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Abstract: Since the publication of one of the first studies using 2D gel electrophoresis by Patrick
H. O’Farrell in 1975, several other studies have used that method to evaluate cellular responses
to different physicochemical variations. In environmental microbiology, bacterial adaptation to
cold environments is a “hot topic” because of its application in biotechnological processes. As in
other fields, gel-based and gel-free proteomic methods have been used to determine the molecular
mechanisms of adaptation to cold of several psychrotrophic and psychrophilic bacterial species.
In this review, we aim to describe and discuss these main molecular mechanisms of cold adaptation,
referencing proteomic studies that have made significant contributions to our current knowledge
in the area. Furthermore, we use Exiguobacterium antarcticum B7 as a model organism to present
the importance of integrating genomic, transcriptomic, and proteomic data. This species has been
isolated in Antarctica and previously studied at all three omic levels. The integration of these data
permitted more robust conclusions about the mechanisms of bacterial adaptation to cold.
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1. Introduction

One of the first omic studies performed and published was the 2D gel electrophoresis (2DE) of
Escherichia coli cultures by Patrick H. O’Farrell in 1975 [1]. Thirteen years later, the development of
two ion sources for mass spectrometry—matrix-assisted laser desorption/ionization (MALDI) and
electrospray ionization (ESI)—allowed the identification of proteins extracted from 2DE spots [2,3].
Many years later, the development of next-generation sequencing (NGS) elevated the importance
of omics sciences and led to the preparation of an essential database of gene sequences to assist
proteomic approaches. Several studies in the environmental microbiology field have used 2DE and
other proteomic techniques to answer questions about microbial adaptation to different environmental
variables. In this context, bacterial adaptation to cold environments is a “hot topic” because of its
application in biotechnological processes.

Several microorganisms have the ability to tolerate extreme environmental conditions, which
may be essential for their survival [4]. Antarctica is one of the most extreme environments on the
planet, and microbial habitats in this region include marine waters, air, snow, glacial ice, surface
soils, and permafrost. Psychrophilic and psychrotrophic organisms that inhabit this polar region
are constantly exposed to variations in temperature, desiccation, high or low levels of salinity or
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pH, prolonged periods in the absence of light during the winter, and high levels of ultraviolet
(UV) radiation.

To cope with those environmental stresses and to survive and grow in low-temperature
environments, those microorganisms exhibit several mechanisms of physiological adaptation, which
are not ubiquitous in other bacteria. These mechanisms include (i) the increased fluidity of cell
membranes; (ii) a reduced freezing point of the aqueous phase of the cytoplasm and stabilization
of macromolecules; (iii) cellular responses to temperature decreases through cold shock and cold
acclimation proteins (CSPs and CAPs, respectively); (iv) protection against reactive oxygen species
(ROS) through catalases, peroxidases, superoxide dismutase, and oxidoreductases; (v) and the
maintenance of catalytic efficiency in the cold [5].

The genus Exiguobacterium comprises species that have been isolated from several habitats with a
wide temperature range (from −12 ◦C to 55 ◦C) including glacial ice, hot springs, the rhizosphere of
plants, Siberian permafrost, and tropical and temperate soils [6]. This genus harbors psychrotrophic,
mesophilic, and moderate thermophilic species and strains with biotechnological, industrial,
bioremediation, and agricultural properties of interest [7]. Currently, there are four species of this
genus whose genomes are completely sequenced including Exiguobacterium antarcticum B7 and draft
genome sequences for other Exiguobacterium strains [8–11].

Recent works using E. antarcticum B7 demonstrated the importance of combining different
molecular approaches to better understand bacterial adaptation to cold [12–14]. System biology
analyses using the transcriptome data of E. antarcticum B7 identified a potential change in the metabolic
pathway of fatty acids in response to cold [13]. Thus, genomic, transcriptomic, proteomic, and other
omic technologies generate a large quantity of data that can be used and integrated to better formulate
hypotheses about the mechanisms of microbial adaptation.

In this review, we aim to describe and discuss the main molecular modifications that occur in
bacterial cells when exposed to low temperatures and the importance of omics technologies in this field.
Furthermore, we use Exiguobacterium antarcticum B7 as a model organism to present the importance of
integrating genomic, transcriptomic, and proteomic data to allow more robust conclusions about the
mechanisms of bacterial adaptation to cold.

2. Mechanisms of Bacterial Adaptation to Cold

2.1. Chemical Modification of the Cellular Membrane

The cell membrane of prokaryotes becomes more rigid in low temperatures, and some chemical
changes occur in the membrane fatty acids to prevent cellular damage. New lipid molecules are
synthesized or modified to produce lipids with a low gel-liquid crystalline phase transition to maintain
membrane fluidity [15]. The main changes observed in the membrane fatty acids include an increase in
the number of unsaturations and methyl groups, a decrease in the chain length, and an increased rate
of anteiso chemical ramifications compared to the iso ramifications [15]. This process of membrane
adaptation is commonly termed homeoviscous adaptation [16]. Polyunsaturated fatty acids (PUFAs)
have a much lower melting temperature compared to monounsaturated fatty acids. Thus, PUFAs
are responsible to maintain membrane fluidity even in temperatures below 0 ◦C. The unsaturated
branched-chain fatty acids are generated by anaerobic (de novo synthesis) or aerobic pathways
(post-synthesis modification) [15].

An anaerobic pathway is commonly found in Gram-positive bacteria of the Bacillales order, where
unsaturated branched-chain fatty acids are synthesized from simpler molecules such as acetyl-CoA [17].
First, acetyl-CoA is converted to malonyl-CoA by acetyl-CoA caboxylase and subsequently linked to
an acyl carrier protein (ACP), forming malonyl-ACP. This molecule undergoes successive rounds of
elongation of its fatty acid chain through a cyclic pathway whose reactions are catalyzed by enzymes
encoded by the genes fabF, fabG, fabI, and fabH. The newly synthesized fatty acid molecule is then
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linked to glycerol-3-phosphate to form phosphatidic acid, which is a key intermediate molecule of all
membrane glycerolipids [17].

In the aerobic pathway, the unsaturations are introduced directly into the membrane
phospholipids by desaturase enzymes through dehydrogenation reactions. In Bacillus subtilis,
the expression of ∆5-fatty acid desaturase is activated by a two-component system called
DesR-DesK [18]. It has been suggested that a change in membrane fluidity caused by low temperatures
result in conformational changes in DesK, triggering autokinase activity [19]. Once activated,
DesK phosphorylates DesR, which binds to DNA, inducing the expression of desaturase genes [20,21].

Omic studies have allowed a better understanding of the microbial cold adaptation
mechanisms through the identification of differentially expressed proteins. In a genomic study of
Colwellia psychrerytharea the proteins involved in the synthesis, ramification, and cis-isomerization of
polyunsaturated fatty acids were described [22]. Subsequently, the authors identified differentially
expressed genes of polyunsaturated fatty acid synthases (pfaC, pfaA, and pfaD) [23]. To date, these
synthase enzymes have been described only in marine bacteria [23,24]. In Sphingopyxis alaskensis,
the enzymes involved in the de novo synthesis of fatty acids were described using quantitative
proteomic approaches [25]. However, it was not possible to determine whether the bacterium produces
new fatty acid chains or desaturates the existing membrane lipids. Recent studies have shown that
two psychrotrophic species—Exiguobacterium sibiricum 255-15 and Psychrobacter arcticus 273-4—repress
the expression of their genes associated with fatty acid biosynthesis while upregulating the genes
associated with desaturation at low temperatures [9,26].

Interestingly, E. sibiricum 255-15 exhibited an increase in the expression of genes involved
in peptidoglycan biosynthesis. An increase in cell wall density can protect bacteria against cell
disruption that may be caused by ice formation and osmotic pressure at low temperatures [9].
The same behavior was observed in Planococcus halocryophilus Or1 [27]. In contrast, other studies have
demonstrated that the species P. arcticus represses the expression of genes involved in peptidoglycan
biosynthesis and enhances the expression of genes involved in the autolytic cleavage of the cell
wall [26]. In Sphingopyxis alaskensis, a high abundance of proteins involved in cell wall biogenesis
was described at 10 ◦C including a membrane structural lipoprotein OmpA which acts in the
optimization of the structure and function of the membrane [25]. Recently, a transcriptomic analysis of
Listeria monocytogenes cultivated under low temperatures and osmotic stress revealed the upregulation
of genes associated with the biosynthesis of peptidoglycan and fatty acid molecules [28].

It is also important to note that the activity of membrane carriers is directly influenced by the
lipidic state of the membrane [29]. The transport and diffusion through the membrane are also
compromised at low temperatures. To balance this deficit, proteins of the transport system are
upregulated. Despite the different mechanisms observed in the Bacteria domain, the molecular
modifications at low temperatures have one single purpose: increase the number of membrane
polyunsaturated branched-chain fatty acids to maintain membrane fluidity and the correct transport
and diffusion of substances through this important biological barrier.

2.2. Cold-Adapted Enzymes

Microbial adaptation to extreme temperatures requires the evolution of enzymes to work with a
high catalytic efficiency under these extreme conditions. Such extremophilic enzymes are valuable tools
for studying the relationships between protein stability, dynamics, and function [30]. Low temperatures
markedly reduce the kcat of nearly all enzymatic reactions in a cell [31]. However, because this may not
seem to be a significant barrier to microbial physiological processes, it is very clear that psychrophilic
and psychrotrophic enzymes have adapted to efficiently operate at low temperatures. This enzymatic
efficiency depends on the ratio between Kcat/Km. Kcat measures how many substrate molecules
are converted in products in a unit of time under optimal catalytic conditions. The Kcat constant is
commonly called the “turnover number.” The constant Km measures the substrate concentration that
drives the reaction to half of its maximum velocity.
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A high value of Kcat (fast turnover) and a low value of Km (high affinity for a given substrate)
increase the enzymatic efficiency. This enzymatic efficiency is directly dependent on the conformational
dynamics of the enzyme. Using proteomic, molecular modeling, X-ray crystallography, and Nuclear
Magnetic Resonance (NMR), it was observed that a low level of conformational stability allows
cold-adapted enzymes to have high rates of enzymatic turnover at low temperatures [5,32,33].
These analyses led to the concept of “flexibility”, which describes the capacity of an enzyme to
exhibit increased catalytic activity due to the loss of conformational stability. High flexibility occurs
as a result of a reduction in the number of chemical interactions between the amino acids of the
protein. This low molecular rigidity allows better complementarity between the active site and the
substrate at a low energy cost. Many chemical factors of the enzyme contribute to increased catalysis
in cold, including a decrease in the hydrophobicity of the protein core, a decrease in the number of
aliphatic amino acids and protein residues forming salt bridges, and increased entropy. Not all of
these characteristics are present in the same cold-adapted enzyme, but this list represents some of the
changes observed by comparing psychrophilic enzymes to their mesophilic counterparts [34,35].

Amino acid composition seems to be an important characteristic to cold adaptation in several
microorganisms. An α-amilase from the psychrophilic ciliated protozoon Euplotes focardii showed large
modifications in amino acid composition when compared to an α-amilase of the mesophilic congeneric
species Euplotes crassus. This modification consequently alters the types of intramolecular and surface
chemical bonds [36]. Psychrophilic enzyme of E. focardii avoided charged, aromatic, and hydrophobic
residues on its surface [36]. The genome of Psychrobacter arcticus 273-4 shows a statistically significant
modification of amino acid composition compared to the mesophilic microorganisms, which can
facilitate the flexibility of the proteins at low temperatures and consequently maintain cell viability
in cold habitats [35]. Another example of altered amino acid composition is described in the genus
Vibrionaceae. The psychrophilic species of the genus have proteins with a reduced number of proline
residues [37]. Proline decreases the flexibility of the protein due to the rigidity of its nitrogen–carbon
bond [38]. Thus, proline substitution in psychrophilic proteins increases flexibility of the molecule and
consequently decreases the energy required to interact with the substrate. Arginine is also considered
an amino acid that promotes structural rigidity since it forms salt bridges and hydrogen bonds with
side chains of the protein structure [39]. A low amount of arginine has been observed in a thermolysin
of the psychrophilic Antarctic bacterium [39].

2.3. Cold Shock and Cold Acclimation Proteins

One of the most prominent responses of microorganisms to cold environments is the expression of
cold shock or cold acclimation proteins. It is important to note that psychrophilic and psychrotrophic
as well as mesophilic and thermophilic microorganisms express cold shock proteins to neutralize the
effects of temperature reduction. A cold shock response occurs when the microorganism is transferred
from an optimal growth temperature to a cold temperature, triggering an immediate and transient
molecular response. However, the acclimation process occurs when the bacteria remain exposed to
cold for a long period, leading to a late and continuous molecular response [40]. CSPs are expressed by
homologous genes that exhibit RNA chaperone activity and thus act to destabilize secondary structures
of RNA erroneously formed due to exposure to cold. The activity of these proteins maintains the
correct flux of the transcription and translation process in prokaryotes [41].

The first bacterial cold shock protein reported was CspA of Escherichia coli [42]. Subsequently,
several other CSPs were described in a large range of Gram-positive and Gram-negative bacteria.
In E. coli, cold shock proteins can be divided into two major groups: I and II. CSPs belonging to group I
(CspA, CspB, CspG, CspI, CsdA, RbfA, NusA, and PNPase) are drastically induced at low temperatures
compared to the CSPs of group II (RecA, IF-2, H-NS, GyrA, Hsc66, and HscB). CspA, CspB, CspG, and
CspI act as RNA chaperones [41]. After cold shock, the expression of CSPs of group I is dramatically
decreased while other proteins are expressed during the acclimation phase to maintain cell function.
CsdA is a DEAD-box RNA helicase that increases septation, resulting in the formation of coccobacilli
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shape at low temperatures [43]. CsdA also acts as a RNA chaperone [43]. RbfA is a ribosome binding
factor that is involved in ribosome maturation at cold temperatures [44]. Finally, PNPase is an enzyme
that catalyzes the phosphorolysis of single-stranded polyribonucleotides and is the major factor
responsible for the reduction of CSPs in bacterial cells after cold shock response [45].

Currently, several studies have reported other molecular functions of CSP homologues such as
osmotic balance, protection to oxidative stress, starvation, and other types of stress, showing that this
protein family has a greater importance than previously thought to the process of microbial adaptation
to extreme conditions [46].

2.4. Other Important Aspects

In addition to the mechanisms of cold adaptation mentioned above, the production of carotenoids
markedly contributes to bacterial survival in cold environments. Carotenoids are tetraterpenoids,
pigments found naturally occurring in microorganisms, plants, and even animals. Carotenoids are
synthesized by several species of bacteria, algae, and fungi in response to several environment
stresses [47]. Prokaryotic organisms that produce carotenoids have been summarized by Takano
and colleagues [48]. However, since 2006 several carotenoid-producing bacterial species were
discovered in cold environments [49]. Carotenoids are detected in the membrane of psychrophilic [49],
psychrotrophic [27], and mesophilic [50] bacterial species. The high frequency of pigment production
in strains isolated from cold environments suggests that these pigments play an important role in
the adaptation to this ecological niche [51]. At low temperatures, the production of polar carotenoids
suppresses the production of non-polar carotenoids. This chemical modification was observed in
Arthrobacter agilis, Sphingobacterium antarcticus, and Micrococcus roseus [50,52,53].

In addition, carotenoids protect free-living bacteria from high levels of UV radiation and promote
resistance to cellular oxidative stress [49]. Several genes involved in carotenoid biosynthesis, such as
idi, crtE, crtB, crtI, crtEB, crtYe, and crtYf, were described in bacterial species of the Arthrobacter genus
isolated from Antarctic soils [49]. Recently, the Prokaryotic Carotenoid Database (ProCarDB) was
created by using 304 unique carotenoids synthesized through 50 biosynthetic pathways distributed in
611 prokaryotes [54].
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Figure 1. Representation of the main molecular modifications presented by bacterial cells during
cold adaptation. Four adaptations are presented: (1) production of unsaturated branched-chain fatty
acids to maintain membrane fluidity; (2) destabilization of adverse RNA structures by cold shock
proteins; (3) production of carotenoids to assist in the maintenance of membrane fluidity and prevent
cell damage by UV radiation; and (4) transport of compatible solutes such as mannitol to stabilize the
cytoplasmic environment and prevent ice formation.
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Additionally, thermal stress affects the osmotic balance of the microbial cell, resulting in a large
efflux of cytoplasmatic water. Therefore, to prevent water loss and intracellular ice formation, bacterial
cells accumulate compatible solutes in the cell cytoplasm. Examples of such cryo-protectant molecules
are glucose, trehalose, glycogen, fructose, alanine, betaine, mannitol, and glycerol. These substances
also prevent protein aggregation by stabilizing cytoplasmic macromolecules [55]. Figure 1 summarizes
the main molecular modifications that occur in bacterial cells adapted to low temperatures, as
described above.

3. Exiguobacterium antarcticum B7 as a Model Organism for Studies of Cold Adaptation

Exiguobacterium antarcticum B7 is a psychrotrophic bacterium isolated from a biofilm formed in
the sediment of Lake Ginger, Antarctic Peninsula [8]. Its optimal growth temperature is 37 ◦C, and its
minimal growth temperature is −2 ◦C. E. antarcticum B7 has bacillary morphology that may change
depending on the physicochemical conditions of the environment. Its genome was sequenced using
NGS, and its gene expression at low temperatures was evaluated using transcriptomic and proteomic
techniques [14]. Figure 2 summarizes the omic analyses performed and shows the methods and results
obtained. In this approach, genomic analysis is the starting point for generating a large quantity of data
that is subsequently used as the basis for the validation of experimental models through transcriptomics
and proteomics (Figure 2). Subsequently, the data set generated by these high-throughput methods can
be used in top-down models of systems biology, as discussed and proposed by Bernhard Palsson [56]
after the emergence of the first NGS technologies in 2002. Recently, the metabolic pathway for the
de novo biosynthesis of fatty acids in E. antarcticum B7 was reconstructed using constraint-based
approaches [13]. Applying the log2FC (log base 2 Fold Change) of the transcriptome in the calculated
model, the fluxome was modified and the metabolic pathway of E. antarcticum B7 started to produce
short-chain fatty acids. This metabolic behavior has been experimentally documented for other
cold-adapted bacteria [23,25].
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A total of 564 genes of E. antarcticum B7 were differentially expressed in cold. Gel-based proteomic
analyses described 73 differentially expressed proteins [14]. Genes of E. antarcticum B7 that are involved
in the five adaptive pathways described above are listed in Table 1. Interestingly, two cold shock
proteins were downregulated in the cold (Csp5 and Csp6) (Table 1). These two proteins were not
detected in the proteomic analysis. However, the other four CSPs were upregulated at 0 ◦C, and the
proteomic results showed that Csp1 was 32-fold more expressed at low temperatures [14]. Thus, Csp1
is the main CPS of E. antarcticum B7. Additionally, Csp1 was detected in four different spots of the
gel, two of which presented an interesting pattern of pI modification. These two spots have the same
molecular weight and different pI values (Figure A1 in Appendix A). The results suggest a possible
post-translational modification of CPSs at low temperatures such as phosphorylation. One of these
proteoforms of Csp1 (spot 884) apparently appears only at 0 ◦C (Figure A1 in Appendix A).

Table 1. E. antarcticum B7 genes involved in metabolic pathways of cold adaptation. Next to the name
of the genes are the Log2FC values and p-values of the transcriptome assays published by Dall’Agnol
and colleagues [40]. Pseudogenes are identified in parentheses.

Genes Log2FC p-Value Genes Log2FC p-Value

Cold shock proteins De novo synthesis of fatty acids

csp1 1.94 0 accA 0.45 0.01
csp2 2.16 5.43 × 10−194 accB −0.05 0.01
csp3 2.30 0 accC −0.56 5.68 × 10−27

csp4 2.46 0 accD −0.28 7.55 × 10−4

csp5 −1.06 3.73 × 10−35 fapR 0.58 4.80 × 10−21

csp6 −1.28 4.41 × 10−194 plsX 0.77 2.31 × 10−46

Desaturation of membrane fatty acids fabD 0.94 2.92 × 10−85

desK 7.03 8.15 × 10−16 fabG 0.85 8.42 × 10−63

desR −0.48 9.37 × 10−8 fabH1 0.85 2.67 × 10−26

Transport of compatible solutes fabF 0.69 3.46 × 10−16

opuCA 3.17 1.99 × 10−62 fabI −1.74 0
opuCC 1.61 3.06 × 10−29 plsC −0.82 1.28 × 10−6

opuE 3.70 4.26 × 10−16 Carotenoid biosynthesis

opuCD −2.72 8.67 × 10−24 crtI (pseudo) 3.94 4.65 × 10−43

opuBA −0.52 6.11 × 10−4 yisP1 (pseudo) −1.33 3.09 × 10−41

yisP2 0.75 2.16 × 10−7

Clearly, transcriptomic allowed a more embracing analysis of gene expression in E. antarcticum
when compared to other omic approaches. However, transcriptomics has analytical limitations such
as multi-mapping reads which may cause bias in the calculation of gene expression for homologous
genes such as csp [57]. In this case, proteomics allowed the identification of the main CSP used by
E. antarcticum during cold response. The other proteins identified belong to metabolic pathways
commonly described in gel-based proteomic analyzes such as oxidative stress, heat shock proteins,
and cellular respiration [58]. Those findings such as genomic signature, gene expression pattern,
CSP proteoform identification, and reconstruction of metabolic networks, could only be achieved
by using all levels of omic analyses, which emphasizes the need to integrate the data of these high
throughput methods.

4. Conclusions and Future Perspectives

By observing the different metabolic behavior described in this review, it can be noted that different
psychrotrophic and psychrophilic species have ecologically converged to adapt to low-temperature
environments via different biological methods. Different proteomic and other omic approaches were
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used to achieve our current knowledge on microbial adaptation to cold. The ecological relationships
between microorganisms living in cold environments have also been analyzed by metaproteomics [59].

The most recent proteomic methods based on liquid chromatography coupled with mass
spectrometry (LC-MS/MS) can generate a large amount of data that can assist us in understanding
important aspects of bacterial adaptation to cold. Methods such as selected reaction monitoring (SRM)
in targeted-MS proteomic are now being used in the field of microbiology [60]. SRM is better applied
to microorganisms that have been previously analyzed using high-throughput techniques.

Genomics has now reached a high level of sensitivity, precision, and accuracy in their analyses.
Consequently, transcriptomics and proteomics methods have tended to evolve to generate large
quantities of data with increased reliability. Rapid technological evolution has led to the development
of sub-omic areas that will permit the analyses of microbial adaptation to different environments
through a holistic perspective (e.g., surfomics is based on methods for rapid identification of cell surface
proteins) [61]. Finally, bioinformatics is a strategic area for the development and biotechnological
application of omics sciences, especially proteomics.
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Appendix A 

 
Figure A1. (a) Fraction of a Differential Gel Electrophoresis (DIGE) comparing the proteome of E. 
antarcticum grown at 37 °C (green spots) and 0 °C (red spots). Each spot is indicated by its ID; (b) 
Three-dimensional view of the spots with their respective values of volume percentage. 
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