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Abstract

The paper presents a statistical-mechanics model for the kinetic selection of viral RNA mole-

cules by packaging signals during the nucleation stage of the assembly of small RNA

viruses. The effects of the RNA secondary structure and folding geometry of the packaging

signals on the assembly activation energy barrier are encoded by a pair of characteristics:

the wrapping number and the maximum ladder distance. Kinetic selection is found to be

optimal when assembly takes place under conditions of supersaturation and also when the

concentration ratio of capsid protein and viral RNA concentrations equals the stoichiometric

ratio of assembled viral particles. As a function of the height of the activation energy barrier,

there is a form of order-disorder transition such that for sufficiently low activation energy bar-

riers, kinetic selectivity is erased by entropic effects associated with the number of assembly

pathways.

Author summary

During the assembly of a viral particle, a limited number of viral genomic RNA molecules

must compete for packaging with a large number of closely similar host messenger RNA

molecules. All-atom simulations of this competition process are impractical. The paper

presents a tractable mathematical model for the selection process as a non-equilibrium
phenomenon.

Introduction

When the molecular components of a single-stranded (ss) RNA virus assemble and form viri-

ons in the cytoplasm of an infected cell, genomic viral RNA molecules (gRNA) compete for

packaging with a large pool of—quite similar—host messenger RNA (mRNA) molecules for

packaging by the viral capsid proteins [1]. For example, for the case of influenza the number of

gRNA molecules inside an infected cell is less than 104 [2] while the total number of host

mRNA molecules is in the range of 3.6 × 105.
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Viral RNA selection relies on so-called packaging signals [3–9]. These are short RNA stem

loop motifs that are a part of the secondary structure of gRNA molecules. Importantly, any
ssRNA molecule with the molecular weight of a gRNA molecule has numerous hairpins, some

of which may be similar or identical to one of the packaging signals of a virus. In order to

avoid the packaging of mRNA material individual packaging signals should not trigger virion

assembly. Viral gRNA molecules typically have a coordinated pattern of packaging signals that

collectively direct the assembly, sometimes called a “ψ sequence”. These virus-specific interac-

tions between packaging signals and capsid proteins operate together with a generic, non-spe-

cific electrostatic affinity between the negatively charged RNA nucleotides and positively

charged residues of the capsid proteins [10–13].

It has been demonstrated that the spontaneous self-assembly of empty icosahedral capsids

is initiated by the formation of a nucleation complex composed of a limited number of capsid

proteins [14–16]. This nucleation complex can be compared to the critical nucleus of the

kinetic theory of nucleation and growth [17, 18]. The energetically uphill formation of the

nucleation complex is followed by the energetically down-hill growth (or “elongation”) process

that ends in the formation of a closed capsid. The self-assembly of empty capsids does not (and

should not) take place under physiological conditions. Under those conditions electrostatic

repulsion between the capsid proteins is just able to overcome the hydrophobic affinity

between capsid proteins. The physical aspects of RNA packaging have been extensively studied

experimentally and theoretically [10, 11, 19–35] as well as by numerical modeling [13, 36–38].

For reviews see refs. [18, 39, 40]. Theoretical models have generally focused on the minimiza-

tion of the free energy of a fully assembled viral particle. This produced global measures for the

“packaging fitness” of an RNA molecule in terms of its length, the degree of branching and

compactness, and the effects of electrostatics and osmotic pressure.

The pioneering work by Aaron Klug on TMV [41] showed that the action of gRNA on

assembly is two-fold. On the one hand, negative charges of the RNA molecules neutralize—on

a non-specific basis—positive capsid protein charges. This shifts the overall equilibrium free-

energy balance from a dispersed state towards aggregation. On the other hand, the specific

packaging signals on gRNA act as catalysts that lower the activation energy barrier of the

nucleation complex. In the view of Klug, the packaging signals affect the assembly kinetics
while in a thermodynamic view the role of the packaging signals would be to further tilt the

free energy balance in favor of packaging. The most well-studied case of RNA selectivity is

probably that of the HIV-1 retrovirus (see ref. [42] and references therein). RNA selectivity

depends on the cooperative action of a cluster of packaging signals located at the 5’ end of the

gRNA molecule, the ψ sequence. It is about a hundred nucleotides long, which is very small

compared to the total length of the HIV-1 genome (about 104 nucleotides). gRNA selection

appears to take place very early, during the nucleation stage of the assembly process when the

ψ sequence interacts with only a small group of capsid proteins. Changing the RNA sequence

of other sections of the genome molecules does not appear to affect the selectivity. The gRNA
molecules appear to have no thermodynamic advantage over non-viral RNA molecules of the
same length [43]. This indicates that the origin of the very efficient gRNA selection mechanism

of HIV-1 must be sought in the kinetics of the assembly process. Finally, recent progress in the

asymmetric image reconstruction of certain small RNA viruses [44] indicate that also in those

cases the RNA selection process takes place early in the assembly process. Asymmetric recon-

struction of the MS2 phage virus [45] shows that RNA packaging signals associate reproducibly
with a specific section of the interior of the capsid. The authors proposed a model for viral

assembly in which a spatial distribution of packaging signals functions as a virus-specific

“map” for the initial nucleation stage of the assembly while the subsequent elongation step of

the assembly is driven more by non-specific interactions. This scenario appears similar to that
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of the TMV and HIV-1 viruses. There certainly are also counter examples where free energy

minimization accounts for selection. For example, the asymmetric reconstruction of the

CCMV and BMV plant viruses produced only a very small amount of reproducible RNA-pro-

tein association [46]. Interestingly, this group of viruses is much less selective than MS2.

CCMV capsid proteins appear to select BMV genome molecules over CCMV genome mole-

cules while they can package a wide variety of non-viral ss RNA molecules and even non-RNA

polyelectrolytes [47, 48]. Apparently, the amount of CCMV gRNA molecules produced inside

an infected cell is sufficiently large so there is no need for very precise assembly selectivity.

In this paper we propose a simple statistical-physics model to study the physics of selective

nucleation by a group of packaging signals that encode the assembly of a small ssRNA virus.

By construction, the model focuses exclusively on kinetic selection. In the conclusion we will

return to the relation between the thermodynamic and kinetic modes of selection.

Model and methods

Spanning tree model

The starting state of the system is assumed to be a solution containing a certain concentration

of condensed, folded viral RNA molecules and of pentameric capsid proteins. The folded mol-

ecules have the same interior structure and dimensions and differ only in terms of the ψ sec-

tion of contiguous packaging signals distributed over the surface of the condensed RNA

molecule. The capsid of the virus is assumed to be composed of twelve protein pentamers

assembled into a dodecahedron such that double-stranded (ds) RNA sequences line the edges

of the pentamers. This is inspired by the family of the Nodaviridae in which part of the ssRNA

genome are ds sequences forming a dodecahedral cage [49]. The secondary structure of the ψ
section is represented as a tree of nineteen links and twenty nodes connecting the vertices of

the dodecahedron. The pentameric capsid itself is the well-studied Zlotnick model system for

empty capsids [50–53]). The geometry of the ψ section is assumed to be adapted to the dodeca-

hedral capsid so that the twenty nodes of the secondary structure match up with the twenty

vertices of the dodecahedron. Despite these constraints there still are tens of thousands of sec-

ondary structures that satisfy these constraints. In the mathematical literature, these structures

are known as the spanning tree graphs of a dodecahedron [54]. The number of nodes of a span-

ning tree is twenty because a spanning tree must visit all the vertices, of which there are twenty.

The number of links is nineteen because in any connected tree graph the number of links is

one less than the number of nodes. A spanning tree leaves eleven edges of the dodecahedron

uncovered. We will assume that these remaining edges have only a generic affinity for the cap-

sid proteins. Fig 1 shows an example of a spanning tree of the dodecahedron.

Initially, all pentamers are in solution at a certain total concentration c0. The pentamers are

assumed to have a generic affinity (electrostatic in actuality) for all edges of the dodecahedron

plus a specific affinity for those edges that are covered by links of the spanning tree (acting as

packaging signals). The specific affinity is maximized by placing the pentamer on a location

such that four of its edges can associate with a link of the chain. For the tree molecule shown in

Fig 1, a total of six pentamers can be placed on such maximum wrapping locations. We will

say that the wrapping number of this tree structure isNP = 6. The wrapping number is a charac-

teristic of the folding geometry of the RNA molecule.

The very simplest spanning tree is a linear chain composed of nineteen links. Fig 2 shows

how a linear chain can be distributed over a dodcahedron, while visiting all vertices. As shown

in Fig 2, only two pentamers can be placed on locations such that four of its edges associate

with a link of the chain. There are 1620 different configurations for a linear chain of twenty

nodes to be distributed over of a dodecahedron such that the nodes coincide with the vertices
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known in the mathematical literature asHamiltonian paths. Hamiltonian paths have been

used before to classify viral RNA configurations [8, 55, 56]). Hamiltonian paths of the dodeca-

hedron can have wrapping numbers two, three, or four. There are important differences

between the linear and the branched cases. In the linear case, pentamers have embeddings

with two, three or four edges occupied while for the branched case, there are embeddings with

zero, one, two, three or four edges occupied.

Next, the edges of a pentamer will be assumed to have affinity for the edges of other penta-

mers. It is this affinity that drives the assembly of empty capsids. The wrapping number does

Fig 1. Left: Branched spanning tree connecting the vertices of a dodecahedron. Six pentamers can be placed on the dodecahedron

such that their edges make the maximum of four contacts with links of the spanning tree. Right: Planar representation of the

spanning tree.

https://doi.org/10.1371/journal.pcbi.1009913.g001

Fig 2. Example of a spanning tree in the form of a Hamiltonian path of a dodecahedron. In blue are shown two

pentamers that can be placed on the dodecahedron such that their edges make the maximum of four contacts with

links of the spanning tree.

https://doi.org/10.1371/journal.pcbi.1009913.g002
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not measure how many attractive contacts a newly added pentamer can make with pentamers

that were placed earlier on the dodecahedron. The more compact a spanning tree, the larger

the probability that two maximally wrapped pentamers also are able to share an edge. Fig 3

illustrates the important role of compactness of the spanning tree. The figure shows the first

three steps of the minimum energy assembly pathways of two spanning trees, one with a wrap-

ping numbers Np = 5 and the other with Np = 6. It is assumed that the edge-edge affinity

exceeds the edge-link affinity. In both cases, the first two pentamers can be placed on adjacent

sites with maximum wrapping so they have one shared edge. The assembly energy is the same

at this point. A difference appears when the third pentamer is placed on the assembly. For the

more compact Np = 5 molecule, the third pentamer can be placed on a maximum wrapping

site where it has two shared edges with the two pentamers already present but this is not possi-

ble for the less compact Np = 6 tree. It follows that the minimum assembly energy of a three

pentamer cluster for the Np = 5 molecule is lower than that of the Np = 6 molecule. The wrap-

ping number is thus, by itself, insufficient as an index that can predict which spanning trees

favor assembly nucleation.

The Maximum Ladder Distance (MLD) has been used to characterize the degree of com-

pactness of the secondary structure of complete gRNA molecules and as a measure of the size

of an RNA molecule in solution [57, 58]. In the mathematical literature, the ladder distance (or

LD) between two nodes of a tree graph is defined as the number of links of the graph along a

minimum length path separating the two nodes. The MLD of a tree graph is the largest LD of

the graph. In the language of graph theory, the LD between two nodes of a tree graph is known

as the “distance” between the two nodes and the MLD as the “diameter” of a tree graph [59].

Fig 3. The first three steps of the minimum energy assembly pathways of two molecules, with wrapping numbers Np = 6 (top) and Np = 5

(bottom) respectively, for the case that the affinity of pentamer edges for each other exceeds the specific affinity for the spanning tree. The more

compactNp = 5 tree allows three pentamers on sites with four links with each pentamer making two edge-to-edge contacts. For the less compactNp = 6

tree, the third pentamer only makes three contacts with a link.

https://doi.org/10.1371/journal.pcbi.1009913.g003
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Below we apply the MLD concept only to the ψ section of the complete molecules, not to the

RNA molecule as a whole. The MLD of the branched spanning tree that was just discussed is

nine while it is nineteen for the linear tree. Unlike the wrapping number, the MLD is a charac-

teristic that is determined entirely by the topology of the planar graph of the secondary struc-

ture of the ψ sequence. Unlike the wrapping number, it remains the same for different folding

geometries. We will see that the combination of the wrapping and MLD numbers together

forms a satisfactory index for the effectiveness of a spanning tree as a nucleation catalyst.

Minimum-energy assemblies

A spanning tree/pentamer structure with n pentamers is assigned an assembly energy

DEðnÞ ¼ E0ðn1�1 þ n2�2 � n3 � m0nÞ

with respect to an RNA molecule without pentamers. Here, n1 is the number of links of the

spanning tree that lie along a pentamer edge that is not shared with another pentamer, n2 is

the number of spanning tree links that lie along a pentamer edge that is shared with another

pentamer while n3 is the number of edges shared between two pentamers that are not associ-

ated with a link of the spanning tree. The energy scale E0 is the binding energy between two

pentamer edges in the absence of specific RNA-pentamer affinity. Energies will be expressed

in units of E0. The physical meaning of the dimensionless parameter −�1 is that of the ratio of

the affinity of a spanning tree link for a pentamer edge over E0. Interactions between edges

and spanning tree links will be assumed to be additive. In that case the dimensionless �2

parameter equals �2 = −1 + 2�1 since the RNA link interacts with two pentamer edges. Finally,

μ0 is the chemical potential of pentamers in solution at a certain reference concentration. The

reference chemical potential includes the non-specific affinity of a pentamer for the RNA con-

densate. The reference chemical potential will be chosen so that ΔE(12) is close to zero, so

when the chemical potential in solution at the reference concentration is the same as that of a

pentamer that is part of an assembled capsid. This is the case if ΔE(12) = 19�2 − 11 − 12μ0 is

zero. Note that ΔE(12) is the same for all spanning trees so different spanning trees have the

same assembly energy (we will see later that the assembly free energy is not the same for all

trees).

Two examples of minimum-energy assembly profiles near assembly equilibrium with c0 = 1

are shown in Fig 4 The left figure shows the case of an NP = 8,MLD = 9 spanning tree. Recall

that such a spanning tree is maximally adjusted for pentamer binding. The right figure shows

the case of an NP = 2,MLD = 19 spanning tree, which has minimal adjustment for pentamers.

The activation energy is about two E0 higher in the second case. The assembly energy profiles

of spanning trees with the same NP andMLD are nearly always the same.

These assembly energy profiles are consistent with a nucleation-and-growth scenario close

to the equilibrium assembly threshold. As expected, the activation energy barrier of the NP = 8,

MLD = 9 spanning tree (about 3.0E0) is lower than that of the NP = 2,MLD = 19 spanning tree

(about 5.0E0). The long straight section of the NP = 8,MLD = 9 energy profile can be under-

stood by noting that when a pentamer is added to one of the eight maximum wrapping sites

then that lowers the energy by 4�1 in units of E0. If additional pentamers always make two new

contacts with pentamers that are already present—as is indeed the case here—then each added

pentamer lowers the energy further by an amount of 2 E0 minus the chemical potential μ0. In

this particular case, these two terms cancel so the assembly energy barrier has a wide and flat

top. Starting from a linear chain with MLD = 19 and Np = 2 and then stepwise decreasing the

MLD and increasing the Np one finds that the assembly energy activation barrier nearly always

systematically decreases. Assembly on a spanning tree with the minimum MLD and the
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maximal wrapping number Np has in general the lowest possible assembly activation energy

barrier.

An illustration of the assembly sequence of an NP = 8,MLD = 9 spanning tree spanning tree

is shown in Fig 5 for the case that −�1 is less than 0.5. The first eight pentamers all can be placed

on sites that maximize the number of spanning tree link contacts (four) as well as the number

of attractive pentamer-pentamer contacts. The second pentamer creates one new pentamer-

pentamer contact while the next three pentamers create two new pentamer-pentamer contacts.

All pentamer assembly intermediates are compact structures. In summary, the combination of

the wrapping number and the MLD appears to be a good, though not perfect, code for the

height of the assembly energy activation barrier.

Next, we explored the configuration space of assembly intermediates. Fig 6 shows graphs of

all distinct assembly intermediates for molecule (1) and (2) as well as the minimum energy

assembly pathways that link them. Each node of the network stands here for a physically dis-

tinct assembly intermediate (assemblies that are related by a symmetry operation of the

dodecahedron are treated here as the same). Nodes are assigned “coordinates” (n, i) with n = 0,

1, . . .., 12 the number of pentamers of the intermediate and with i = 1, 2, . . .. . .,mn an index

ranging over the distinct n-pentamer states wheremn is themultiplicity of the n-pentamer

state (e.g.,m5 = 4 for the NP = 8,MLD = 9 spanning tree). A black line linking two dots indi-

cates that the two states can be interconverted by addition or removal of a pentamer. Assembly

of viral particles can be viewed as a net “current” flow from the n = 0 source state to the n = 12

final state along all possible paths across the network linking the initial state to the final state.

Under conditions of thermodynamic equilibrium, the current across each individual link

should be zero according to the principle of detailed balance. Note that the compact, branched

spanning tree molecule (1) (left) has far fewer assembly intermediates and assembly pathways

than the linear structure molecule (2) (right).

An important simplification ensues when we ignore the very small number of assembly

energy profiles that do not conform to the quasi-universal profile for given NP andMLD dis-

cussed above. If we do that then different nodes of the network with the same n all have have the
same assembly energy ΔE(n). This simplification allows us assign to each node a Boltzmann

Fig 4. Minimum-energy assembly energy profiles for NP = 8, MLD = 9 spanning trees (left) and for an NP = 2, MLD = 19 spanning tree (right).

Energy parameters are �1 = −0.5 and μ0 = −4.0 (close to assembly equilibrium where μ0’ − 4.083. Energies are expressed in units of the overall scale E0.

The assembly energy profiles of spanning trees with the sameNP andMLD are nearly always the same. The pathways for the small number of

exceptions are shown in the figure.

https://doi.org/10.1371/journal.pcbi.1009913.g004
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Fig 5. A spanning tree with a maximum wrapping number of eight and the minimum MLD of nine. The first five pentamers can be placed

on sites that maximize both the number of available pentamer-pentamer contacts and pentamer-spanning tree link contacts (four). The sixth

pentamer, shown separately with a different perspective, makes three pentamer-pentamer contacts but can only make two spanning tree link

contacts.

https://doi.org/10.1371/journal.pcbi.1009913.g005

Fig 6. Examples of minimum energy assembly paths of an NP = 8, MLD = 9 spanning tree (left) and an NP = 2, MLD = 19 spanning tree (right). A

node (indicated by a dot) indicates a physically distinct intermediate structure with, from left to right, n = 0, 1, . . .., 12 pentamers. The numbermn of

vertical dots for given n is themultiplicity, i.e., the number of distinct n-pentamer intermediates. A link connecting two nodes indicates that the two

states are related by addition or removal of a pentamer. Every possible path from n = 0 to n = 12, including back steps, represents a possible minimum

energy assembly pathway. During assembly there is a net current from the n = 0 initial state to the n = 12 final state while in thermal equilibrium the net

current across every link is zero.

https://doi.org/10.1371/journal.pcbi.1009913.g006
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equilibrium probability:

PeqðnÞ / exp � bDEðnÞ þ n lnðcf Þ ð1Þ

which depends on the concentration cf of pentamers free in solution (expressed in units of the

reference concentration). The proportionality factor in the expression is determined by the

normalization condition
P12

n¼1
mnPeqðnÞ ¼ 1. We will make this simplification in the following

sections.

Master equation

In this section we define the Master Equation that governs the kinetics. We will use the coordi-

nate system for the network graphs defined below Fig 6. The network geometry of a particular

spanning tree is specified in the form of an adjacency matrix Ai;jn that equals one if a link con-

nects node n, i to node n + 1, j while it equals zero if there is no link. Each node n, i of the

graphs has a time-dependent occupation probability Pi,n(t). The kinetics is expressed as a set of

coupled rate equations for the PinðtÞ and is assumed to be a Markov process with probabilities

evolving in time according to the Master Equation [60]:

dPi;nðtÞ
dt

¼
X

j

fAj;in� 1Wn� 1;nPj;n� 1ðtÞ þ A
i;j
n Wnþ1;nPj;nþ1ðtÞg

� Pi;nðtÞ
X

j

fAj;in� 1Wn;n� 1 þ A
i;j
n Wn;nþ1g

ð2Þ

Here,Wn,n+1 is the on-rate for the transition of an assembly of n pentamers to one with size n
+ 1 by the addition of a pentamer whileWn,n−1 is the off-rate at which a pentamer is removed

from an assembly of size n. We assume a simplified diffusion-limited chemical kinetics (see

[61] and Supplementary Information S1 Text) in which the addition or removal of a pentamer

to an assembly of size n is treated as a bimolecular reaction. The resulting on-rate has the form

of a kinetic Monte-Carlo algorithm:

Wn;nþ1 ¼ lcf
e� DDEn;nþ1 if DEðnþ 1Þ > DEðnÞ

1 if DEðnþ 1Þ < DEðnÞ

(

ð3Þ

with cf again the concentration of free pentamers, ΔΔEn,n+1 = ΔE(n + 1) − ΔE(n) the energy

cost of adding a pentamer, and λ a base rate that depends on molecular quantities such as dif-

fusion coefficients and reaction radii but not on the concentrations. The inverse of λ is the fun-

damental time-scale of the kinetics. In the following, time will be expressed in units of 1/λ. If

ΔΔEn,n+1 is negative then the on-rate is equal to this base rate. If ΔΔEn,n+1 is positive then the

base rate is reduced by the Arrhenius factor e� DDEn;nþ1 . The off-rate entriesWn+1,n are deter-

mined by the on-rates through the condition of detailed balance:

Wn;nþ1

Wnþ1;n
¼
Peqðnþ 1Þ

PeqðnÞ
¼ cf e

DDEn;nþ1 ð4Þ

Below, we will limit ourselves to the case of solutions containing only two species of span-

ning trees, namely molecules (1) and (2), having the same solution concentrations. During

assembly, the two species compete for the same concentration cf of pentamers. The ratio of cf
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over the total pentamer concentration c0 is determined by mass conservation:

cf=c0 ¼ 1 � ðD=24Þ
X12

n¼0

Xm
ð1Þ
n

i¼1

nPð1Þi;n ðtÞ þ
Xm
ð2Þ
n

i¼1

nPð2Þi;n ðtÞ

0

@

1

A ð5Þ

where superscripts denote the kind of spanning tree. Next, D� 12rt/c0, with rt the total RNA

concentration, is the RNA to proteinmixing ratio, an important thermodynamic control

parameter for the assembly process. If D = 1 then there are exactly enough pentamers to encap-

sidate both types spinning trees, which corresponds to the stoichiometric ratio. Since the occu-

pation probabilities that we seek to obtain enter in this relation, the rate equations form a

coupled, non-linear set of two times twelve differential equations (for the case of just a single

species in solution, there are twelve differential equations where one must replace D/24 by D/

12).

Numerical construction and implementation of coupled master equations

with competition

Coupled master equations for packaging competition between pairs of spanning trees were

integrated using a Mathematica program (available on request). The program was organized

as follows.

First step: Construction of spanning trees. First, we populate in all possible ways nine-

teen of the thirty one edges of the dodecahedron with links. Next we identify graphs that have

the properties that (i) the graph is connected and that (ii) the graph has twenty vertices. All

graphs having these two properties are spanning trees because (i) any connected graph with n
edges and n + 1 vertices is a tree and (ii) they are spanning trees because a dodecahedron has

twenty vertices. This method generates many duplicates so the next step is winnowing the

trees down to a collection of trees that cannot be mapped into each other by any of the 120

rotations and reflections that map a dodecahedron into itself. This is a straightforward (though

laborious) process that involves choosing a tree and then eliminating all other trees that can be

mapped into it by a reflection or a rotation. One can speed the process up by separating trees

into subsets having the same MLD, as the MLD is a topological property that is preserved

under rotation and reflection.

Second step: Choice of a pair of spanning trees. Two trees are chosen from the library of

all unique spanning trees of the dodecahedron. The trees are indexed by their MLD and NP
numbers.

Third step: Specification of the assembly energies. Values are assigned to the energy

parameters E0, �1 and μ0, as defined above.

Fourth: Determination of the assembly network. All physically distinct minimum

energy assemblies are determined forming the nodes of the assembly graph. For every node, a

list is made of nodes with one more or or one less pentamer from which the adjacency matrix

is determined.

Fifth step: Construction of the master equation. The assembly/disassembly process is

assumed to occur by the addition of a pentamer to, or removal of a pentamer from, a structure.

The steps of addition or removal are controlled by two considerations. The first is the increase

or decrease in the energy of the system as determined by the energy of the partially or

completely assembled capsid and an assigned chemical potential. The second is the availability

of pentamers, quantified by the concentration in solution of available pentamers. The free

energy increment determines the relative likelihoods of addition or removal of a pentamer, via

the kinetic Monte-Carlo rates that were defined above. The concentration of available
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pentamers controls the rate of the assembly/disassembly process, in that disassembly takes

place at a fixed rate and assembly at a rate proportional to the number of available pentamers.

Time-scales

As a preliminary, Figs 7 and 8 show the packaging kinetics of a single species of RNA mole-

cules. The parameters are E0 = 4kbT, �1 = −0.5, c0 = 1 and D = 0.5 and μ0 = −4. Fig 7 shows the

case of the class of MLD = 9 and Np = 8 spanning trees and Fig 8 that of the class of MLD = 19,

Np = 2 spanning trees. In the late time limit, the two classes approach thermal equilibrium

with roughly the same fraction of RNA molecules being packaged (about sixty six percent).

This reflects the fact that all classes of molecules have—by construction—the same assembly

energy (the remaining small difference is due to the fact the entropy in the assembly free

energy is not the same for the two classes). The reason that in both cases a significant fraction

of RNA molecules has not been packaged, despite the fact that there are twice as many penta-

mers as needed to package the RNA molecules, is that the chemical potential is close to assem-

bly equilibrium so a significant number of RNA molecules remain free of pentamers. There is

a large difference between the thermalization times of two classes, roughly 103 time units for

MLD = 9 and Np = 8 spanning trees and 105 time units for MLD = 19, Np = 2 spanning trees,

consistent with the fact that the assembly activation barrier is about two times E0 larger (i.e.,

about 8kbT) for the MLD = 19, Np = 2 spanning trees. These thermalization times must be

compared with the assembly delay time td, which is defined as the time lag between the estab-

lishment of solution assembly conditions and the first appearance of assembled viral particles.

Measured delay times for the assembly of empty capsids are in the range of seconds to minutes

[14–16]. We obtain td from the intersection of the tangent to P12(t) at the point of maximum

slope with the horizontal axis (see Fig 9).

For the case of the MLD = 9 and Np = 8 class of spanning trees, this gives about 8.5 time

units as shown. Other classes have comparable delay times. It follows that our time unit is

roughly in the range of five seconds. The thermalization time under conditions of assembly

equilibrium would then be in the range of a prohibitively long two hundred hours for

MLD = 9, Np = 8 spanning trees and two orders of magnitude longer for the MLD = 9, Np = 8

spanning trees.

Packaging competition

In Figs 10, 11 and 12 we show the result of a calculation with the same total amount of RNA

molecules and pentamers as before but now with half of the RNA molecules MLD = 9 and Np
= 8 spanning trees and the other half MLD = 19, Np = 2 spanning trees.

The MLD = 9, Np = 8 spanning trees dominate packaging on time scales less than about 107

time units while the characteristic assembly time is in the range of 104 time units. About eighty

percent of these spanning trees are packaged. This packaged fraction then slowly decreases on

time scales of the order of 107−108 time unit, which means that packaged MLD = 9, Np = 8

spanning trees are gradually disassembling as a precursor of thermalization. The fraction of

packaged MLD = 19, Np = 2 spanning trees increases correspondingly. Apparently, pentamers

that are being freed up by disassembly of MLD = 9, Np = 8 spanning trees feed assembly of the

MLD = 19, Np = 2 spanning trees. When the system approaches thermal equilibrium, the pack-

aging fractions of the two classes in the long-time limit are nearly the same and close to the

separate equilibrium values found earlier in the absence of competition. We conclude that in a

packaging competition experiment, the disassembly of particles is a crucial step for reaching

thermodynamic equilibrium.
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Fig 7. Packaging kinetics of MLD = 9 and Np = 8 spanning trees. Parameter values are E0 = 4kbT for the energy scale, �1 = −0.5, c0 =

1, D = 0.5 and μ0 = −4. Bottom: Packaging kinetics of MLD = 19, Np = 2 spanning trees with the same parameters.

https://doi.org/10.1371/journal.pcbi.1009913.g007

Fig 8. Packaging kinetics of MLD = 19, Np = 2 spanning trees with the same parameters as those of the previous figure.

https://doi.org/10.1371/journal.pcbi.1009913.g008
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Order-disorder transitions

We now can explore how this kinetic form of RNA selection is influenced by changes in the

control parameter. One reason that is necessary for us to do that is that the assembly time-

scale of the MLD = 9, Np = 8 spanning trees was in the range of 104 time units. This is much

too long, of the order of five days if one uses the earlier estimate that a time unit is about five

seconds. Since assembly time kinetics depends exponentially on E0, the assembly time can be

reduced by reducing the energy scale E0 but what happens with the selectivity if one reduces

Fig 9. Definition of the delay time as the intersection of the maximum slope tangent to the assembly curve P12(t)
with the time axis, as indicated by the arrow.MLD = 9,Np = 8, � = 0.5, c0 = 1,D = 0.5 and μ0 = −4.

https://doi.org/10.1371/journal.pcbi.1009913.g009

Fig 10. Packaging competition between MLD = 9, Np = 8 spanning trees and MLD = 19, Np = 2 spanning trees with the same

parameters as the previous figure on a time scale of 108 units.

https://doi.org/10.1371/journal.pcbi.1009913.g010
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Fig 11. Same as the previous figure but on a time scale of 107 units.

https://doi.org/10.1371/journal.pcbi.1009913.g011

Fig 12. Same as the previous figure but on a time scale of 104 units.

https://doi.org/10.1371/journal.pcbi.1009913.g012
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E0? We will quantify the kinetic selectivity of a packaging competition between class (1) span-

ning trees that have a small MLD and a large wrapping number and class (2) spanning trees

with large MLD and small wrapping number as

SðE0Þ ¼
Pð1Þ12 ðtmaxÞ � P

ð2Þ

12 ðtmaxÞ
Pð1Þ12 ðtmaxÞ

: ð6Þ

Here, tmax is the time at which class (1) spanning trees achieve their maximum packaging

yield. If class (2) molecules outcompete class (1) then we set S(E0) = 0. The dependence of the

kinetic selectivity on the energy scale on E0 is shown in Fig 13. The parameter values are the

same as those of Fig 10. For E0 less than about 1.2kbT there is no kinetic selectivity left while S
(E0) approaches one for E0’ 4.0 or larger. The disappearance of selectivity for small E0 is due

to the fact that both the number of assembly pathways and the number of nodes for assembly

intermediates of the MLD = 19, Np = 2 trees is two orders of magnitude larger than that of

MLD = 9, Np = 8 spanning trees (see Fig 6). This means that for MLD = 19, Np = 2 trees the

entropic component of the free energy activation barrier causes that barrier to be reduced by a

factor of about four to five kbT. Since the activation energy barrier is about 2E0 higher for the

MLD = 19, Np = 2 trees, we indeed should expect kinetic selectivity to become negligible for E0

less than roughly 2kbT, in agreement with Fig 13. The importance of entropy for smaller E0 has

another aspect. For E0 less than about 1.5kbT there is a significant fraction of incomplete assem-

blies since that also increases the entropy of the system. In the language of statistical physics,

the kinetic selectivity resembles the order parameter of an order-disorder phase-transition

with the energy scale E0 acting as the inverse of the effective temperature.

One encounters a somewhat similar transition for larger E0 when one increases the affinity

ratio −�1 between specific pentamer/RNA affinity and pentamer/pentamer affinity. One might

expect that that should improve selectivity but, in actuality, for −�1 = −1.1 a variety of incom-

plete particles appear packaging MLD = 9, Np = 8 spanning trees. These incomplete particles

are in coexistence with fully packaged particles containing MLD = 19, Np = 2 trees. The reason

is shown in Fig 14. The minimum energy state at assembly equilibrium of MLD = 9, Np = 8

spanning trees are incomplete particles with ten pentamers while for MLD = 19, Np = 2 trees

fully assembled particles are the minimum energy state. For −�1 smaller than 1.0, the minimum

energy state of MLD = 9, Np = 8 spanning trees are fully packaged particles. However metasta-

ble states with n less than twelve start to appear roughly above −�1 = 0.6. Metastable intermedi-

ate states are quite familiar from experimental studies of viral assembly [4, 62, 63] and from

numerical simulations [13, 36–38]. Known as “kinetic traps”, they retard assembly. In sum-

mary, It is clear that increasing −�1 beyond about 0.5 also does not improve selectivity.

Supersaturation

A different approach to reduce the assembly time scale is to increase the level of supersatura-

tion. Recall in this context that assembly experiments under in-vitro conditions take place at

relatively high levels of supersaturation. The supersaturation can be increased by increasing

the total pentamer concentration c0, which increases the chemical potential by kbT ln c0. In Fig

15 the parameters are the same as in Fig 10 except that the pentamer concentration has been

increased from c0 = 1 to c0 = 4. The results look encouraging. First, nearly all MLD = 9, Np = 8

spanning trees are packaged. Second, the assembly time scale is reduced to about 103 time

units, or about one hour. Increasing the supersaturation further reduces assembly time scales.

However, the kinetic selectivity also has been reduced: the concentration of NP = 2,MLD = 19

assemblies also rises much more rapidly than for c0 = 1 under assembly equilibrium
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conditions. The two classes of molecules have comparable packaging probabilities already after

about 104 time units.

Is it possible to maintain a high selectivity under conditions of supersaturation that persists

over very long time scales? So far we kept the mixing ratio at D = 0.5, meaning that the number

of pentamers is double of what necessary to package all MLD = 9, Np = 8 and all NP = 2,

MLD = 19 spanning trees. What would happen if, under conditions of supersaturation, the

Fig 13. Kinetic selectivity S(E0) as a function of the energy scale E0 in units of kbT for packaging competition between MLD = 9, Np
= 8 spanning trees and MLD = 19, Np = 2 spanning trees. The other parameter values are the same as those of Fig 10.

https://doi.org/10.1371/journal.pcbi.1009913.g013

Fig 14. Minimum-energy assembly profiles for NP = 8, MLD = 9 spanning trees (left) and for NP = 2, MLD = 19 spanning trees

(right) for −�1 = −1.1.

https://doi.org/10.1371/journal.pcbi.1009913.g014
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mixing ratio would be increased to D = 2? In that case, the early assembly of MLD = 9, Np = 8

spanning trees might “drain” the solution of pentamers, which would delay the assembly of NP
= 2,MLD = 19 spanning trees. Fig 16 shows what happens. The kinetic selectivity is about 99

percent and it is maintained over more than 2 × 105 time units! It comes at a price however:

the fraction of packaged target molecules is reduced to about 80 percent while the assembly

time-scale has mildly increased. In general, by varying the overall pentamer concentration c0
and the mixing ratio D a wide range of requirements can be satisfied in terms of persistent

kinetic selectivity, overall yield, and assembly time-scale.

Parameter values

Are the energy and concentration parameters settings used in this article reasonable for in-

vitro or in-vivo viral assembly experiments? The overall energy scale E0 was defined as the

binding affinity between two pentamers that share an edge for the case that the RNA molecule

has only generic affinity (i.e. �1 = 0). The assembly energy per capsid protein of empty capsids

has been been measured under conditions of thermodynamic equilibrium [64]. Comparing

such data to the model with �1 = 0 gives E0’ 4.73 in units of kbT [50], close to the value E0 = 4

used in the paper. The other important energy scale is the dimensionless parameter −�1, which

is the ratio between the protein/RNA and the protein-protein affinity. It can be estimated by

comparing the capsid protein concentrations at assembly onset for empty capsids and for viri-

ons. MS2 capsid proteins aggregate in RNA-free physiological solutions for concentrations

above 2.0 mg/ml while in the presence of viral RNA (but not generic RNA) viral particles form

Fig 15. Packaging competition for c0 = 4.0. The other parameters are the same as for Fig 10.

https://doi.org/10.1371/journal.pcbi.1009913.g015

PLOS COMPUTATIONAL BIOLOGY Packaging contests between viral RNA molecules and kinetic selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009913 April 1, 2022 17 / 25

https://doi.org/10.1371/journal.pcbi.1009913.g015
https://doi.org/10.1371/journal.pcbi.1009913


already at 0.05 mg/ml [65]. The assembly free energy of a viral particle E0(−30 + 38�1 − 12μ0)

at the reference concentration was set to zero by definition, in which case the empty capsid

assembly energy is −30 − 12μ0 is positive. An increase in the total pentamer concentration by a

factor of 2.0/0.05 = 40 must be able to raise the chemical potential sufficiently so the assembly

energy for an empty capsid becomes zero. An increase of the chemical potential equals ln40 in

units of kbT or about 0.92 in units of E0 = 4kBT. This condition is satisfied if −38�1 = 12 × 0.92

or −�1’ 0.29. For convenience we used �1 = −0.5 in the calculations.

Conclusion

In conclusion, we have presented a statistical-mechanics model for the selection of viral

ssRNA molecules triggered by packaging signals during the assembly of small RNA viruses.

According to the model, there are two important time scales: the characteristic time scale for

assembly and the characteristic time scale for thermal equilibration. In the model, RNA selec-

tivity is a non-equilibrium, kinetic effect that disappears when the system approaches thermo-

dynamic equilibrium. Particle disassembly under the action of thermal fluctuations is an

essential step for thermal equilibration during packaging competition. Kinetic selection

“works” as long as the time scale for spontaneous disassembly is prohibitively long compared

to the measurement time. Kinetic selection is the result of the dependence of the height of the

activation energy barrier on the RNA folding geometry, as encoded by the wrapping number

Fig 16. Packaging competition for c0 = 4.0 and D = 2. The other parameters are the same as for Fig 10.

https://doi.org/10.1371/journal.pcbi.1009913.g016
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Np and the maximum ladder distance MLD. There is an order-disorder type transition as a

function of the strength of the affinity between the capsid proteins where fully packaged parti-

cles are replaced by a polydisperse solution of incomplete particles. Near the transition, RNA

molecules that optimally encode secondary structure and folding geometry—by having mini-

mal MLD and maximal Np—begin to outcompete other RNA molecules that have a larger

number of assembly pathways. A similar order-disorder transition is encountered when the

strength of the protein-RNA interaction is increased with respect to that of the protein-protein

interactions.

The most striking result is the fact that kinetic selection performs better under increasing

levels of supersaturation. There are in fact numerous examples in molecular biology where the

fidelity of the read-out of a code is enhanced under non-equilibrium conditions, known as

kinetic proofreading [66]. DNA replication is an important example [67, 68]. There are similar-

ities between the kinetic selection under supersaturation discussed in this paper and Hopfield

kinetic proof reading. Kinetic selection works when the formation of the encoded system

(MLD = 9, Np = 8 spanning tree particles) is quasi-irreversible while attempts of forming parti-

cles with molecules that are not encoded (MLD = 19, Np = 2 spanning tree particles) lead to

disassembly. This is the case because of the higher assembly activation energy. An unusual fea-

ture is that by tuning the mixing ratio to be close to the stoichiometric ratio for the early

assembling encoded particles can “monopolize” the pentamers and thereby greatly retard the

formation of improper particles.

An important question about the model concerns the relation between the kinetic selectiv-

ity discussed in this paper and selection in terms of the thermodynamic assembly free energy

as discussed in the literature cited in the introduction. The relation between the two forms of

selection lies in the distinction between the nucleation and elongation stages. An ssRNA mole-

cule may well have packaging signals that produce an unusually low assembly energy barrier

causing it to be selected during the nucleation stage. If, however, the molecular weight of the

molecule is too high and/or if the solution radius of gyration is too large then the elongation

process simply would not be able to complete. It is this elongation part of the assembly that

was captured by the earlier studies of the thermodynamic assembly free energy and that was

not included in the present study. Following ref. [45], we are assuming here that the selective

effects of the packaging signals operate nearly exclusively during the nucleation stage and are

weak during the energetically downhill elongation stage which is dominated by the non-spe-

cific interactions. The model presented in this paper can be generalized to investigate the com-

petition between selection by nucleation and selection by elongation. The simplest step would

be by letting the competing molecules have different reference chemical potentials μ0. This

allows for the possibility that the two RNA condensates have a different molecular mass and/

or a different overall MLDs (recall that the MLD in this paper only refers to the ψ sequence).

An additional refinement would be to allow μ0 to depend on n. As an assembly intermediate

grows, an RNA molecule that is only partially condensed will be progressively confined by the

developing capsid. This reduces the RNA conformational entropy, which reduces the free

energy gain obtained when a pentamer is taken from the solution and added to an incomplete

assembly. Finally, the loss of conformational entropy of individual RNA nucleotides as they

are getting packaged can be included in the model by associating a fixed amount of entropy

with every RNA segment that has not yet associated with a pentamer. This amounts to a renor-

malization of the �1 and �2 parameters.

A second concern with the model is that it is generally assumed that virions are in a state of

full thermodynamic equilibrium. If that were truly the case then equilibrium thermodynamics

rather than kinetics would always be the appropriate description mode. We would argue

against the assumption of full thermodynamic equilibrium for virions. Reaching complete
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thermodynamic equilibrium in a packaging competition experiment necessarily involves dis-

assembly. The time-dependent assembly yield of early-assembly kinetically encoded molecules

needs to decrease in order for thermal equilibrium to be established. Experimentally, the time

scale for spontaneous disassembly of virions under the action of thermal fluctuations must be

extremely large compared to observation times. We know this because under in-vivo condi-

tions virions typically are released after assembly into environments with few or no capsid pro-

teins. Under those conditions, the chemical potential of the capsid proteins of a virion would

be large compared to that of capsid proteins free in solution, which would trigger disassembly.

In actuality, spontaneous dissolution of virions in solutions without capsid proteins is not

observed under physiological conditions. The time scale for spontaneous disassembly of viri-

ons must be large compared to both laboratory time scales and the characteristic time scales of

the life cycle of a virus. Maturation processes [63, 69–77] probably play an important role in

suppressing spontaneous disassembly process. Maturation stabilization of complete assemblies

would further justify a focus on selection during nucleation, as opposed to selection by late-

time disassembly/assembly competition necessary for thermalization.

A third concern is that the model presented in this paper is not a realistic representation of

any particular virus. It was constructed, for mathematical convenience, by borrowing features

of the dodecahedral Zlotnick model for empty capsids, the dodecahedral gRNA spatial distri-

bution of the Nodaviridae, and the asymmetric reconstruction of MS2. The wrapping number

concept as a geometric characteristic of the geometry of the RNA outer surface really is appro-

priate only for the special case of Nodaviridae. Different geometrical characteristics will have

to be developed for other viruses. The MS2 virus is an interesting target since a detailed asym-

metric reconstruction of the MS2 virion is available [44]. Since the packaging signals of MS2

gRNA associate directly with capsid proteins—rather than with capsomer edges—the spanning

tree would have to have icosahedral rather than dodecahedral symmetry. Moreover, MS2 has

(approximate) T = 3 capsid symmetry with 180 capsid proteins rather than the T = 1 structure

with 60 proteins grouped in 12 pentamers that we assumed so that would have to be included

as well. We hope to carry out such a study in the future.

A final concern about the model is the study by Tresset and collaborators of the assembly of

the CCMV plant virus [78, 79]. They find that the so-called en-masse assembly scenario pro-

vides a good description [80]. In that scenario, a virion does not assemble on a protein-by-pro-

tein basis, as was assumed in the present paper. Instead, assembly starts with the formation of

a disordered RNA-protein condensate that shrinks and then transits into an ordered virion. It

is tempting to identify CCMV-type assembly (and the en-masse assembly scenario) with the

entropy-dominated low selectivity assembly scenario that we encountered for lower E0 and for

larger values of the RNA/pentamer affinity. This also will have to be explored in the future.

How could the model (or one of its generalizations) be tested experimentally? It has been

shown that large ssRNA molecules in solution with identical primary sequences adopt a range

of secondary and tertiary structures [81]. In the presence of a sufficient concentration of posi-

tive polyvalent counter ions, large ssRNA molecules have been shown to condense [82]. For a

solution of gRNA molecules, that should produce a variety of pre-condensed molecules with

roughly the same size but with different surface structures. Asymmetric reconstruction of the

packaged particles could then reveal which RNA structures were selected for.
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