. *e threshold r was determined as r � 0.2SD.

In addition, the selection of τ influenced the filter effect
in the coarse-grained process of MI-EEG and affected the
extracted features and the classification results in turn. *e
larger the τ, the larger the calculation and the better the
recognition. In contrast, a smaller τ resulted in poor filter
performance [34]. When τ ∈ [1, 75], the IRCmvMFEs with
imaging left-right-hand movements were estimated and
then classified by SVM. Gaussian kernel function was
employed in this paper, and SVM optimized by grid search.
When τ ∈ [1, 45], the same experiment was performed
with right-hand-foot motor imagery tasks. *e 10×10-fold

cross-validation (CV) was used to eliminate the contingency
in the feature extraction process of MI-EEG. *e average
classification accuracy of the 10×10-fold CV is shown in
Figure 6.

In Figure 6(a), the classification results gradually in-
creased as the scale factor τ increased. When τ was from 55
to 75, the classification accuracy tended to be stable and
close to 100%, and the highest recognition was obtained at
65 scale. *erefore, the maximum τ about left-right-hand
motor imagery was selected as 65. In Figure 6(b), with the
increased τ, the average recognition rate of each subject
first increased and then later decreased. In this paper, the
τmax values of subjects “aa”, “al”, “av”, “aw,” and “ay”
during right hand-foot-motor imagery were chosen as 41,
37, 33, 38, and 39, respectively. And, τmax is related to the
mathematical model of the coarse-grained process of
IRCmvMFE. *ere is a significant difference in τmax during
different types of two-class motor imagery tasks, while the
difference between multiple subjects during the same type
of tasks is not obvious.

3.5. Comparison of Multiple Entropy-Based Feature Extrac-
tion Methods. In this section, the comparative study of
IRCmvMFE and various entropy-based feature extraction
methods was conducted. To make the comparison process
more objective, the same dataset was selected as reference
[13, 22], i.e., dataset III from BCI Competition II, and SVM
was used for classification. *e classification result of IMFE
was derived from [22], and the related parameters of other
entropy-based methods were selected as references [13]. *e
average recognition results of 10×10-fold CV and standard
deviations are displayed in Figure 7.

In Figure 7, the classification result of MFE was higher
than SampEn, FE, and MSE. Because the fuzzy membership
function was used to enhance the stability of MFE, richer
feature information from the multiscale was collected. At the
same scale, the information of multiple coarse-grained se-
quences was integrated by CMFE, yielding a slightly better
result. Based on the parameters’ independent optimization
strategy, the preferred parameters were used by IMFE to
extract features from the MI-EEG, and the recognition
accuracy was further improved. Despite the results of mvSE,
mvFE, and mvMSE being poor, mvMFE, RCmvMFE, and
IRCmvMFE showed the advantages of multivariate entropy
methods over traditional univariate entropies, both in terms
of classification accuracy and standard deviation. *is was
mainly because these feature extraction methods evaluated
the multivariate complexity of multichannel data and
expressed the dynamic relationships and synchronizations
across channels.

IRCmvMFE, RCmvMFE, and mvMFE methods dis-
played superiority on dataset III from BCI Competition II.
To further illustrate the improvement of IRCmvMFE, a
comparative study of these three methods was performed
based on dataset IVa and using SVM for classification. *e
classification results with 10×10-fold CV are shown in Ta-
ble 2. For each subject, the recognition rates obtained by
using RCmvMFE to extract features of MI-EEG were higher

Table 1: *e optimal channel combination.

Subjects Optimal channel combination
“aa” 60, 70, 69
“al” 52, 23, 61
“av” 31, 95, 102
“aw” 56, 65, 75
“ay” 60, 52, 43

6 Computational Intelligence and Neuroscience
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Figure 4: Comparison of MI-EEG and the coarse-grained sequences using RCmvMFE and IRCmvMFE during (a) left-hand motor imagery
task and (b) right-hand motor imagery task.
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Figure 5: Continued.
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Figure 5: Comparison of MI-EEG signals and the coarse-grained sequences by RCmvMFE and IRCmvMFE during RH and RF motor
imagery tasks. (a) Subject “aa” with RHmotor imagery. (b) Subject “aa” with RFmotor imagery. (c) Subject “al” with RHmotor imagery. (d)
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than those of mvMFE because the multivariate feature of
RCmvMFEwas considered at the same scale, and the defect of
unstable entropy values, i.e., coarse-grained time series
shortening with scale factor increases, was overcome.
Moreover, a composite filter technique was applied in the
coarse-grained process of IRCmvMFE to eliminate burst-like
impulse noise and the Gaussian noise of the MI-EEG, which
produced better quality information. For different subjects,
IRCmvMFE achieved better recognition accuracy and a
smaller standard deviation than RCmvMFE, illustrating the
stability and superiority of IRCmvMFE. Further, according to
Figure 5, the impulse noise interference was not obvious for
subject “aw,” and the recognition result by IRCmvMFE was
slightly better than RCmvMFE. However, there was greater
impulse noise interference for most subjects (“aa,” “al,” “av,”
“ay”), after using IRCmvMFE to enhance the filter effect, the
recognition results were obviously improved.

3.6. Statistical Analysis. In this section, statistical analysis
was performed to further describe the development of
IRCmvMFE. *e kappa coefficient, which was designed to
measure the classification precision and the comparison of
performance in multiclass tasks, was made fairer. *is
method is a common indicator for evaluating the perfor-
mance of BCI systems [38, 39]. *e calculation of κ co-
efficient was expressed as

κ �
p0 −pe

1−pe

, (11)

where p0 represents the classification accuracy and pe means
the probability of opportunity consistency. For a two-class task,
if the number of samples across classes was equal, then the value
of pe was 0.5. Using equation (11), the mean kappa coefficients
of IRCmvMFE, RCmvMFE, and mvMFE with 10×10-fold
CV were calculated. *e results are shown in Table 3.
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Figure 6: Effects of changing τ on the classification results during (a) left-right-handmotor imagery and (b) right-hand-foot motor imagery.
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Comparing the mean kappa values, the results of MI-
EEG feature extraction from each subject was highest when
using IRCmvMFE; this result revealed that IRCmvMFE had
better consistency than those of RCmvMFE and mvMFE.

3.7. Comparison of Multiple Traditional Feature Extraction
Methods. A variety of traditional feature extractionmethods
[3–9] were compared with the method presented in this
paper, using SVM as a classifier. In Table 4, the top clas-
sification results and average classification of 10×10-fold
CV of referenced feature extraction methods [3–7] on BCI
competition II are displayed. IRCmvMFE achieved the
highest classification accuracy over the referenced methods,
and its 10×10-fold CV results were also better; it also
showed the ability of IRCmvMFE to quantify the complexity
of multichannel signals and implied its superiority in
extracting features from MI-EEG signals.

*e CSP-based feature extraction methods have been
extensively studied on BCI competition III. *e experimental

results of 10×10-fold CV with CSP, filter bank CSP (FBCSP),
discriminant FBCSP (DFBCSP), sparse FBCSP (SFBCSP),
and spectrally weighted CSP (SWCSP) methods were from
references [8, 9]. *e method presented in this paper was
compared with these methods, and the recognition rates
are shown in Table 5. *e results of CSP-based feature ex-
traction were lower than those of IRCmvMFE. CSP-based
methods only considered the spatial characteristics of
MI-EEG signals, ignoring the features in other domains.
IRCmvMFE effectively extracted nonlinear dynamic features
of MI-EEG, correctly analyzed multichannel signals, and had
good applicability in multiple subjects.

4. Discussion

In this paper, IRCmvMFE was proposed as a feature ex-
traction method for MI-EEG signals. In IRCmvMFE, a
composite filter technique was applied to improve the
coarse-grained process of RCmvMFE, which eliminated

Table 2: Comparison of average recognition rates with 10×10-fold CV (%) of multivariate entropy-based feature extraction methods.

Methods
Subjects

Average results (%)
“aa” “al” “av” “aw” “ay”

mvMFE 75.54± 1.70 86.00± 0.98 74.46± 1.54 84.07± 1.52 79.32± 1.24 79.88± 1.40
RCmvMFE 93.82± 1.48 98.46± 0.61 95.86± 1.01 98.79± 0.72 97.04± 0.79 96.97± 0.92
IRCmvMFE 99.39± 0.38 99.71± 0.15 98.61± 0.62 99.61± 0.26 99.82± 0.35 99.43± 0.35

Table 3: Kappa coefficients of multivariate entropy-based methods.

Methods
Subjects

Mean
“aa” “al” “av” “aw” “ay”

mvMFE 0.5108 0.7200 0.4928 0.6814 0.5864 0.5983
RCmvMFE 0.8764 0.9692 0.9172 0.9794 0.9408 0.9366
IRCmvMFE 0.9928 0.9942 0.9722 0.9942 0.9986 0.9904

Table 4: Comparison of multiple traditional feature extraction methods on BCI competition II.

Reference number Methods Top classification rates (%) Average classification rates (%)
[3] WT 83.57 —
[3] HHT 87.86 —
[4] DWT 96.06 —
[5] DTCWT 91.07 —
[6] EMD 99.48 —
[7] CSP 82.86 —
*is paper IRCmvMFE 100 99.86
Note: “—” represents that average recognition rate of 10×10-fold CV is not given in the reference.

Table 5: Comparison with multiple CSP-based feature extraction methods in BCI competition III.

Reference number Methods
Subjects

Average results (%)
“aa” “al” “av” “aw” “ay”

[8] CSP 79.89 97.89 70.39 92.14 92.14 86.67
[8] FBCSP 90.39 97.82 72.54 97.21 94.54 90.50
[8] DFBCSP 90.32 98.46 75.14 97.82 95.29 91.40
[8] SFBCSP 91.54 98.57 77.43 97.03 94.69 92.05
[9] SWCSP 94.2 99.2 78 97.7 95.6 93.0
*is paper IRCmvMFE 99.39 99.71 98.61 99.61 99.82 99.43
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impulse noise interference due to random factors, produced
smoother MI-EEG time series, and enhanced the filter re-
sults. *e optimal channels and the optimal parameters
were selected to calculate IRCmvMFE for each subject
when imaging left-right-hand or right-hand-foot move-
ment. Multiscale IRCmvMFEs were constructed as a feature
vector. Entropy-based and traditionally referenced feature
extraction methods were compared on two public datasets.
*e kappa coefficients of IRCmvMFE, RCmvMFE, and
mvMFE were calculated for statistical analysis. *e results
implied the superiority and applicability of IRCmvMFE for
the analysis of two-class motor imagery tasks. In the future,
we will continue to focus on the research of multiclass motor
imagery tasks.

5. Conclusions

A novel nonlinear dynamics method based on RCmvMFE,
called IRCmvMFE, was introduced in this study. *is
method provides a potential tool for the nonlinear dynamic
analysis of multichannel MI-EEG signals. RCmvMFE was
developed using a composite filter technique in the coarse-
grained process, which effectively removes impulse noise
interference, better reflects the dynamic correlations both
within and across channels, and is more closely matched the
nonlinear and time-varying characteristics of MI-EEG and
produced better features and classification accuracy.
IRCmvMFE was applied to the analysis of multichannel MI-
EEG signals and was compared to other commonly used
feature extraction methods. IRCmvMFE yielded the highest
classification results and improved stability; it also displayed
the applicability of IRCmvMFE for MI-EEG feature ex-
traction and provided a useful tool for the analysis of other
complex, two-class biological signals.

Data Availability

Two previously reported datasets were used to support this
study and are available at http://bbci.de/competition/ii/ and
http://www.bbci.de/competition/iii. *ese datasets are cited
at relevant places within the text as references [36, 37].
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