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Abstract: DNA methylation, one of the major epigenetic mechanisms, plays critical roles in regulating
gene expression, genomic stability and cell lineage commitment. The establishment and maintenance
of DNA methylation in mammals is achieved by two groups of DNA methyltransferases (DNMTs):
DNMT3A and DNMT3B, which are responsible for installing DNA methylation patterns during
gametogenesis and early embryogenesis, and DNMT1, which is essential for propagating DNA
methylation patterns during replication. Both groups of DNMTs are multi-domain proteins,
containing a large N-terminal regulatory region in addition to the C-terminal methyltransferase
domain. Recent structure-function investigations of the individual domains or large fragments
of DNMT1 and DNMT3A have revealed the molecular basis for their substrate recognition and
specificity, intramolecular domain-domain interactions, as well as their crosstalk with other epigenetic
mechanisms. These studies highlight a multifaceted regulation for both DNMT1 and DNMT3A/3B,
which is essential for the precise establishment and maintenance of lineage-specific DNA methylation
patterns in cells. This review summarizes current understanding of the structure and mechanism of
DNMT1 and DNMT3A-mediated DNA methylation, with emphasis on the functional cooperation
between the methyltransferase and regulatory domains.

Keywords: DNMT1; DNMT3A; DNA methyltransferase; maintenance DNA methylation; de novo
DNA methylation; allosteric regulation; autoinhibition

1. Introduction

DNA methylation represents one of the major epigenetic mechanisms that critically influence
gene expression and cell fate commitment [1–6]. In mammals, DNA methylation is essential for the
silencing of retrotransposons [7–9], genomic imprinting [10,11] and X-chromosome inactivation [12,13].
Mammalian DNA methylation predominantly occurs at the C-5 position of cytosine within the
CpG dinucleotide context, accounting for ~70–80% of CpG sites throughout the genome [14].
The establishment of DNA methylation is achieved by the closely related DNA methyltransferases
3A (DNMT3A) and 3B (DNMT3B), designated as de novo DNA methyltransferases, during germ
cell development and early embryogenesis [15,16]. Subsequently, clonal transmission of specific
DNA methylation patterns is mainly mediated by DNA methyltransferase 1 (DNMT1), designated
as maintenance DNA methyltransferase, in a replication-dependent manner [17,18]. However,
the classification of DNMT3A/3B as de novo methyltransferases and DNMT1 as maintenance DNA
methyltransferase appears to be an oversimplification, as increasing evidence has revealed an important
role of DNMT3A and DNMT3B in DNA methylation maintenance [19,20], while other studies have
pointed to the de novo methylation activity of DNMT1 in specific loci [21,22]. A detailed understanding
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of the structure and regulation of DNMT1 and DNMT3A/3B is essential for elucidating their roles in
DNA methylation maintenance and establishment in cells.

Both DNMT1 and DNMT3A/3B belong to the class I methyltransferase family [23], featured
by a conserved catalytic core termed Rossmann fold, which consists of a mixed seven-stranded
β-sheet flanked by three α-helices on either side [24]. These enzymes catalyze the methylation
reaction in an S-adenosyl-L-methionine (AdoMet)-dependent manner, with the catalytic core harboring
essential motifs for enzymatic catalysis and cofactor binding. In addition, a subdomain, termed target
recognition domain (TRD), is inserted between the central β-sheet and the last α-helix of the catalytic
core [24]. The TRD bears no sequence similarity between DNMT1 and DNMT3s; instead, it participates
in DNA binding to ensure substrate specificity of each enzyme.

To ensure proper programming of DNA methylation patterns in cell linage commitment,
the functions of DNMTs are subject to a stringent regulation during development [25,26]. Unlike
their bacterial counterparts that contain only the methyltransferase (MTase) domain, both DNMT1
and DNMT3s are multi-domain proteins, containing a large regulatory region in addition to the
C-terminal MTase domain (Figure 1) [18,27]. Recent studies have generated a large body of structural
and functional information on both groups of enzymes, including the molecular basis underlying their
enzyme-substrate recognition, and the regulatory roles of their N-terminal segments in the substrate
specificity, enzymatic activity as well as genomic targeting. This review provides an overview on
the recent progress in structural and mechanistic understanding of DNMT1 and DNMT3A, with an
emphasis on how the regulatory and MTase domains of each enzyme cooperate in maintenance and
de novo DNA methylation, respectively.
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and regulator DNMT3L, with individual domains marked by residue numbers.

2. Structure and Mechanism of DNMT1

DNMT1 is comprised of ~1600 amino acids, with an N-terminal regulatory region covering two
thirds of the sequence, a highly conserved (GK)n repeat and a C-terminal MTase domain (Figure 1).
The regulatory region starts with a ~300 amino acid-long N-terminal domain (NTD) harboring a
variety of protein and/or DNA interaction sites, followed by a replication foci-targeting sequence
(RFTS) domain, a CXXC zinc finger domain and a pair of bromo-adjacent-homology (BAH) domains
(Figure 1). The function of DNMT1 in replication-dependent DNA methylation maintenance is
supported by its localization in replication foci during the S phase, and in vitro a 3–40 fold enzymatic
preference for hemimethylated CpG sites [18,28], an epigenetic mark enriched at the replication foci [29].
How the regulatory domains of DNMT1 are coordinated in attaining its enzymatic and spatiotemporal
regulations remains a long-lasting topic of interest. Nevertheless, recent structure-function studies of
various DNMT1 fragments under different DNA binding states [30–33] have started to illuminate how
different domains of this enzyme orchestrate its activity in maintenance DNA methylation.
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2.1. Enzyme-Substrate Interaction of DNMT1

The crystal structure of a mouse DNMT1 fragment (mDNMT1, residues 731–1602) covalently
bound to a 12-mer hemimethylated DNA duplex provides insight into the productive state of DNMT1
(Figure 2A) [31]. The DNA molecule contains one central CpG site in which a 5-methylcytosine (5mC)
and a 5-fluorocytosine (5fC) were installed on the template and target strands, respectively (Figure 2B).
The use of 5fC permits the formation of an irreversible, covalent complex between mDNMT1 and
DNA [34]. The mDNMT1 fragment contains the pair of BAH domains (BAH1, BAH2) and the
MTase domain.

The structure of the mDNMT1-DNA covalent complex reveals that the MTase domain, composed
of a catalytic core and a large TRD (~200 amino acids), is organized into a two-lobe architecture, creating
a cleft to harbor the DNA duplex (Figure 2A). The two BAH domains are separated by one α-helix,
both with a tilted β-barrel fold that is reminiscent of other BAH domains (Figure 2A) [35]. Both BAH
domains are structurally associated with the MTase domain, forming an integrated structural unit. The
BAH1 domain is attached to the MTase domain through antiparallel β-pairing, as well as hydrophobic
clustering, while the BAH2 domain interacts with the MTase domain mainly through hydrophobic
contacts, with a long loop (BAH2-loop) protruding from one end of the β-barrel to join with the
TRD at the tip (Figure 2A). This mDNMT1 construct also contains two Cys3His-coordinated zinc
finger clusters, one located in the TRD while the other associates BAH1 with the subsequent α-helix
(Figure 2A). The mDNMT1-DNA interaction spans eight base pairs, resulting in a buried surface
area of ~2100 Å2. The target cytosine, 5fC, is flipped out of the DNA duplex and inserts into the
active site of mDNMT1, where it forms a covalent linkage with the catalytic cysteine C1229, leading
to hydrogen bonding interactions with a number of highly conserved residues (Figure 2C). The base
flipping of 5fC creates a large cavity at the hemimethylated CpG site, which is in turn filled with bulky
side chains of K1537 from the TRD and W1512 from the catalytic core (Figure 2B). This protein-DNA
intercalation further shifts the orphan guanine, which is otherwise paired with the flipped-out 5fC,
one base down, resulting in the flipping out of a second nucleotide from the template strand (Figure 2B).
The interaction of mDNMT1 with the hemimethylated CpG site involves two loops from the TRD (TRD
loop I: Residues 1501–1516 and TRD loop II: Residues 1530–1537) and one loop from the catalytic site
(catalytic loop: Residues 1227–1243). Toward the DNA major groove, residues from TRD loop I form
a concave hydrophobic surface to harbor the methyl group of 5mC (Figure 2D). On the other hand,
residues from TRD loop II engage in base-specific hydrogen bonding interactions with the CpG site
(Figure 2E). On the minor groove side, residues from the catalytic loop also form base-specific contacts
with the CpG site through hydrogen bonding interactions (Figure 2E). In addition, residues from both
the TRD and catalytic core are involved in salt-bridge or hydrogen-bonding interactions with the
DNA backbone. The two BAH domains are positioned distant to the DNA binding site. Nevertheless,
residues from the tip of the BAH2-loop contribute to the DNA binding through hydrogen bonding
interactions with the DNA backbone of the target strand (Figure 2A).

In summary, the structure of the productive mDNMT1-DNA complex provides the molecular
basis for the substrate recognition of DNMT1. The extensive protein-DNA contacts underlie the
processive methylation kinetics of this enzyme [36,37]. More importantly, it offers explanations on the
strict substrate specificity of DNMT1 on the CpG sites, as well as on the marked substrate preference
of DNMT1 toward hemimethylated CpG sites [18,28].
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from 5mC. (E) CpG-specific interactions by the TRD loop I and the catalytic loop. 5mC: 
5-methylcytosine; 5fC: 5-fluorocytosine. 
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Figure 2. Structure of mDNMT1-DNA productive complex. (A) Structural overview of mDNMT1
(amino acids 731–1602) covalently bound to hemimethylated DNA (Protein Data Base (PDB) 4DA4).
The zinc ions are shown in purple spheres. 5fC and another flipped-out cytosine from the template
strand are colored in purple and blue, respectively. (B) The DNA cavity vacated by the base flipping
is filled with mDNMT1 residues M1235 and K1537. (C) The flipped-out 5fC is surrounded by active
site residues through covalent linkage or hydrogen bonding interactions. (D) Residues from the
target recognition domain (TRD) loop II form a hydrophobic groove harboring the methyl group from
5mC. (E) CpG-specific interactions by the TRD loop I and the catalytic loop. 5mC: 5-methylcytosine;
5fC: 5-fluorocytosine.

2.2. CXXC Domain-Mediated Autoinhibition of DNMT1

The CXXC domain of DNMT1 belongs to one family of zinc finger domains that specifically
bind to unmethylated CpG-containing DNA [30,38]. It manifests in a crescent-like fold, with two
zinc finger clusters formed by the conserved CXXCXXC motifs in cooperation with distal cysteines.
The crystal structure of an mDNMT1 fragment (residues 650–1602), spanning from the CXXC domain
to the MTase domain, in complex with a 19-mer DNA duplex containing unmethylated CpG sites
provides insight into the functional role of this domain (Figure 3A) [30]. In the structure, the CXXC
domain is positioned on the opposite side of the MTase domain from the BAH domains, with a
long CXXC-BAH1 domain linker (also known as autoinhibitory linker) running across the catalytic
cleft (Figure 3A). The mDNMT1-unmethylated DNA complex contains two separate DNA-binding
interfaces, one located in the CXXC domain and the other located in the MTase domain. At one end
of the DNA, the CXXC domain interacts with the DNA molecule from both the major groove and
the minor groove, with a loop segment (R684-S685-K686-Q687) penetrating into the CpG site for
base-specific contacts (Figure 3B,C). At the other end of the DNA, the MTase domain interacts with the
DNA backbone through the C-terminal portion of the catalytic loop (residues M1235, R1237 and R1241)
and the adjacent α-helix (R1278 and R1279) (Figure 3D). These protein-DNA interactions together
localize the DNA molecule outside the catalytic cleft, resulting in an autoinhibitory conformation of
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DNMT1. Structural comparison of the autoinhibitory and active states of mDNMT1 reveals that the
largest conformational change of mDNMT1 lies in the catalytic loop, which is poised in a retracted
conformation in the autoinhibitory state, but penetrates into the DNA minor groove in the active
state (Figure 3E). Furthermore, the α-helix following the catalytic loop undergoes a kinked-to-straight
conformational transition, thereby regulating the contact between the catalytic loop and the DNA
minor groove (Figure 3E). Indeed, a subsequent study indicated that disruption of this conformational
transition leads to the impaired enzymatic activity of DNMT1 [39], highlighting the importance of this
conformational switch in DNMT1-mediated DNA methylation.
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Figure 3. Structural analysis of the CXXC domain-mediated DNMT1 autoinhibition. (A) Structural
overview of mDNMT1 (amino acids 650–1602) bound to a 19-mer DNA duplex containing
unmethylated CpG sites (PDB 3PT6). (B) Surface views of the CXXC domain and the autoinhibitory
linker in the complex of mDNMT1 with unmethylated CpG DNA. (C) Base-specific interactions between
the CXXC domain and the CpG site. The hydrogen bonding interactions are depicted as dashed lines.
(D) The MTase-DNA interactions in the autoinhibitory complex. (E) Structural overlay between the
active (light blue) (PDB 4DA4) and autoinhibitory (pink) (PDB 3PT6) complexes of mDNMT1, with the
catalytic loops highlighted in the expanded view.

These structural observations therefore led to an autoinhibitory model of DNMT1: The CXXC
domain specifically interacts with the unmethylated CpG site, which in turn stabilizes the positioning
of the autoinhibitory linker over the catalytic cleft, leading to the extrusion of the unmethylated CpG
DNA from the catalytic site. This model therefore assigns a regulatory role to the CXXC domain
in inhibiting the de novo methylation activity of DNMT1. Indeed, enzymatic assays based on the
mDNMT1(650–1602) construct indicated that disruption of the CXXC-CpG interaction or deletion
of the autoinhibitory linker both led to enhanced enzymatic activity of DNMT1 on unmethylated
CpG DNA, but resulted in no significant change to hemimethylated substrates, lending support to
the autoinhibitory mechanism. However, it is worth noting that a later study on full-length DNMT1
failed to identify any significant impact of the CXXC-DNA interaction on the substrate specificity of
DNMT1 in vitro [40], suggesting that additional factors (e.g., protein interactions or post-translational
modifications) may be needed to stabilize the CXXC domain-mediated autoinhibitory conformation,
thereby ensuring the substrate specificity of DNMT1 in cells.
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2.3. RFTS Domain-Mediated Autoinhibition of DNMT1

The crystal structures of DNA-free mouse and human DNMT1 fragments, spanning from the
RFTS domain toward the MTase domain, reveal that the RFTS domain closely associates with the MTase
domain, resulting in a compact fold (Figure 4A) [32,33]. In both structures, the RFTS domain folds into
two lobes, separated by a 24-amino acid long α-helix (Figure 4A). The N-lobe is dominated by a zinc
finger cluster, followed by a six-stranded β-barrel, while the C-lobe is assembled into a helical bundle
(Figure 4A). The N and C lobes form an acidic cleft, where the linker sequence downstream of the
RFTS domain extends away from the RFTS domain (Figure 4A). The intramolecular contact between
the RFTS and MTase domains is underpinned by hydrogen bonding interactions between the residues
from the C-lobe of the RFTS and the residues from the TRD (Figure 4B), which partially overlap with
the DNA binding surface of the TRD (Figure 2A). The CXXC domain is positioned adjacent to the RFTS
domain, adopting a conformation similar to its DNA-bound state (Figure 4A). Structural comparison
of DNA-free DNMT1 and its unmethylated CpG DNA-bound state reveals a large conformational
repositioning of the CXXC domain: It sits on one side of the TRD in the structure of mDNMT1–19-mer
unmethylated CpG DNA, but moves to the front of the TRD in the structure of free DNMT1, resulting
in a translocation of ~30 Å (Figure 4C). As a result, the autoinhibitory linker downstream of the CXXC
domain undergoes a large conformational change between the two complexes: It runs across the
catalytic cleft in the DNMT1-unmethylated CpG DNA complex but is released from the catalytic cleft
in free DNMT1 (Figure 4C). Intriguingly, this repositioning of the autoinhibitory linker is accompanied
by a loop-to-helix conformational transition: The N-terminal end of the linker assumes an extended
conformation in unmethylated CpG-bound DNMT1 but shows a helical structure in free DNMT1
(Figure 4C). At the C-terminal end of this helix, residues D700 and E703 form salt bridges with residues
R582 and K586 from the RFTS domain, while residue D702 forms hydrogen bonds with residues M1232
and N1233 from the catalytic core, which together help to strengthen the interaction between the RFTS
and MTase domains (Figure 4D). Consistently, deletion of residues 701–711 from the autoinhibitory
linker led to significantly enhanced enzymatic activities of DNMT1 [33]. These data therefore suggest
that the autoinhibitory linker not only plays a critical role in the CXXC domain-mediated DNMT1
autoinhibition, but also contributes to the RFTS domain-mediated DNMT1 autoinhibition.
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Figure 4. Structural analysis of the replication foci-targeting sequence (RFTS) domain-mediated
DNMT1 autoinhibition. (A) Structural overview of hDNMT1 (amino acids 351–1602) (PDB 4WXX).
(B) The intramolecular interactions between the RFTS (green) and MTase (aquamarine) domains.
The hydrogen bonding interactions are depicted as dashed lines. The water molecules are shown
as purple spheres. (C) Structural overlap between the CXXC (PDB 3PT6) and RFTS (PDB 4WXX)
mediated autoinhibitory complexes, with the autoinhibitory linkers colored in blue and light magenta,
respectively. The repositioning of the CXXC domain is indicated by a red arrow. (D) The interaction of
the autoinhibitory linker (magenta) with both the RFTS (green) and MTase domains (aquamarine).
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2.4. Allosteric Regulation of DNMT1

Crystal structures of DNMT1 in a DNA-free state, in complex with unmethylated CpG DNA and
in complex with hemimethylated CpG DNA together demonstrate that DNMT1 may adopt distinct
conformational states under different DNA binding conditions, suggesting a multi-layered regulation
of DNMT1 activity. It is conceivable that the interconversion between these states permits DNMT1 to
discriminate the DNA substrates under different epigenetic environments, such as methylation-free
CpG islands compared to heavily methylated heterochromatic regions (Figure 5). The stabilization
of each conformation is likely to be achieved by the distinct DNA or histone-binding mode of
DNMT1 under different environments, ensuring DNMT1 will replicate the DNA methylation pattern
both faithfully and efficiently. Indeed, emerging studies have suggested a model in which DNMT1
mediates region-specific DNA methylation maintenance, rather than site-specific DNA methylation
maintenance [41].
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Figure 5. A model for the allosteric regulation of DNMT1-mediated maintenance DNA methylation.
Hemimethylated DNA and histone H3K9me3 serve as epigenetic signals to promote UHRF1-mediated
ubiquitination of histone H3, which in turn shifts the conformation of DNMT1 from the autoinhibitory
state into an active state for maintenance DNA methylation. UHRF1 P656, which occupies the
H3K9me3-binding cage of the tandem Tudor domain (TTD) in the closed UHRF1 conformation,
is indicated by the letter P. The active site of DNMT1 is marked by a filled red circle.

The RFTS domain mediates the localization of DNMT1 to replication foci and constitutive
heterochromatin from late S throughout the G2 and M phases [42,43]. A number of mutations in
the RFTS domain have been associated with neurological disorders, including hereditary sensory
autonomic neuropathy with dementia and hearing loss (HSAN1E) [44,45], cerebella ataxia, deafness
and narcolepsy (ADCA-DN) [46,47]. These mutations presumably affect the folding and stability of
the RFTS domain [33], which in turn may lead to the dysregulation of DNMT1-mediated methylation.
Recent structural and functional characterizations of the interaction between the DNMT1 RFTS
domain and histone modifications have further elucidated the functional implication of the RFTS
domain-mediated DNMT1 autoinhibition [48]. In particular, it has been shown that the DNMT1
RFTS domain binds to histone H3 ubiquitinated at lysine 14 (K14Ub), 18 (K18Ub) and/or 23 (K23Ub),
with a preference for H3 with two mono-ubiquitination (H3Ub2) [48–50]. The crystal structure of
the RFTS domain of hDNMT1 in complex with H3-K18Ub/K23Ub reveals that the two ubiquitin
moieties engage in hydrophobic interactions with two discrete surfaces of the N-lobe of RFTS,
separated by a loop segment [48]. The N-terminal tail of H3 lies between the C-lobe and the ubiquitin
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molecule conjugated to H3K23, leading to the eviction of the linker sequence downstream of the RFTS
domain out of the cleft between the N and C lobes [48]. In accordance with these structural changes,
the interaction of DNMT1 RFTS with H3Ub2 results in a substantially elevated level of activity of
DNMT1 [48], suggesting that H3Ub2 may serve as an epigenetic signal that relieves the RFTS-mediated
autoinhibition of DNMT1. These studies have therefore established a link between the chromatin
targeting and enzymatic activation of DNMT1, unveiling the molecular mechanism for RFTS regulation
(Figure 5). It is worth noting that the H3 K14Ub/K18Ub/K23Ub marks are the enzymatic products
of UHRF1 (ubiquitin-like, containing plant homeodomain (PHD) and RING finger domains) [48–50],
a key regulatory protein of DNMT1-mediated maintenance DNA methylation [51,52]. UHRF1 is
also a multi-domain protein comprised of an N-terminal ubiquitin-like (UBL) domain, a tandem
Tudor domain (TTD), a plant homeodomain (PHD), a SET and RING-associated (SRA) domain and a
C-terminal RING finger domain [53]. An intramolecular interaction between the TTD domain and the
C-terminal polybasic region (PBR) of UHRF1 results in a closed conformation that occludes UHRF1
from chromatin association [54–57]. During the S phase, the association of UHRF1 with histone H3
trimethylated at lysine 9 (H3K9me3) [58–64], a silencing histone mark [65], and hemimethylated CpG
DNA [51,52,61,66–69] leads to the conformational opening [54–56], and enhanced E3 ubiquitin ligase
activity of UHRF1 (Figure 5) [70]. In this context, the DNMT1 RFTS domain serves as an effector
module that transmits the H3K9me3 signal into DNMT1-mediated DNA methylation (Figure 5).

2.5. Regulatory Role of DNMT1 N-Terminal Domain

The N-terminal domain (NTD) appears not to affect the enzymatic activity of DNMT1. Instead,
this region serves as a platform for the interaction between DNMT1 and proteins or DNA. Of particular
note, the fragment equivalent to residues 159–171 of mouse DNMT1 (mDNMT1) is responsible
for interacting with proliferating cell nuclear antigen (PCNA) [71], thereby contributing to the
recruitment of DNMT1 to the replication foci during the S phase [71], or the DNA repair sites [72].
The NTD reportedly also interacts with other proteins, including DMAP1 [73], G9a [74], DNMT3A [75],
DNMT3B [75], PKC [76] and CDKL [77] to regulate transcription repression, heterochromatin formation
or the pathogenic processes of Rett syndrome. In addition, the DNA binding activity of the NTD has
been reported [78–80]. However, due to lack of a structural study, the functional implication of most of
the NTD-associated interactions remains to be investigated.

2.6. Regulatory Role of DNMT1 (GK)n Repeats

The (GK)n repeat of DNMT1, which is highly conserved throughout evolution, links the regulatory
domains to the MTase domain. Current structural studies indicate that this repeat is not involved in the
DNA interaction. Rather, it constitutes a binding site for deubiquitinase USP7, an enzyme that plays a
regulatory role in DNMT1-mediated maintenance DNA methylation [81–84]. The DNMT1-USP7
interaction is subject to regulation by the acetyltransferase Tip60 and the deacetylase HDAC1:
Tip60-mediated acetylation of the (GK)n repeat leads to the disruption of the DNMT1-USP7 interaction,
which can be restored by the HDAC1-mediated deacetylation of the same site [82]. On the other hand,
a more recent study has suggested that the (GK)n repeat may participate in the DNMT1-mediated de
novo methylation of paternal imprinting control regions (ICRs) in mouse ES cells [85]. Due to the lack
of molecular details of DNMT1-mediated methylation in cells, the functional implication of the (GK)n
repeat remains controversial [86].

3. Structural Basis of DNMT3A-Mediated DNA Methylation

DNMT3A and DNMT3B mediate DNA methylation establishment during gametogenesis
and embryogenesis [16,87], and subsequently participate in methylation maintenance [88–90].
The enzymatic activity of DNMT3A/3B in germ cells and embryonic stem cells is further regulated by
DNMT3-like (DNMT3L) protein, which lacks DNA methylation activity but functions to stimulate
the cofactor binding and enzymatic activity of DNMT3A/3B [7,91–93] and to maintain DNMT3A
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stability in cells [94]. DNMT3A and DNMT3B are highly related in sequence, both containing a largely
disordered NTD, followed by a Pro-Trp-Trp-Pro (PWWP) domain, an Atrx-Dnmt3-Dnmt3l (ADD)
domain and a highly homologous MTase domain (Figure 1). DNMT3L contains an N-terminal ADD
domain, followed by a MTase-like domain, which is catalytically inactive due to a lack of essential
motifs for enzymatic activity (Figure 1) [95,96].

3.1. Enzyme-Substrate Interaction of DNMT3A

The crystal structure of the MTase domain of DNMT3A in complex with the C-terminal
domain of DNMT3L (DNMT3L-C) provides the first atomic details of the DNMT3A-DNMT3L
complex [97]. The DNMT3A MTase domain forms a tetrameric fold with DNMT3L-C, in the
order of 3L-3A-3A-3L, resulting in two DNMT3A-DNMT3L heterodimeric interfaces and one
DNMT3A-DNMT3A homodimeric interface. The homodimerization of DNMT3A is mediated by
a network of salt bridges and hydrogen bonding interactions, while the heterodimerization of
DNMT3A and DNMT3L is mainly driven by hydrophobic stacking interactions between two pairs
of phenylalanine residues [97]. Notably, the active sites between the two DNMT3A monomers are
separated by ~40 Å, a distance equivalent to one helical turn of DNA. This observation provides
the basis for the CpG spacing model, in which the DNMT3A dimer is capable of methylating two
CpG sites located across the opposite strands of one DNA duplex, separated by ~10 base-pair (bp)
DNA, in one binding event. This model predicts the prevalence of ~10 bp methylation periodicity in
cells, which has been supported by a number of biochemical and cellular studies [97,98]. However,
the observation that the 10 bp-methylation periodicity also occurs in plants later prompted alternative
explanations for the methylation periodicity [99].

Recently, the crystal structure of DNMT3A-DNMT3L in complex with a DNA duplex containing
two separate CpG sites (in which the target cytosines are replaced with zebularines [100]) has
been determined [101]. The structure reveals a productive state of the DNMT3A-DNA complex,
with two CpG/ZpG (Z: zebularine) sites separately targeted by the two DNMT3A monomers of the
DNMT3A-DNMT3L tetramer (Figure 6A), therefore confirming the notion of DNMT3A-mediated
DNA co-methylation. The structure of the DNA-bound DNMT3A-DNMT3L tetramer resembles
that of free DNMT3A-DNMT3L (Figure 6B), with an RMSD of 1.1 Å over 826 aligned Cα atoms.
The most notable structural difference arises from a loop from the TRD (TRD loop), which undergoes a
disorder-to-order transition upon DNA binding (Figure 6B). The interaction between DNMT3A and
DNA is mediated through the catalytic loop, the TRD loop and the DNMT3A-DNMT3A homodimeric
interface (Figure 6A), which together create a continuous DNA-binding surface. The zebularines are
flipped out of the DNA duplex and insert deep into the catalytic pocket of DNMT3A, where they
are covalently anchored by the catalytic cysteine C710 and recognized by several other residues
through hydrogen bonding interactions (Figure 6C) [101]. Similar to the productive mDNMT1-DNA
complex, the catalytic loop and TRD loop of DNMT3A approach the DNA molecule from the minor
groove and the major groove, respectively, with residue V716 from the catalytic loop intercalating
into the DNA cavity vacated by base flipping (Figure 6C,D). In the minor groove, the backbone
carbonyl of V716 forms a hydrogen bond with the orphan guanine (Figure 6C), while in the major
groove, residues R836 and T834 from the TRD loop also interact with the guanine of the target strand
through direct and water-mediated hydrogen bonding interactions (Figure 6D). Consistent with
these structural observations, the introduction of mutations into these CpG-interacting residues leads
to either dramatically decreased activity (for V716G) or altered methylation specificity (for R836A)
in vitro and in cells [101]. Mutations of the substrate binding site of DNMT3A, including R882H,
have been associated with hematological cancer [102–104]. Both in vitro and in vivo assays indicated
that these mutations compromise the enzymatic activity of DNMT3A [101–107], which may contribute
to disease progression.

It is worth noting that the structure of the DNMT3A-DNMT3L- DNA complex reveals that the
active sites between the two DNMT3A monomers are separated by 14 bp DNA, instead of the 10 bp
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as previously proposed. Whether this observation arises from the inherent structural property of
DNMT3A or its conformational dynamics remains to be investigated.
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CpG DNA. (A) Structural overview of the DNMT3A-DNMT3L tetramer covalently bound to a 25-mer
DNA duplex containing two CpG/ZpG sites (Z: Zebularine) (PDB 5YX2). The flipped-out zebularines
are colored in purple. (B) Structural overlap between the DNA-bound and free DNMT3A-DNMT3L
tetramer (PDB 2QRV). The TRD loops, which undergo disorder-to-order transition upon DNA binding,
are colored in blue. (C) The DNA interactions involving the catalytic loop and other catalytic residues.
(OG: Orphan guanine). The hydrogen bonding interactions are depicted as dashed lines. (D) Residues
T834 and R836 from the TRD loop (blue) engage in base-specific recognition of the CpG site. The water
molecules are shown as purple spheres.

3.2. ADD Domain-Mediated Autoinhibition of DNMT3A

The ADD domain of DNMT3A is comprised of an N-terminal GATA-like zinc finger, a PHD
finger and a C-terminal α-helix [108], together packing into a single globular fold. This domain has
been characterized as a reader module that specifically binds to histone H3 unmethylated at lysine 4
(H3K4me0) [108,109]. The association of the DNMT3A ADD domain with H3K4me0 is mediated by
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antiparallel β-pairing between the two-stranded β-sheet of the ADD domain and residues A1-T6 of
H3, with the side chain of H3K4me0 engaging in hydrogen-bonding interactions with D529, D531 and
Q534 from the ADD domain [108]. In addition, a downstream loop of the ADD domain undergoes
a disorder-to-order transition to close up on the N-terminus of H3, supporting the specific ADD-H3
association [108].

Recent studies have further revealed that the ADD domain regulates the activity of DNMT3A
through an H3-dependent, autoinhibitory mechanism [110,111]. The structure of a DNMT3A fragment,
spanning the ADD and MTase domains, in complex with DNMT3L-C reveals an intramolecular
interaction between the ADD and MTase domains of DNMT3A (Figure 7A). In particular, the linker
sequence following the ADD domain initiates a hydrophobic contact with the MTase domain,
which then guides the insertion of a loop (residues 526–533) of the ADD domain into the catalytic
cleft, where it engages in salt-bridge interactions with DNA binding sites (R790, R792, H789
and R831) (Figure 7B), thereby inhibiting the substrate binding of DNMT3A (Figure 7C) [110].
In contrast, the structure of the DNMT3A-DNMT3L-H3 complex demonstrates that, upon binding to
H3 (Figure 7D,E), the DNMT3A ADD domain is repositioned from the catalytic cleft onto a different
surface of the MTase domain, engaging a distinct set of hydrogen bonds and hydrophobic interactions
(Figure 7D) [110]. The structural comparison of the H3-free and H3-bound DNMT3A complexes
therefore provides a dynamic view on how the H3 binding switches the conformation of DNMT3A
from an autoinhibitory state to an active state. Note that the residues involved in the autoinhibitory
regulation of DNMT3A are highly conserved in DNMT3B, suggesting a conserved allosteric regulation
mode of DNMT3 methyltransferases.

The observation that the intramolecular ADD-MTase interaction interplays with the intermolecular
ADD-H3 interaction establishes a direct coupling between the enzymatic activity and chromatin
targeting of DNMT3A. Similar to the RFTS domain-mediated allosteric regulation of DNMT1,
as described above, this regulatory mechanism of the DNMT3A ADD domain ensures the precise
spatial regulation of DNMT3A [109–111], which is essential for installing lineage-specific DNA
methylation patterns across the genome.

3.3. Functional Regulation of DNMT3A by the N-Terminal Tail and PWWP Domain

The NTD segment defines the most divergent region between DNMT3A and DNMT3B.
This region has been shown to regulate the DNA binding and cellular localization of
DNMT3A [112–114]. Unlike full-length DNMT3A that is predominantly localized to the
heterochromatic region, DNMT3A2, an isoform of DNMT3A lacking residues 1–221 of the NTD,
becomes enriched in the euchromatic region, with reduced DNA binding affinity [114]. The precise
regulatory role of this domain remains to be investigated.

The PWWP domain, named after a characteristic proline-tryptophan-tryptophan-proline
motif, belongs to the Royal super-family of domains that recognize histone tails with various
modifications [115,116]. The PWWP domain of DNMT3A and DNMT3B mediates their chromatin
association through specific recognition of histone H3 trimethylated at lysine 36 (H3K36me3) [117,118],
which is essential for directing the de novo methylation activity of DNMT3A/3B at the pericentric
heterochromatin [119]. Structural studies of the DNMT3A/3B PWWP domain revealed a β-barrel
followed by a C-terminal helical bundle, similar to other PWWP domains (Figure 8A,B) [120–122].
The β-barrel is comprised of five β-strands, with the signature PWWP motif replaced by a SWWP motif
at the beginning of the second β-strand. The structure of the DNMT3B PWWP domain in complex with
an H3K36me3 peptide reveals that the histone peptide occupies a surface groove formed by residues
from the β1 strand, the β1-β2 loop, and the β4 strand, with the side chain of H3K36me3 inserting into
the aromatic cage formed by F236, W239 and W263 through hydrophobic and cation-π interactions
(Figure 8B) [121]. The H3K36me3 binding also induces a conformational change of the β1-β2 loop,
which moves to close up the aromatic cage, thereby enhancing the specific H3K36me3 recognition.
In addition, both the DNMT3A and DNMT3B PWWP domains present a positively charged surface
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that confers their DNA binding activity (Figure 8C) [120,121,123]. The cooperative engagement of
both DNA and H3K36me3 by the DNMT3A/3B PWWP domains provides a mechanism for targeting
these two enzymes to heterochromatic regions [118,119] or the actively transcribed gene body in the
nucleus [124].
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Figure 7. Structural analysis of the Atrx-Dnmt3-Dnmt3l (ADD) domain-mediated DNMT3A
autoinhibition. (A) Structural overview of the DNMT3A-DNMT3L tetramer, with the DNMT3A
fragment comprised of both the ADD and MTase domains (PDB 4U7P). (B) Intramolecular interactions
between the ADD loop (blue) and the MTase domain (aquamarine) of DNMT3A. The hydrogen bonding
interactions are depicted as dashed lines. (C) The ADD-binding site of the DNMT3A MTase overlaps
with its DNA binding site. (D) Structure of the DNMT3A-DNMT3L tetramer bound to the histone
H3K4me0 peptide (PDB 4U7T), with the interaction between H3K4me0 and the ADD domain shown
in an expanded view (PDB 3A1B).
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4. Structural Comparison of the DNMT1-DNA and DNMT3A-DNA Complexes

The structural comparison of the DNMT3A-DNMT3L-DNA complex and the
mDNMT1-hemimethylated DNA complex provides insights into the distinct molecular basis
between DNMT3A-mediated de novo DNA methylation and DNMT1-mediated maintenance
DNA methylation. Despite the conformational similarity in their catalytic loop for accessing the
DNA minor groove, mDNMT1 and DNMT3A enter the DNA major groove differently for CpG
recognition (Figure 9A–D). Firstly, mDNMT1 interacts with the DNA major groove through two of
its TRD loops, with one (TRD loop 1) engaging the CpG dinucleotide through hydrogen bonding
interactions and the other (TRD loop 2) forming a hydrophobic concave harboring the methyl group
of 5mC along the template strand (Figure 9A,B). In contrast, while DNMT3A interacts with the
DNA major groove through a loop similar to TRD loop 1 in DNMT1, it lacks the DNMT1 TRD loop
2-equivalent segment for 5mC recognition (Figure 9C,D). These observations explain why DNMT1,
but not DNMT3A, shows an enzymatic preference for hemimethylated substrates over unmethylated
substrates. Additionally, the DNA molecules bound to mDNMT1 and DNMT3A also exhibit
different conformational adjustments. In mDNMT1-bound DNA, the base flipping leads to one-base
translocation of the orphan guanine and a large distortion of the CpG site, with the DNA cavity
filled by two bulky protein residues (M1235 and K1537) (Figure 9A). In contrast, in DNMT3A-bound
DNA, the orphan guanine remains in space, resulting in a smaller DNA cavity occupied by one
small residue of DNMT3A (V716) (Figure 9C). In addition, the large TRD of DNMT1 permits an
extensive protein-DNA interaction, resulting in a buried surface area of ~2100 Å2, whereas the DNA
binding of DNMT3A, with a much smaller TRD, only leads to buried surface area of ~1300 Å2 for each
DNMT3A monomer. This limited DNA binding of each DNMT3A monomer is nevertheless overcome
by the presence of two DNMT3A monomers in the DNMT3A-DNMT3L tetramer, which provides an
enlarged protein-DNA contact surface to ensure the efficiency of DNA methylation. Together, these
observations highlight the molecular basis underlying the difference between DNMT3A-mediated de
novo methylation and DNMT1-mediated maintenance methylation.
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5. Summary 

Recent structural and biochemical studies have greatly advanced our understanding of 
DNMT1-mediated maintenance DNA methylation and DNMT3A/3B-mediated de novo DNA 
methylation. Structural elucidations of DNMT1 and DNMT3A in complex with their respective 
DNA substrates or histone peptides provide mechanistic details for the functional regulation and 
substrate specificity of these enzymes. However, a number of outstanding questions remain to be 
addressed, for example, how are the N-terminal domains of DNMT1 or DNMT3A coordinated in 
regulating the enzymatic activity and genome targeting? How are the DNMTs regulated in the 
chromatin environment? Future investigations of the structure and dynamics of DNMT1 and 
DNMT3A/3B in their cellular environment will help provide a systematic view on the mechanistic 
basis of mammalian DNA methylation. 
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5. Summary

Recent structural and biochemical studies have greatly advanced our understanding of
DNMT1-mediated maintenance DNA methylation and DNMT3A/3B-mediated de novo DNA
methylation. Structural elucidations of DNMT1 and DNMT3A in complex with their respective DNA
substrates or histone peptides provide mechanistic details for the functional regulation and substrate
specificity of these enzymes. However, a number of outstanding questions remain to be addressed,
for example, how are the N-terminal domains of DNMT1 or DNMT3A coordinated in regulating
the enzymatic activity and genome targeting? How are the DNMTs regulated in the chromatin
environment? Future investigations of the structure and dynamics of DNMT1 and DNMT3A/3B in
their cellular environment will help provide a systematic view on the mechanistic basis of mammalian
DNA methylation.
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