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Animal models of retinal artery occlusion (RAO) have been widely used

in many studies. However, most of these studies prefer using a central

retinal artery occlusion (CRAO) which is a typical global ischemia model

of the retina, due to the technical limitation of producing single vessel

targeted modeling with real-time imaging. A focal ischemia model, such

as branch retinal artery occlusion (BRAO), is also needed for explaining

interactions, including the immunological reaction between the ischemic

retina and adjacent healthy retina. Accordingly, a relevant model for clinical

RAO patients has been demanded to understand the pathophysiology of

the RAO disease. Herein, we establish a convenient BRAO mouse model to

research the focal reaction of the retina. As a photo-thrombotic agent, Rose

bengal was intravenously injected into 7 week-old transgenic mice (CX3CR1-

GFP) for making embolism occlusion, which causes pathology similarly to

clinical cases. In an optimized condition, a 561 nm laser (13.1 mw) was

projected to a targeted vessel to induce photo-thrombosis for 27 s by custom-

built retinal confocal microscopy. Compared to previous BRAO models, the

procedures of thrombosis generation were naturally and minimal invasively

generated with real-time retinal imaging. In addition, by utilizing the self-

remission characteristics of Rose bengal thrombus, a reflow of the BRAO with

immunological reactions of the CX3CR1-GFP+ inflammatory cells such as the

retinal microglia and monocytes was monitored and analyzed. In this models,

reperfusion began on day 3 after modeling. Simultaneously, the activation of
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CX3CR1-GFP+ inflammatory cells, including the increase of activation marker

and morphologic change, was confirmed by immunohistochemical (IHC)

staining and quantitative real-time PCR. CD86 and Nox2 were prominently

expressed on day 3 after the modeling. At day 7, blood flow was almost

restored in the large vessels. CX3CR1-GFP+ populations in both superficial

and deep layers of the retina also increased around even in the BRAO peri-

ischemic area. In summary, this study successfully establishes a reproducible

BRAO modeling method with convenient capabilities of easily controllable

time points and selection of a specific single vessel. It can be a useful

tool to analyze the behavior of inflammatory cell after spontaneous arterial

recanalization in BRAO and further investigate the pathophysiology of BRAO.

KEYWORDS

branch retinal artery occlusion (BRAO), mouse modeling, ischemic-reperfusion
injury, retinal microglia, intravital imaging

Introduction

There have been many studies simulating an ischemia by
the retinal artery occlusion (RAO) modeling (1). Typically,
ischemia models are divided into global and focal ischemia (2–
4). However, most previous studies focus on global ischemia (5).
For example, increase the intra-ocular pressure (6–8), ligation
of the ophthalmic artery (9, 10) and administration of the
vasoconstrictor (11, 12) were used for global ischemia models of
central retinal artery occlusion (CRAO). However, a pathologic
mechanism of an extreme increase of the intraocular pressure
more resembles that of acute glaucoma than CRAO. Ligation
of the ophthalmic artery model cannot remove the effect of
choroidal ischemia, such as ocular ischemic syndrome. Lastly,
administration of the vasoconstrictor is a more preferred model
for amaurosis fugax, transient vision loss (13). Yet, despite
relatively low clinical relevance and limitations, these global
ischemia models have been mainly used to study RAO due to
a technical convenience.

In this study, we focused on a focal ischemia model, similar
but prominently different from the global ischemia. The focal
ischemia models can not only provide information of the
occluded vessel size or ischemic area size, but also provide an
interaction between the ischemic retina and adjacent healthy
retina. This is quite useful for the analysis of immunologic
processes, such as the glial reaction of the ischemia in the retina.
Currently, an argon photo-coagulation model (14, 15) has been
widely used for a focal ischemia model in the ophthalmologic
area. However, this can produce permanent vessel occlusion as
an inevitable consequence of large photo-mechanical damage,
thereby posing difficulty in analysis of ischemic damage. On
the other hand, photo-thrombosis induced stroke model using
the Rose bengal as a photo-thrombotic agent has been well
established (16–19). Under laser illumination, the intravenously

injected Rose bengal produces reactive oxygen species such
as singlex oxygen radicals, which activates tissue factor and
subsequently initiates coagulation cascade: platelet aggregation,
thrombus formation and vessel occlusion. Additionally, while
a real-time animal single vessel stroke model by photo-
thrombosis is already well known (20), single vessel stroke
animal modeling has been technically challenging in the retina.

The focal ischemia of retina is a branch retinal artery
occlusion (BRAO). Without treatments, serious outcomes are
expected with this ischemia. However, there are very limited
therapeutic options to care for the diseases well. Direct
interventional therapies have been chosen as a treatment to
avoid serious outcomes of this disease in clinics. Tissue-
type plasminogen activator (tPA) thrombolytic therapy has
been managed for RAO patients like the percutaneous
coronary intervention (21). Unfortunately, the reperfusion
by the thrombolytic therapy causes additional damage to
cells, significantly more than ischemia alone. Thus, much
research about this ischemia-reperfusion (IR) injury have
been conducted in multiple fields, including cardiology and
neurology (22, 23). There are also several reports that microglia
is activated by IR injury in cerebral infarction (24–26). However,
the dynamics of retinal microglia mediating IR injury has not
been well investigated yet.

Until now, the RAO studies using various models have
not showed the natural embolism infarction of the retinal
artery in real-time imaging (11, 27–29). Herein, to reintroduce
natural BRAO in clinics, we implemented a more natural and
improved BRAO modeling by using our previously established
custom-built high-speed multicolor confocal microscopy and
Rose bengal as a photo-thrombotic agent. We show the real-
time imaging of repetitive and single vessel specific thrombus
making for the first time. This study also presents serial
imaging of BRAO models to confirm this pathophysiology for
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7 days. We focused on day 3 and 7 for analyzing CX3CR1-
GFP+ inflammatory cell changes after the time point of
the reperfusion.

Materials and methods

Custom-built high-speed
laser-scanning retinal confocal
microscopy

A previously described custom-built high-speed laser-
scanning retinal confocal microscopy was used (30–32). The
schematic of the system is depicted in Figure 1A. Three
continuous-wave laser sources, composed of a 488-nm diode
laser module (MLD488; Cobolt AB, Stockholm, Sweden),
561-nm DPSS laser (Jive; Cobolt), and 640-nm diode laser
module (MLD640; Cobolt) were used as excitation light sources.
Laser beams from laser modules were expanded by telescopes
consisting of an achromatic lens with focal lengths of 45
and 125 mm for a 561-nm wavelength laser beam (#47-636,
#47-642; Edmund Optics, Barrington, NJ, United States) or
45 and 150 mm for 488-nm and 640-nm wavelength laser
beams (#47-636, #47-643; Edmund Optics). Intensity of each
laser was independently adjusted by a continuously variable
neutral density filter (NDC-50C-4M-A; Thorlabs Inc., Newton,
NJ, United States). All three laser beams were combined
by using dichroic beam splitters (FF593-Di03, FF520-Di02;
Semrock Inc., Rochester, NY, United States) and then delivered
to a beam scanner by a multiedge dichroic beam splitter
(Di01-R405/488/561/635; Semrock). Two-dimensional Raster
scanning at 90 Hz was achieved by the beam scanner composed
of a rotating 72-facet enhanced aluminum-coated polygonal
mirror (SA24; Lincoln Laser, Phoenix, AZ, United States) for
fast-axis scanning and a galvanometer mirror scanner (6230H;
Cambridge Technology, Bedford, MA, United States) for slow-
axis scanning. To implement telecentric scanning system,
achromatic lenses with effective focal lengths of 50 mm (#47-
637; Edmund Optics), 75 mm (#47-639; Edmund Optics),
75 mm with an aperture of 2 inches (#49-292; Edmund Optics),
and 125 mm (#47-642; Edmund Optics) were used. Finally, the
scanning laser beams were focused by the crystalline lens in
the eye of an anesthetized mouse and delivered to the retina
through a commercial objective lens (PlanApoλ20X, 0.75NA;
Nikon Corporation, Tokyo, Japan). The anesthetized mouse was
placed on the articulating-baseball stage (SL20; Thorlabs) fixed
to the XYZ translation stage (3DMS; Sutter Instrument, Novato,
CA, United States). Fluorescence signals were collected by the
objective lens. Descanned fluorescence signals were separated
from the excitation laser beams by one dichroic beam splitter
and split into three individual fluorescence signals (green,
red, and far-red) by the other dichroic beam splitters (FF560-
Di01, FF649-Di01; Semrock). Each fluorescence signal was

detected by a photomultiplier tube (PMT; R9110; Hamamatsu,
Shizuoka Prefecture, Japan) through bandpass filters (FF01-
525/45, FF01- 600/37, FF01-697/58; Semrock), 75-mm focal-
length achromatic lens (#47-639; Edmund Optics), and confocal
pinholes. Electronic signals from the PMTs were simultaneously
digitized by using three-channel frame grabber (Solios; Matrox,
QC, Canada) with a sampling rate of 29.86 MHz for each
channel. Finally, multicolor real-time images with a frame size of
512 by 512 pixels were displayed and recorded at the frame rate
of 90 Hz by a custom-developed imaging software using Matrox
Imaging Library (MIL9; Matrox) (33, 34).

Animal models

All animal experiments were approved by the Institutional
Animal Care and Use Committee of Korea Advanced Institute
of Science and Technology (KAIST) (approval No. KA2021-
003). All animals were treated, maintained, and sacrificed in
accordance with the policies specified in the ARVO Statement
for the Use of Animals in Ophthalmic and Vision Research.
Mice were housed and bred in an institutional animal facility
in KAIST. All mice were individually housed in ventilated and
temperature- and humidity-controlled cages (22.5◦C, 52.5%)
under a 12/12-h light/dark cycle and provided with standard
diet and water ad libitum. For experimental use, C57B6/N mice
were purchased from OrientBio (Suwon, Korea). CX3CR1-GFP,
Thy1-YFP-16 mice were purchased from Jackson Laboratory
(Stock No: 005582 and 003709, Bar harbor, ME, United States).
To induce BRAO, 75 mg/kg dose of the Rose bengal (stock no:
330000, Sigma-Aldrich, Saint Louis, MO, United States) was
delivered by tail vein injection (35). Then the 561-nm DPSS
laser (Jive; Cobolt) beam was projected to the target vessels for
27 s with 13.1 mw power. To induce RPE cells degeneration for
outer blood-retina barrier (BRB) break, sodium iodate (NaIO3,
50 mg/kg, stock no: S4007, Sigma-Aldrich) was injection via
peritoneum in 0.05% acetic acid solution (Stock no: A6283,
Sigma-Aldrich) (36, 37).

Intravital retinal imaging of mouse
retina

For intravital imaging, the mouse was also anesthetized with
a mixture of zoletil (30 mg/kg) and xylazine (10 mg/kg) by
intramuscular injection. Body temperature of the anesthetized
mouse was maintained at 36◦C by using a homeothermic
temperature monitoring and control system (RightTemp; Kent
Scientific, Torrington, CT, United States) to prevent the abrupt
formation of cold cataract hampering the imaging of retina.
Yohimbine (2 mg/kg), antagonist of xylazine, was injected to
provide protection from corneal injury or dryness during post-
anesthesia recovery and stabilization of cardiovascular systems.
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FIGURE 1

The schematic of custom built confocal microscope and the real-time BRAO modeling. (A) A schematic of the custom-built, high-speed,
laser-scanning confocal microscope for intravital retinal imaging. (B) Selection of the artery for BRAO modeling. Actual illuminated area is
outlined by the blue dotted line. (C) A schematic of the brief method for BRAO modeling. (D) Thrombosis can be made in both large artery and
vein. Thrombus sites are high-lighted by orange dotted line. (E) Representative real-time images of the BRAO modeling. Arrows indicated
thrombus. Arrow head indicated blood flow loss. BRAO, branch retinal artery occlusion.

Additional protective measures, including eye ointment and
artificial tear to avoid corneal injury, were used with an
infrared heating lamp during the recovery state from anesthesia.

To visualize retinal vasculature, 25 µg anti-CD31 antibody
(stock no: 553708, BD Biosciences, Franklin Lakes, NJ,
United States) conjugated with a far-red color fluorophore,
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Alexa Fluor 647 (stock no: A20006, Invitrogen, Waltham,
MA, United States) or lectin DyLight 649 (DL-1178, Vector
laboratories, Burlingame, CA, United States) were intravenously
injected, which fluorescently labeled endothelial cells of the
whole body in a systemic manner. To visualize current
flows of the retinal vasculature, TRITC-dextran 100 mg/kg
(tetramethylrhodamine isothiocyanate dextran 155 k, T1287,
Sigma-Aldrich) was simultaneously intravenously injected with
endothelial labeling.

Histology procedure for
immunohistochemistry of retinal
tissues

After the intravital retinal imaging, mice were euthanized by
using a CO2 chamber. Both whole eyeballs with optic nerves
were carefully harvested by using forceps without tearing and
immersed in 1% paraformaldehyde solution (16%, 30525-89-4,
MP Biomedicals, CA, United States, diluted in PBS) during over-
night for the fixation of entire tissue. After washing the fixed
eyeballs with PBS, they were placed in a small cell culture dish
under stereoscopic microscope. Linear incision was made by
No. 11 blade at the center of the cornea. Subsequently, a circular
incision was performed through the limbus by using iris scissors
and the cornea was detached. Crystalline lens, iris, choroid,
and sclera were stripped off and the optic nerve was gently
cut while avoiding tangential traction damage in the retina.
Vitreous body and firmly attached ciliary body were carefully
and totally removed from the retina. And neuro-retinal fraction
and choroid-RPE fraction were divided through subretinal space
dissection. Each tissues was trimmed to be made four-leaf clover
shape for visualizing en face flat-mounted image.

The processed retinas (flat-mounted and sliced) were
blocked in 5% normal goat serum in PBST (0.3% Triton X-
100 in PBS) and incubated overnight at 4◦C with the following
primary antibodies (1:200): anti-CD31 (PECAM, rat, stock
no: 553708, BD Biosciences), anti-CD86 (rabbit, stock no:
ab242142, Abcam Inc., Cambridge, United Kingdom), anti-Iba1
(rabbit, stock no: Cat #PA5-27436, Thermo Fisher Scientific,
Waltham, MA, United States) and anti-CCR2 (rabbit, stock
no: ab245898, Abcam). After washing 8 times in 0.3% PBST,
the samples were incubated for 2 h incubation at RT in
shaker with species-specific secondary Alexa Fluor-coupled
secondary antibodies (1:250) in 0.3% PBST solution (Goat
anti rat A555 secondary antibody: A21434, Thermo Fisher
Scientific, Goat anti rat A647 secondary antibody: ab150167,
Abcam, Goat anti rabbit A555: A32732, Goat anti rabbit
A647: A32733, Thermo Fisher Scientific). Subsequently, the
samples were washed in 4 times 0.3% PBST and then 4 times
PBS, respectively, and placed in a slide glass with mounting
medium (VECTASHIELD R© Anti-fade Mounting Medium, H-
1000-10, Vector laboratories). Immunofluorescence images

were acquired using a custom-built confocal microscopy as
described in the section “Custom-Built High-Speed Laser-
Scanning Retinal Confocal Microscopy.”

RNA isolation and quantitative
real-time PCR

Eyes were collected from anesthetized mouse and quickly
dissected by a circumferential incision through limbus in cold
RPMI to alleviate cell viability. The neuro-retina was carefully
harvested from choroid and sclera. And total RNA from
the neuro-retina fraction were extracted and purified using
the RNA-spinTM (Intron biotechnology, Seongnam, Gyeonggi-
do, South Korea) following the manufacturer’s protocol. The
quantity and quality of total RNA from each sample was
analyzed using the Agilent Bio-Analyzer and Agilent RNA
6000 pico kit (stock no: #5067-1513, Agilent, Santa Clara,
CA, United States). The reverse transcription of mRNA was
performed by using the GoScriptTM Reverse Transcriptase
kit (stock no: A5001, Promega, Madison, WI, United States)
to make cDNA library. Reactions were performed in 30 µl
volumes containing 5×GoScript TM 5X Reaction Buffer, 25 mM
of MgCl2, 10 nM of PCR nucleotide mix, 500 µg/ml of
Oligo primer, GoScriptTM Reverse Transcriptase, 40 u/µl of
Recombinant RNasin R© Ribonuclease Inhibitor, Nuclease-Free
Water and 1.5 µl of the mRNA product. RT-PCR were carried
out as follows: 5 min at 25◦C (annealing), 60 min at 42◦C
(extension), and 15 min at 72◦C (inactivation RT). The following
SYBR green assays (QPK-201, Toyobo, Osaka, Honshu, Japan)
were performed for RT-PCR by Bio-rad qPCR machine (Bio-
rad, Hercules, CA, United States) by using the prepped cDNA
library. And there are primer list used in the experiment at
Supplementary Table 1. This reaction was performed in 20 µl
volumes containing 8 pM of each primer mentioned above,
6.4 µl of RNase-Free Water, 10 µl of the SYBR green and
1.0 µl of the cDNA product. Quantitative real-time PCR were
carried out as follows: 15 s at 95◦C (denaturation), 15 s at
60◦C (annealing), and 30 s at 72◦C (extension), these steps were
repeated for 45 cycles.

Image quantification analysis and
statistical analysis

The calculation of reperfusion/ischemic area ratio in
vascular reperfusion was done by utilizing “surface” function
of commercial image analysis software, IMARIS (ver 9.02,
Bitplane, Belfast, United Kingdom). The ischemic area of the
day 1 was selected as a reference region of the interest (ROI)
for day 3 and 7. Then, “surface detail” value of the area was
determined as 1 µm, and the minimum and maximum cut-
off values were set to 20.0 and 30.0, respectively. The number
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of inflammatory cells was also calculated with same IMARIS
software. The inflammatory cells with above 12.5 µm of the
estimated X-Y diameter in “spot” function was considered. And
a filter type was selected as “quality” (lower threshold: 4.0, upper
threshold: 15.0 in ROI). CX3CR1-GFP+ cells were regarded
as activated when they showed one of the following features:
retraction of their processes lost their “tile span” distribution,
increased population, and featured amoeboid shape. To quantify
activated CX3CR1-GFP+ cells, individual inflammatory cells
were automatically identified as those with a soma size of
above 22.5 µm by using the “Spot” function in the IMARIS.
An activated “amoeboid shape” microglia was defined as that
with a soma size of more than 50 µm and dendrite size
below 50 µm. Statistical analysis was performed by using IBM
SPSS Statistics 26.0 (SPSS, Inc., Chicago, IL, United States).
Statistical difference was determined by a non-parametric
Mann Whitney u-test. The R square was calculated by simple
regression analysis. Multiple comparison among groups were
determined by one-way ANOVA followed by Dunnett’s post-hoc
test. A statistical significance was set at P-values less than 0.05.

Results

Establishment of a reproducible
branch retinal artery occlusion
modeling method

Real-time intravital images and movies of the BRAO
model were acquired by using a previously established confocal
microscopy setup (30, 34, 38), as shown in Figure 1A. First,
a target vessel labeled by lectin 649 staining was selected in
the maximum angle of view (AOV), which was previously
measured to be about 48◦. The AOV was then reduced to
be a suitable size for a single branch occlusion of the retinal
artery by photothrombosis with 561 nm laser illumination, as
shown in Figure 1B. This adjustment of AOV was controlled
by changing the distance between the objective lens and mouse
crystalline lens in the range of 10 ∼ 15 mm. The used AOV
for BRAO modeling was 16.4∼22.4◦, depending on target
vessel size. With repeated trial of the modeling with different
parameter setting, the 561 nm laser projection parameters to
induce photo-thrombus in a single targeted vessel with expected
reperfusion at day 3 were empirically determined to 27 s
with 13.1 mW power (Figure 1C). With this optimized laser
power and duration, the Rose bengal thrombus is effectively
formed and maintained in a single retinal vessel for a relatively
short period of time unlike other photo-thrombosis models
(39, 40). Additionally, no subretinal hemorrhages and vessel
ruptures were observed after the laser illumination. Notably,
the target vessel for occlusion can be readily selected between
artery and vein, as depicted in Figure 1D, which can be easily

identified by flowing direction and vessel morphology. A real-
time intravital imaging clearly showed the whole processes of
the BRAO modeling from thrombosis to blood flow loss of the
occluded vessel, as shown in Figure 1E and Supplementary
Movie 1. Briefly, we successfully established a standardized and
reproducible BRAO modeling method.

Serial longitudinal intravital imaging of
the branch retinal artery occlusion
models

To analyze the changes of blood flow and immunologic
reaction in the established ischemic BRAO model, intravital
images and histology images of the occluded vessels and
inflammatory cell changes were serially acquired by using
CX3CR1-GFP mouse (41). These serially acquired intravital
mosaic images were obtained at the modeling day and then
day 1, 3, 7 post modeling, respectively, as shown in Figure 2A.
Right after BRAO modeling, the occluded area could be easily
identified as a non-perfusion area at day 1. Re-flow started
to be observed in the occluded ischemic area at day 3, and
then the retinal blood flow was gradually recovered. Finally, the
retinal blood flow of the large blood vessel in the occluded area
was almost entirely recovered at day 7. Figures 2B,C show the
progress of the reperfusion around the BRAO ischemic site and
the quantification of the ratio of reperfusion/ischemic area.

The next study was performed to distinguish between the
blood vessel walls and actual blood flows in the BRAO models.
Figure 3A shows a schematic of the time schedule in this
experiment. BRAO was induced by Rose bengal thrombus
after intravenous injection of lectin Dylight 649 for vessel wall
staining (42). In the following days (days 1, 3, and 7), TRITC-
dextran was intravenously injected right before the imaging to
visualize actual blood flow. The actual blood flow and retinal
vessel walls were easily distinguished by this method, as shown
in Figure 3B. This figure shows that obstructed vessels stained
by the lectin were still remained, but blood flow could not pass
blocked vessels. The state of the blood vessel reperfusion was
initiated at day 3 and a total recovery of blood flow at day 7 was
confirmed by serial intravital imaging of the actual blood flow,
as shown in Figure 3C.

Activated phenotypes of the
CX3CR1-GFP cells after arterial
recanalization

To analyze cellular-level changes of the CX3CR1-GFP+

inflammatory cell including the retinal microglia and monocyte
after spontaneous arterial recanalization for 7 days after
BRAO modeling, immunohistochemical (IHC) staining and
quantitative real-time PCR were performed. Recovery of the
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FIGURE 2

Serial intravital imaging of the blood flow in BRAO modeling. (A) Overall changes of the large vessels blood flow and CX3CR1 signal expression
for 7 days. The images used in before modeling were single AOV image. The images used in after modeling were stitched intravital mosaic
images. Target arteries were outlined by orange dotted box. (B) Serial intravital images of the vessel reperfusion in the same mouse. Targeted
ischemic area were outlined by orange dotted line. (C) Quantification of the reperfusion/Ischemic area (%) in (B). (n = above 8, retinas per each
group). AOV, angle of view.

flow gradually increased around the BRAO area from day 3,
as shown in Figures 2B, 3C. Interestingly, inflammatory cell
was most activated at day 3 at the starting time point of

recanalization. The morphological changes from ramified to
amoeboid form (38, 43, 44) are considered as typical activation
markers of the retinal microglia. Figures 4A–C shows that

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.897800
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-897800 July 11, 2022 Time: 17:26 # 8

Jeon et al. 10.3389/fmed.2022.897800

FIGURE 3

Comparison of the vessel wall and blood flow to confirm the re-perfusion. (A) A schematic of experimental plan for vessel staining and dextran
blood flow imaging after BRAO modeling. Dextran was injected right before the imaging at the indicated time points of day 1, 3, and 7,
respectively. (B) Channel split images of the vessel and blood flow test at 1 day after BRAO modeling. (C) Serial intravital images of the vessel
and blood flow test in same mouse showing that gradual reperfusion for 7 days. BRAO, branch retinal artery occlusion.

morphologic changes and CD86, one of the microglial activation
makers (45), expression changes of the CX3CR1-GFP+ cells
are also most activated at day 3. The activated inflammatory
cells were mostly located around the superficial [Inner limiting
membrane (ILM) to inner plexiform layer, IPL] layers. The
CX3CR1-GFP+ cells located in the deep layer (outer plexiform

layer, OPL) was relatively unchanged and their dendrite process
were maintained without retraction (Supplementary Figure 1).
We then quantified Nox2 RNA expression in the ischemic
retina because there were several reports that Nox2 RNA
expression is significantly increased in IR injury models, and
ganglion cell death can be alleviated by deletion of Nox2 (6,
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46). Similarly, the RNA expression of Nox2 peaked at day
3, as shown in Figure 4D. Taken together, the expression of
CD86 and Nox2 accompanied by inflammatory cells activation
was predominantly observed at day 3 after BRAO modeling,
implying the inflammatory cells activation is on the apex at the
start time of recanalization.

The distribution changes of
CX3CR1-GFP+ cell after recovered
perfusion

To analyze the changes of inflammatory cell distribution
in BRAO models, an extended mosaic intravital image was
captured in CX3CR1-GFP mouse with lectin vessel staining. At

day 7, CX3CR1-GFP signals were dramatically increased in the
intravital mosaic image with the recovered blood flow in large
vessels, as shown in Figures 3C, 5A. Significant inflammatory
cell accumulations were observed at the ischemic BRAO site,
as shown in Figure 5A. IHC images after BRAO day 7 showed
that most of the accumulated CX3CR1-GFP+ cells had dendritic
process, as shown in Figure 5B. Additionally, it revealed a
dramatically increased number of ramified inflammatory cells in
both of the superficial and deep layer not only at the BRAO site
but also at the peri-ischemic lesion, as shown in Figures 5C,D.

An extend mosaic intravital imaging showed that most
of the accumulated CX3CR1-GFP+ cells had their dendritic
process after BRAO day 7 (Figure 6A). In the case of
the systemic activation with BRB break by sodium iodate
model, NaI, inducing a significant recruitment of the CCR2+

FIGURE 4

Reperfusion and expression of the microglial activation marker at day 3. (A) Serial IHC staining of the CD86 microglial expression marker. Gray
dotted boxes are magnified CX3CR1, CD86, and CD31 images showing increased CD86 expression around a superficial (Inner limiting
membrane to inner plexiform) layer at day 3. Vascular endothelial cells were stained by CD31 antibody and CD86 surface proteins were stained
by CD86 antibody. (B) Quantification of the number of CD86/CX3CR1 double (+) cell in a field (n = 4, retinas per each group). (C) Quantification
of the number of morphologic changes from the ramified to amoeboid microglia in a field (n = 4, retinas per each group). (D) mRNA expression
level of the Nox2 in BRAO neuro-retina fraction by RT-qPCR (n = 12, retinas per each group). Scale bars: 100 µm. FOV, field of view.
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FIGURE 5

Microglial accumulation after reperfusion at day 7. (A) Expanded mosaic image of the intravital CX3CR1-GFP mouse after BRAO modeling.
Ischemic lesions were outlined by orange dotted lines. (B) IHC staining of BRAO site at 7 days after modeling with CX3CR1-GFP mouse. (C) IHC
staining of the Superficial and Deep (Outer plexiform) layer. IHC samples at peri-BRAO site were collected around the orange dotted circles.
A core of the BRAO site is indicated by the white circle. Vascular endothelial cells were stained by CD31 antibody. (D) Retinal microglia numbers
in peri-ischemic area in each Superficial and Deep layer. (n = 6, respectively) Scale bars: 100 µm. FOV, field of view. BRAO, branch retinal artery
occlusion.
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FIGURE 6

Microglial recruitment from optic disc after BRAO day 7. (A) Microglial recruitment from optic disc at day 7 after BRAO, local activation. A core of
the BRAO site is indicated by the orange circle. Vascular endothelial cells were stained by CD31 antibody. (B) CCR2 + Monocytes recruitment
from optic disc at day 3 after sodium iodate, systemic activation, Scale bars: 200 µm. (C) Relationships between the number of monocyte and
distance from an optic disc. Monocyte and vascular endothelial cells were stained by CCR2 and CD31 antibody in, respectively. (D) IHC staining
of CCR2 in each sodium iodate and BRAO showing inflammatory cell composition in CX3CR1 signal. Scale bars: 100 µm (A,D). BRAO, branch
retinal artery occlusion.

monocyte (Figures 6B,C). In contrast, in the BRAO model,
some microglia seems to migrate along a large vein but not a
large artery without the recruitment of the CCR2+ monocyte
(Figure 6D). Additionally, it seemed that some CX3CR1-GFP
cell migration was related with Rod-like microglia in axons
(47). The observation using Thy1-eYFP-16 mouse, a nerve fiber

reporter mouse, evaluated to find out the migration of microglia
along the nerve fiber as well as the large vein (Supplementary
Figure 2). While the CCR2+ monocyte from the systemic
circulation is the dominant type of recruited inflammatory
cell in the NaI induced systemic activation model, the tissue
resident macrophage–“microglia” could occupy some portion
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in the total population of the observed inflammatory cells near
the optic nerve head when local ischemic activation induced
by BRAO modeling.

Discussion

Branch retinal artery occlusion is a focal ischemic disease
of the retina. Although it is one of rare diseases, it has
been a critical threat for vision. The artery occlusion located
around the macular is particularly harmful (48–50). Studies have
previously dissected the molecular pathophysiology of retinal
arterial disease in hypertensive condition (51), but the insights
in to the occlusive etiology of the retinal arterial occlusion
is understudied. Moreover, the lack of studies focusing on
BRAO has limited our understanding on the pathophysiology
of this disease. Establishments of BRAO model and its detailed
analysis would provide great benefits to researchers for the
following reasons: (1) BRAO site is clearly distinguishable
between disease and healthy vessels; therefore, it can be helpful
for biological experiments to understand the pathology of the
disease vessel. (2) The focal ischemia model was especially useful
for studying the immunological reaction of the specific cell
dynamics in other organs (52, 53). Therefore, in this study, we
established an easily reproducible BRAO mouse model that have
more natural pathophysiologic conditions of BRAO patients
by using a custom-built retinal confocal microscopy (30, 31).
The established method can consistently and reliably induce
BRAO with the real-time in vivo retinal imaging capability as
shown in Figure 1D and Supplementary Movie 1. To note,
among total 40 mice used in this study with BRAO modeling
with the optimized laser illumination power and duration (27 s,
13.1 mW), there was no failure in the modeling or complications
such as vessel rupture. Furthermore, this BRAO modeling
method is easily modified to branch retinal venous occlusion
(BRVO) modeling by just changing the target vessel.

There is also an increasing demand for emergency
reperfusion therapies with the development of relevant medical
technology and the intervention technique (54, 55). Recently,
intervention therapies are commonly used for rescuing the RAO
by using thrombolytics, such as tPA (56, 57). However, even
after successful procedures of reperfusion and oxygen supply
were achieved, only 17% of the patients could regain functional
visual acuity (21). To note, there is a report that some of
the patients after tPA reperfusion suffered an IR injury (58).
Although tPA reperfusion has a prominent merit to supply
oxygen restoration, the rapid reperfusion could cause excessive
production of reactive oxygen species inducing harmful effects
of retinal function. Nevertheless, until now, there has been
a very limited studies about the IR injury of the BRAO
because an adequate and clinically meaningful BRAO model
has been absent. Establishment of relevant mouse models for
BRAO patients may help to study disease pathophysiology,

and learning how to regulate inflammatory cell activation and
recruitment may provide therapeutic insights for how an IR
injury progresses in patients. For the best of our knowledge, this
is the first study of the arterial recanalization in BRAO modeling
with real-time longitudinal imaging of the retina. Although this
study cannot be generalized to the IR injury, it can provide
helpful information for further researches in the field.

There are several reports that microglia is involved in the
reaction of the IR injury in MI and stroke (24, 25, 59). However,
the role of the microglia is still not fully understood and remains
obscure with controversies. Furthermore, function of “the
retinal microglia” in pathological condition is more ambiguous
than CNS microglia. In this study, we serially followed up
retina by intravital imaging and IHC histology for observing
inflammatory cell activation after arterial recanalization in
BRAO during progression for 7 days. Interestingly, a specific
microglial activation marker including CD86 and Nox2 (IR
injury marker) prominently increased at the moment of
reperfusion (Figure 4). And there is also a report that transient
ischemia can cause microglia activation in other organs with a
similar concept study by using middle cerebral artery occlusion
(60). After reperfusion, some dendritic CX3CR1-GFP+ cells
gradually recruited from the disc through vein and nerve fibers
to the BRAO ischemic area (Figure 5 and Supplementary
Figure 2). The increase number of inflammatory cell might be
partially originated from the external microglia such as the iris,
ciliary body and optic nerve microglia, due to the relatively slow
repopulation and duplication time of the retinal microglia even
in the depletion state (61–63).

Our longitudinal observation suggests that the retinal
CX3CR1-GFP+ cells may have some effects on the arterial
recanalization of the BRAO. Yet, to further improve our
understanding of inflammatory response and recovery after
arterial recanalization of BRAO, more in-depth analysis in
the molecular profiles of the inflammatory cells including
retinal microglia is required. Another limitation is that no
direct comparison between acute tPA thrombolytic reperfusion
and Rose bengal self-reperfusion was performed. Technological
development for mouse thrombolytic therapy that can target
single BRAO vessels would be needed to tackle this limitation.
In addition, this study did not perform a direct comparison
between the permanent artery occlusion and transient occlusion
by the self-remission of the Rose bengal thrombus. Longer
laser illumination to induce a permanent occlusion could cause
several complications such as subretinal hemorrhages and vessel
ruptures, thereby it would be difficult to analyze the direct effects
of the ischemia.

Conclusion

In this work, we successfully established a reproducible
BRAO model by using a custom-built confocal microscopy.
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This BRAO model can easily control the time point and
specifically target a single vessel by optimizing the laser power,
projection time and precisely adjusting the AOV. Followed by
the successful BRAO modeling, we performed a spontaneous
arterial recanalization study of the inflammatory cells in BRAO.
Dynamic alteration in the molecular profiles of the immune cell,
including microglia, were most prominent at 3 days after BRAO
modeling with the reperfusion of thrombus self-resolution.
After fully restored reperfusion at day 7, some CX3CR1-
GFP+ cells were focally recruited and accumulated around the
ischemic area. The established method could be a useful tool for
investigating the pathophysiology of occlusion retinal diseases.
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SUPPLEMENTARY FIGURE 1

Microglial distribution at each layer after BRAO modeling. (A)
Representative IHC staining images of the superficial layer and deep
layer showing that microglial activation is relatively quiescent at OPL.
Vascular endothelial cells were stained by CD31 antibody and CD86
surface proteins were stained by CD86 antibody. (B) Number of
CD86/CX3CR1 double (+) cell in a field (n = 4, retinas per each group).
Scale bars: 100 µm. S, superficial layer, D, deep layer, FOV, field of view.
BRAO, branch retinal artery occlusion.

SUPPLEMENTARY FIGURE 2

Microglial recruitment through optic nerve and vein in BRAO modeling.
Arrow indicated the retinal microglia. Vascular endothelial cells were
stained by CD31 antibody and microglia were stained by IBA-1 antibody.
Scale bars: 100 µm. BRAO, branch retinal artery occlusion.

SUPPLEMENTARY MOVIE 1

Real-time intravital imaging of the branch retinal artery
occlusion modeling.
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