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Abstract: A convenient method for the preparation of oligonucleotides containing internally-attached
galactose and triantennary galactose units has been developed based on click chemistry
between 2′-N-alkyne 2′-amino-LNA nucleosides and azido-functionalized galactosyl building
blocks. The synthesized oligonucleotides show excellent binding affinity and selectivity towards
complementary DNA/RNA strands with an increase in the melting temperature of up to +23.5 ◦C
for triply-modified variants.
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1. Introduction

Nucleic acids have attracted ample interest in the areas of nanotechnology, biology, and
biochemistry over the past decade [1–4]. Oligonucleotide (ON) chemistry has been developed with the
aim of modifying the sugar ring [5,6], the nucleobases [7–9], or the backbone [10,11], and numerous
studies have highlighted the importance of the furanose ring conformation on the biophysical
properties of ONs [12–17]. Locked nucleic acid (LNA, Figure 1) [18,19] is a very promising candidate
of this class of compounds as the incorporation of a LNA monomer into ONs has been reported
to induce excellent duplex stability, favorable mismatch discrimination, and improved resistance to
nucleolytic digestion [20–24]. The bicyclic skeleton which “locks” the furanose ring of LNA nucleotides
into an RNA mimicking C3′-endo (N-type) conformation is key to these specific properties making
LNA-containing oligonucleotides an attractive tool for diagnostic and therapeutic applications [25–29].
As a close analog to LNA, 2′-amino-LNA (Figure 1) [30,31] has been developed to enable incorporation
of additional functional groups along the minor groove of high-affinity ONs [32], and recently it was
shown that incorporation of 2′-amino-LNA monomers can improve the therapeutic potential of siRNA
and aptamer constructs [33–35].

Several research groups have during the last years been involved in the synthesis of ONs
conjugated with galactose (Gal) and N-acetylgalactosamine (GalNAc) units as asialoglycoprotein
receptor (ASGPR) ligands [36–43]. As one example, GalNAc-conjugated siRNAs targeting TTR
(transthyretin) mRNA has been reported to show potent activity in human liver and to reduce
circulating TTR protein levels in the blood [44]. Likewise, Østergaard et al. [45,46] demonstrated that
5′-conjugated triantennary GalNAc antisense oligonucleotides (ASOs) act as a hepatocyte targeting
pro-drug which can be metabolized to liberate the parent ASO inside liver cells, and similar targeting
has been reported using conjugated siRNAs [47–49].
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Among multiple DNA linking strategies developed to date, the copper(I)-catalyzed azide alkyne
cycloaddition (CuAAC) reaction is a robust and highly adaptable bioconjucation process (“click
reactions”) for ONs allowing preparation of various conjugates in high yields [50–53], and single to
triple modification of oligonucleotides by this reaction has been reported [54–59].

Herein, we report synthesis and characterization of ONs modified via copper(I)-catalyzed click
chemistry with galactose derivatives M2 and M3.
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N,N-diisopropylcarbodiimide (DIC) to afford tris-pentafluorophenol ester 7 in 77% yield. The 
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Figure 1. Chemical structure of DNA, RNA, LNA, and 2′-amino-LNA nucleotide monomers.

2. Results and Discussion

2.1. Synthesis of Azido-Functionalized Galactose Derivatives

2-[2-(2-Azidoethoxy)ethoxy]ethoxy-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (1) and
2-[2-(2-azidoethoxy)ethoxy]ethoxy-β-D-galactopyranoside (2) were synthesized according to
procedures in the literature [60,61]. For synthesis of compound 3 we first tried the reduction of azido
group 1 into an amino group with 10% Pd/C in different organic solvents (MeOH/EtOH/EtOAc) in
an H2 atmosphere. We observed in every case intramolecular acetyl migration from the sugar to the
amine. To avoid this acetyl migration the amine was directly equipped with a Boc-protecting group
after azide reduction with Pd/C in EtOAc furnishing galactopyranoside 3 in 79% yield (Scheme 1).
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Scheme 1. Synthesis of galactopyranoside intermediates.

The amino group of compound 4 [62] was subsequently reacted with 2-azidoacetic acid in
N,N-dimethylformamide/tetrahydrofuran (DMF/THF) in the presence of 1-[bis(dimethylamino)
methylene]-1H-1,2,3-triazolo-[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) and
N,N-diisopropylethylamine (DIPEA) to afford azido derivative 5 in 76% yield. The ester groups were
next converted into the corresponding acids to give 6, followed by reaction with pentafluorophenol
(PFP) in dichloromethane (DCM) in the presence of N,N-diisopropylcarbodiimide (DIC) to afford
tris-pentafluorophenol ester 7 in 77% yield. The Boc-protecting group of galactopyranoside 3 was
removed by standard conditions (1:3 trifluoroacetic acid (TFA)/DCM, 1 h) yielding the corresponding
amino galactopyranoside intermediate 3a. Further reaction with tris-pentafluorophenol ester 7
furnished the triantennary compound 8 in 69% yield, which upon ester cleavage was converted into
the desired triantennary azido galactopyranoside 9 in 75% yield (Scheme 2).
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Scheme 2. Synthesis of triantennary azido galactopyranoside.

2.2. ON Synthesis

Synthesis of 9-mer ONs was performed at a 1.0 µmol scale using standard solid-phase
phosphoramidite chemistry on an automated DNA synthesizer. Phosphoramidite building block
10 [54] showed a satisfactory step-wise coupling yield of >94% using 1H-tetrazole as the activator and a
coupling time of 20 min used for incorporation of monomer M1 into ONs, one or three times according
to Lou et al. [63] to afford ON1 (5′-GTGAM1ATGC) and ON2 (5′-GM1GAM1AM1GC) (Scheme 3).
The synthesized ONs were passed through NAP-10 column, and their purity (>90%) and composition
was confirmed by ion-exchange (IE) HPLC and MALDI-MS (see Section 3.8), respectively.
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M3 into ONs.

2.3. Post-Oligomerization CuAAC Click Chemistry

Post-oligomerization (i.e., after completion of ON synthesis and purification) azide-alkyne click
chemistry on ON1 and ON2 was accomplished with mono and triantennary azido galactopyranosyl
derivatives 2 and 9 under microwave conditions. Dimethyl sulfoxide (DMSO), 2 Mtriethylammonium
acetate buffer (pH 7.4), azides 2 or 9, copper(II)sulfate-tri(benzyltriazolylmethyl)amine (TBTA) (1:1)
and ascorbic acid were added to a deaerated aqueous solution of the starting ON. The purity
(>90%) and composition of the products ON3–ON6 was confirmed by IE HPLC and MALDI-MS
(see Section 3.10), respectively.

2.4. Thermal Denaturation Studies

2.4.1. Binding Affinity

The effect upon incorporation of one (ON3 and ON5) or three (ON4 and ON6) galactopyranosyl
modifications into mixed sequence 9-mer ONs on the thermal stability and base-pairing specificity
of duplexes with DNA and RNA complements was evaluated by UV-VIS thermal denaturation
experiments (Tables 1 and 2). All changes in thermal denaturation temperatures (Tm) of modified
nucleic acid duplexes are discussed relative to the Tm values measured for the unmodified
reference duplexes.

ON7 and ON8 containing one or three non-conjugated 2′-amino-LNA-T monomers showed
a substantially increased thermal affinity towards DNA (∆Tm value +9.5 ◦C with three monomers
M4) and RNA complementary strands (∆Tm value +20.0 ◦C with three monomers M4) (Table 1).
Remarkably, the corresponding ONs containing one or three monomer(s) M2 or M3 (ON3–ON6)
display similar increases in thermal affinity, with ON5:DNA (single incorporation of M3) as the only
exception (∆Tm value of only +2.0 ◦C (Table 1)). These results demonstrate that both the mono- and
triantennary galactopyranosyl unit are well tolerated in a short ON aimed at DNA or RNA targeting.
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Table 1. Thermal denaturation temperatures of matched duplexes (DNA/DNA and DNA /RNA) a.

ON Sequence DNA: 3′-CACTATACG
Tm/∆Tm (◦C)

RNA: 3′-CACUAUACG
Tm/∆Tm (◦C)

ONref 5′-GTGATATGC 29.0 27.0
ON3 5′-GTGAM2ATGC 33.0/+4.0 35.5/+8.5
ON4 5′-GM2GAM2AM2GC 40.0/+11.0 50.5/+23.5
ON5 5′-GTGAM3ATGC 31.0/+2.0 34.5/+7.5
ON6 5′-GM3GAM3AM3GC 37.5/+8.5 48.5/+21.5
ON7 5′-GTGAM4ATGC 33.0/+4.0 35.0/+8.0
ON8 5′-GM4GAM4AM4GC 38.5/+9.5 47.0/+20.0

a Thermal denaturation temperature Tm (◦C) (change in Tm relative to corresponding reference duplex
ONref:DNA/RNA, ∆Tm (◦C)). Tm values measured as the maximum of the first derivatives of the melting curves
(A260 vs. temperature) using 1.0 µM concentration of complementary strand. UV-VIS thermal denaturation
experiments performed in a medium salt buffer [NaCl (100 mM), EDTA (0.1 mM), NaH2PO4 (10 mM), Na2HPO4
(5 mM), pH 7.0] with reported Tm values being averages of at least two measurements within ±0.5 ◦C. M4 is
non-conjugated 2′-amino-LNA-T, M3 is triantennary galactopyranosyl-conjugated triazole-linked 2′-amino-LNA,
and M2 is monoantennary galactopyranosyl-conjugated triazole-linked 2′-amino-LNA.

Table 2. Thermal denaturation temperatures of mismatched duplexes a.

ON Sequence X =
DNA: 3′-CACTXTACG RNA: 3′-CACUXUACG

Tm/◦C ∆Tm/◦C Tm/◦C ∆Tm/◦C

A T G C A U G C

ONref 5′-GTGATATGC 29.0 −15.0 −9.5 −16.0 27.0 −16.0 −5.0 −21.0
ON3 5′-GTGAM2ATGC 33.0 −16.0 −15.0 −18.0 35.5 −17.5 −10.5 −17.5
ON4 5′-GM2GAM2AM2GC 40.0 −15.5 −17.5 −18.0 50.5 −16.5 −11.0 −15.5
ON5 5′-GTGAM3ATGC 31.0 −16.5 −16.0 −18.0 34.5 −17.5 −10.0 −18.0
ON6 5′-GM3GAM3AM3GC 37.5 −15.5 −15.0 −18.0 48.5 −15.5 −10.0 −15.0
ON7 5′-GTGAM4ATGC 33.0 −16.0 −14.5 −18.5 35.0 −17.0 −9.0 −17.0
ON8 5′-GM4GAM4AM4GC 38.5 −16.0 −15.0 −18.5 47.0 −15.5 −9.0 −15.5

a For experimental conditions see Table 1. ∆Tm is the change in Tm relative to the fully matched ONref:DNA or
ONref:RNA duplex (X = A).

2.4.2. Binding Specificity

Next, the binding specificities of single- and triple-modified oligonucleotides were evaluated
against centrally-positioned mismatched bases (Table 2). We found, in general, very similar pairing
selectivity for all sequences (ONref, ON3–ON8) with the notable exceptions that the modified strands
all showed better discrimination against a DNA or RNA G mismatch than the control, and that the
control showed better discrimination against an RNA C mismatch than the modified sequences.

All DNA ONref displayed a thermal denaturation temperature of 29.0 ◦C with a DNA
complementary strand, and an RNA counterpart at 27.0 ◦C. The results of ON3 showed that the
monoantennary galactopyranosyl functionalized triazole-linked 2′-amino-LNA was well tolerated
in a DNA/DNA duplex as the thermal denaturation temperature was comparable with that of
ONref (Table 1). A remarkable stabilization at 8.5 ◦C was observed with the RNA complement.
The corresponding three monoantennary galactopyranosyl units in ON4 was better tolerated as
the thermal denaturation temperature was induced by 11.0 ◦C against a DNA complement and
23.5 ◦C against an RNA complement. In general, similar trends were observed in ON5–ON8 showed
increased thermal duplex stability against both DNA and RNA relative to ONref, but the sequence
containing a singly-incorporated triantennary galactopyranosyl unit in ON5 stabilized less than the
non-conjugated 2′-amino-LNA ON7. Additionally, the corresponding non-conjugated 2′-amino-LNA
(ON8) was better tolerated than the triply-incorporated triantennary galactopyranosyl unit in ON6
against a DNA complement, and a reverse trend was observed in an RNA complement, respectively
(Table 1). For evaluation of the mismatch discriminative properties of these mono-/triantennary



Molecules 2017, 22, 852 6 of 13

galactopyranosyl-conjugated and non-conjugated 2′-amino-LNA ONs were chosen with one
mismatched nucleotide opposite the sugar modification. All modifications showed similar, or even
enhanced, mismatch discrimination relative to the unmodified strand ONref, with the discriminative
power generally superior against DNA strands (Table 2).

In summary, singly- or triply-incorporated galactopyranose moieties induced significantly
increased duplex stability relative to the reference duplexes, thus expanding the results reported
for galactopyranose-modified carbohydrate moieties attached to the 2′-position of nucleotides via
triazole [64] and amide linkages [65,66]. The data reported herein, in combination with the remarkable
exonuclease resistance induced by other N-functionalized 2′-amino-LNA nucleotides [63,65], establish
monomers M2 and M3 as promising constituents of future RNA-targeting oligonucleotide drugs.

3. Materials and Methods

3.1. General Information

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without
further purification. Dichloromethane, N,N-diisopropylethylamine (DIPEA), THF, methanol,
N,N-dimethylformamide (DMF) and pyridine were dried over activated 4 Å molecular sieves, and
petroleum ether (PE) and ethylacetate (EtOAc) were used as received. All reactions conducted in
anhydrous solvents were carried out under an argon atmosphere. Silica gel column chromatography
was performed using Merck Millipore silica gel 60 (0.040–0.063 mm) (Darmstadt, Germany). Thin
layer chromatography (TLC) was performed using Merck silica gel 60 F254 (0.22 mm thickness,
aluminum-backed) (Darmstadt, Germany). Compounds were visualized at 254 nm or stained with 5%
sulfuric acid in EtOH. 1H-NMR spectra were measured at 400 MHz, 13C-NMR spectra were measured
at 101 MHz, and 19F-NMR spectra were measured at 376 MHz, all on a Bruker AVANCE III 400
spectrometer (Billerica, MA, USA). Chemical shifts are given in ppm and J values are given in Hz. All
assignments for 1H-NMR and 13C-NMR have been confirmed by COSY, HSQC, and HMBC. HRMS-ESI
spectra were recorded on a Bruker APEX III FT-ICR mass spectrometer (Billerica, MA, USA).

3.2. Synthesis of 2-[2-(2-Tert-butyloxycarbonylamidoethoxy)ethoxy]ethoxy
2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (3)

2-[2-(2-Azidoethoxy)ethoxy]ethoxy-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (1, 500 mg,
0.99 mmol) was dissolved in EtOAc (5.0 mL), and 10% Pd/C (6.0 mg) and di-tert-butyl dicarbonate
(324 mg, 1.48 mmol) were added. The reaction mixture was stirred at r.t. in an H2 atmosphere for
6 h according to a literature procedure [67]. The reaction mixture was passed through a celite pad
and concentrated to dryness under reduced pressure. The residue was purified by silica gel column
chromatography using 20–40% EtOAc in petroleum ether (v/v) as eluent to afford compound 3 as
a viscous oil (451 mg) in 79% yield. Rf = 0.3 (EtOAc/PE, 50:50). 1H-NMR (400 MHz, CDCl3): δ

5.39 (d, J = 2.6 Hz, 1H, H-4), 5.21 (dd, J = 10.5, 8.0 Hz, 1H, H-2), 5.02 (dd, J = 10.4, 3.4 Hz, 1H,
H-3), 4.56 (d, J = 8.0 Hz, 1H, H-1), 4.22–4.07 (m, 2H, H-6a, H-6b), 4.01–3.88 (m, 2H, H-5, CH2),
3.78–3.72 (m, 1H, CH2), 3.71–3.58 (m, 7H, CH2, NH), 3.54 (t, J = 5.2 Hz, 2H, CH2), 3.33–3.30 (m, 2H,
CH2), 2.15 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.45 (s, 9H, t-Bu).
13C-NMR (101 MHz, CDCl3): δ 170.4, 170.2, 170.1, 169.5 (4 × CH3COO), 156.0 (NHCO), 101.4 (C-1),
79.2 (C(CH3)3), 70.9 (C-2), 70.7 (C-3), 70.3, 69.1 ((OCH2CH2)2OCH2), 68.8 (C-5), 67.1 (C-4), 61.3 (C-6),
40.4 (CH2NH), 28.4 (C(CH3)3), 20.7 (CH3COO), 20.7 (2 × CH3COO), 20.6 (CH3COO). HRMS (ESI)
calcd. for [C25H41NO14Na]+: 602.2419; found: 602.2416.

3.3. Synthesis of 2-Azidoacetyl-N-{tris[3-(ethylcarboxylethoxy)methyl]methyl}-amine (5)

To a solution of amine 4 [62] (1.0 g, 2.37 mmol) and 2-azidoacetic acid (310 mg, 3.06 mmol) in
THF (30 mL) at r.t. were added DIPEA (0.54 mL, 3.08 mmol) and HATU (1.17 g, 3.07 mmol in 10 mL
DMF). The reaction mixture was stirred for 6 h whereupon EtOAc (50 mL) was added. Washings
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were performed using saturated aq. NaHCO3 (3 × 50 mL) and brine (3 × 50 mL), and the organic
phases were dried (Na2SO4), filtered, and evaporated to dryness under reduced pressure. The residue
was purified by silica gel column chromatography 0–2% MeOH in CH2Cl2 (v/v) as eluent to afford
compound 5 as a viscous oil (0.91 g) in 76% yield. Rf = 0.6 (MeOH/CH2Cl2, 5:95). 1H-NMR (400 MHz,
CDCl3): δ 6.56 (brs, 1H, NH), 4.15 (q, J = 7.2 Hz, 6H, CH2), 3.85 (s, 2H, CH2), 3.78–3.62 (m, 12H, CH2),
2.54 (t, J = 6.2 Hz, 6H, CH2), 1.27 (t, J = 7.1 Hz, 9H, CH3). 13C-NMR (101 MHz, CDCl3): δ 171.6 (CO2Et),
166.7 (CONH), 69.0 (CH2), 66.8 (CH2), 60.5 (CH2), 59.9 (CH2), 52.8 (C(CH2)3), 35.0 (CH2), 14.2 (CH3).
HRMS (ESI) calcd. for [C21H36N4O10Na]+: 527.2324; found: 527.2320.

3.4. Synthesis of 2-Azidoacetyl-N-{tris[(2-carboxyethoxy)methyl]methyl}amine (6)

Compound 5 (500 mg, 1.19 mmol) was dissolved in ethanol (5.0 mL) and aq. NaOH (2 N,
1 mL) was added. The reaction mixture was stirred at r.t. for 6 h, concentrated to half value by
evaporation under reduced pressure, adjusted to pH 3 with aq. HCl (1 N, 2 mL), and extracted with
EtOAc (100 mL). The organic phase was dried (Na2SO4), filtered and evaporated to dryness under
reduced pressure to afford compound 6 as an off-white solid material (340 mg) in 81% yield. Rf = 0.5
(MeOH/CH2Cl2/CH3COOH, 2:18:1). 1H-NMR (400 MHz, DMSO-d6): δ 12.17 (brs, 3H, COOH), 7.35
(brs, 1H, NH), 3.76 (s, 2H, CH2), 3.67–3.48 (m, 12H, CH2), 2.43 (t, J = 6.3 Hz, 6H, CH2). 13C-NMR
(101 MHz, DMSO-d6): δ 172.5 (3 × COOH), 167.2 (CONH), 67.9 (CH2O), 66.6 (CH2O), 59.9 (C(CH2)3),
50.7 (CH2N3), 34.5 (CH2COOH). HRMS (ESI) calcd. for [C15H24N4O10Na]+: 443.1385; found: 443.1400.

3.5. Synthesis of 2-Azidoacetyl-N-{tris[3-(pentafluorophenylcarboxylethoxy)methyl]methyl}amine (7)

Compound 6 (470 mg, 1.12 mmol) was dissolved in CH2Cl2 (7.0 mL) and pentafluorophenol
(1.02 g, 5.59 mmol) was added. The reaction mixture was cooled to 0 ◦C and N,N′-diisopropylcarbodimide
(0.98 mL, 6.26 mmol) was added, and the reaction mixture was stirred for 6 h at r.t. The solvent was
removed under reduced pressure and the residue was purified by silica gel column chromatography
using EtOAc/PE (5–20%, v/v) as eluent to afford compound 7 as a viscous oil (789 mg) in 77% yield.
Rf = 0.5 (EtOAc/PE, 2:3). 1H-NMR (400 MHz, CDCl3): δ 6.47 (brs, 1H, NH), 4.10–3.49 (m, 14H,
CH2O, CH2N3), 2.91 (t, J = 5.9 Hz, 6H, CH2COO). 13C-NMR (101 MHz, CDCl3): δ 167.5 (COOPFP),
166.9 (COCH2N3), 142.3 (Ar-C), 139.8 (Ar-C), 139.8–138.7 (Ar-C), 136.6 (Ar-C), 68.9 (CH2O), 66.1
(CH2O), 59.8 (C(CH2)3), 52.8 (CH2N3), 34.2 (CH2COOPFP). 19F-NMR (376 MHz, CDCl3): δ −152.9
(dd, J = 21.7, 4.2 Hz, 6F), −157.8 (t, J = 21.7 Hz, 3F), −162.09–−162.64 (m, 6F). HRMS (ESI) calcd. for
[C33H21F15N4O10Na]+: 941.0910; found: 941.0910.

3.6. Synthesis of Triantennary Azido 2,3,4,6-Tetra-O-Acetyl-β-D-Galactopyranoside (8)

Compound 3 (530 mg, 0.91 mmol) was dissolved in CH2Cl2/trifluoroacetic acid (3:1, 12 mL)
and stirred at r.t. for 1 h. The solvents were evaporated under reduced pressure and
the resulting oil was dissolved in anhydrous CH2Cl2 (24 mL). To this mixture was added
N-{tris[3-(pentafluorophenylcarboxylethoxy)methyl]methylamide}-2-azidoacetamide (7, 210 mg,
0.23 mmol) and the resulting mixture was adjusted to pH 8 with triethylamine (TEA) and stirred at
r.t. for 10 h. The solvents were removed under reduced pressure and the residue was redissolved in
CH2Cl2 (50 mL) and washed with H2O (3 × 50 mL). The separated organic phase was dried (Na2SO4),
filtered and evaporated to dryness under reduced pressure. The residue was purified by silica gel
chromatography using (MeOH/CH2Cl2, 5:95 v/v) as eluent to afford the acetyl protected triantennary
galactose azide 8 as a white solid material (285 mg) in 69% yield. Rf = 0.4 (MeOH/CH2Cl2, 5:95).
1H-NMR (400 MHz, CDCl3): δ 6.90 (brs, 1H, NH), 6.59 (t, J = 5.5 Hz, 3H, NH), 5.39 (d, J = 3.1 Hz,
3H, Gal-H-4), 5.20 (dd, J = 10.4, 8.0 Hz, 3H, Gal-H-2), 5.03 (dd, J = 10.5, 3.4 Hz, 3H, Gal-H-3), 4.56 (d,
J = 7.9 Hz, 3H, Gal-H-1), 4.20–4.10 (m, 6H, H-6), 4.01–3.90 (m, 6H, Gal-H-5, CH2), 3.88 (s, 2H, CH2N3),
3.78–3.68 (m, 15H, CH2O), 3.68–3.58 (m, 18H, CH2O), 3.56 (t, J = 5.3 Hz, 6H, CH2O), 3.48–3.42 (m, 6H,
CH2NH), 2.44 (t, J = 5.8 Hz, 6H, CH2CO), 2.15 (s, 9H, OAc), 2.06 (s, 9H, OAc), 2.05 (s, 9H, OAc), 1.99 (s,
9H, OAc). 13C-NMR (101 MHz, CDCl3): δ 171.2, 170.4, 170.2, 170.1 (4 × CH3COO), 169.5 (CH2CONH),
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167.2 (COCH2N3), 101.4 (Gal-C-1), 70.9 (Gal-C-2), 70.7 (Gal-C-3), 70.6, 70.3, 70.1, 69.9, 69.3, 69.1, 67.1
(7 × CH2O), 68.9 (Gal-C-5), 67.5 (Gal-C-4), 61.2 (Gal-C-6), 60.1 (C(CH2)3), 52.5 (CH2N3), 39.3 (CH2NH),
36.6 (CH2CO), 20.8, 20.64, 20.62, 20.55 (4 × CH3COO). HRMS (ESI) calcd. for [C75H117N7O43Na]+:
1826.7076; found: 1826.7052.

3.7. Synthesis of Triantennary Azido 2-β-D-Galactopyranoside (9)

Acetyl protected triantennary galactose azide 8 (140 mg, 0.08 mmol) was dissolved in anhydrous
MeOH (20 mL) and NaOMe (25 wt. % in methanol, 4 µL, 8.0 µmol) was added. The reaction mixture
was stirred at r.t. for 1 h, neutralized with DOWEX-50WX2 (H+ resin), filtered, and evaporated to
dryness under reduced pressure. The residue was redissolved in H2O, dialyzed for two days using
Spectra/Por Float-A-Lyzer G2 (MWCO: 100–500 D molecular weight cut-off) and lyophilized to furnish
the desired product 9 as a white solid material (76 mg) in 75% yield; Rf = 0.4 (CH2Cl2/MeOH/H2O,
1.6:1.0:0.2). 1H-NMR (400 MHz, MeOD-d4): δ 4.30 (d, J = 7.3 Hz, 3H, Gal-H-1), 4.12–3.99 (m, 3H),
3.9–3.87 (m, 6H), 3.78–3.67 (m, 40H), 3.60–3.50 (m, 17H), 3.42 (t, J = 5.1 Hz, 6H, CH2NH), 2.49 (t,
J = 5.7 Hz, 6H, CH2CO). 13C-NMR (101 MHz, MeOD-d4): δ 174.2 (CH2CONH), 170.0 (COCH2N3),
105.0 (Gal-C-1), 76.7, 74.9, 72.5 (Gal-C-2, Gal-C-3, Gal-C-5), 71.5, 71.2, 70.7, 70.4, 70.1, 69.6 (6 × CH2O),
68.8 (Gal-C-4), 62.6 (C(CH2)3), 61.8 (Gal-C-6), 53.2 (CH2N3), 40.5 (CH2NH), 37.5 (CH2CO); HRMS (ESI)
calcd. for [C51H93N7O31Na]+: 1322.5808; found: 1322.5846.

3.8. Synthesis and Purification of ON1–ON2

ONs were synthesized on a DNA synthesizer (PerSpective Biosystems Expedite 8909,
(Framingham, MA, USA)) in 1.0 µmol scale using manufacturer’s standard protocols. For incorporation
of monomer M1 [56] a hand-coupling procedure [68] was used (20 min coupling time and
5-[3,5-bis(trifluoromethyl)phenyl]-1H-tetrazole (0.25 M, in anhydrous CH3CN) as activator).
The coupling efficiencies of standard DNA phosphoramidites and phosphoramidite 10 based on
the absorbance of the dimethoxytrityl cation released after each coupling varied between 95% and
98%. Cleavage from solid support and removal of nucleobase protecting groups was performed
using 32% aq. ammonia for 16 h at 55 ◦C. The resulting oligonucleotides were purified by DMT-ON
RP-HPLC using Waters System 600 (Milford, MA, USA) equipped with Xterra MS C18-column
(5 µm, 150 mm × 7.8 mm, (Milford, MA, USA)). Elution was performed starting with an isocratic
hold of A-buffer for 5 min followed by a linear gradient to 70% B-buffer over 40 min at a flow rate
of 1.0 mL/min (A-buffer: 0.05 M triethyl ammonium acetate, pH 7.4; B-buffer: 25% buffer A, 75%
CH3CN). RP-purification was followed by detritylation (80% aq. AcOH, 30 min) and precipitation
(acetone, −18 ◦C, 12 h). The identity and purity of ON1 and ON2 were verified by MALDI-TOF mass
spectrometry (Billerica, MA, USA) (Table 3) and IE HPLC, respectively. IE HPLC was performed
using a Merck Hitachi LaChrom instrument (Tokyo, Japan) equipped with a Dionex DNAPac Pa-100
column (250 mm × 4 mm, Sunnyvale, CA, USA). Elution was performed starting with an isocratic
hold of A- and C-buffers for 2 min followed by a linear gradient to 60% B-buffer over 28 min
at a flow rate of 1.0 mL/min (A-buffer: Milli-Q water; B-buffer: 1 M NaClO4, C-buffer: 25 mM
Tris-Cl, pH 8.0). MALDI-TOF mass-spectrometry was performed using a MALDI-LIFT system on
the Ultraflex II TOF/TOF instrument from Bruker (Billerica, MA, USA) using an HPA-matrix (10 mg
3-hydroxypicolinic acid, 50 mM ammonium citrate in 70% aq. CH3CN).

Table 3. Sequence and MALDI-MS of modified oligonucleotides ON1 and ON2.

ON Sequence Calculated Found

ON1 5′-GTGAM1ATGC 2861.18 2858.69
ON2 5′GM1GAM1AM1GC 3075.74 3075.78

M1 = 2′-alkyne-2′-amino-LNA.
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3.9. Thermal Denaturation Studies

Thermal denaturation studies were carried out on a Perkin Elmer Lambda 35 UV-VIS spectrometer
(Shelton, CT, USA) using a Hellma SUPRASIL synthetic quartz 10 mm path length cuvettes.
The oligonucleotides (1.0 µM per strand) were dissolved in medium salt buffer [NaCl (100 mM),
EDTA (0.1 mM), NaH2PO4 (10 mM), Na2HPO4 (5 mM), pH 7.0] and the resulting solution heated
to 90 ◦C for 10 min and then slowly cooled down to 5 ◦C. Concentrations of oligonucleotides were
calculated using the extinction coefficients. UV absorbance at 260 nm as a function of time was recorded
and the thermal denaturation temperatures (Tm) were determined as the maxima of the first derivative
of the UV260 vs. temperature curves. The Tm values are given as averages of two measurements within
±0.5 ◦C.

3.10. Postsynthetic Click Procedure in Solution

ON ON1 or ON2 (40 nmol) was dissolved in fresh MQ water (190 µL for one incorporation and
151 µL for three incorporations) in a 1.0 mL microwave vial, and 2 M tetra triethylammonium acetate
buffer (pH 7.4; 20 µL), DMSO (84 µL for one incorporation and 52 µL for three incorporations),
the corresponding azide 2 or 9 (16 µL (ON1) for one incorporation and 48 µL (ON2) for three
incorporations of 10 mM solution in DMSO), CuSO4-TBTA equimolar complex (10 µL of 10 mM
stock solution) and ascorbic acid (10 µL of 25 mM freshly prepared stock solution) were subsequently
added under an argon atmosphere. The resulting mixture was deaerated, tightly closed, and subjected
to microwave conditions (microwave reactor, 60 ◦C, 2 h, Biotage initiator microwave synthesizer).
Thereafter, the reaction was cooled to r.t. and then filtrated through an IIIustra NAP-10 column
following manufacture’s protocol. The resulting solution was evaporated to dryness at r.t. under
a nitrogen atmosphere. The resulting conjugates ON3–ON6 were analyzed by MALDI TOF mass
spectrometry (Table 4) and IE HPLC. The ONs (ON4 and ON6) were further purified by RP HPLC.
The yields of the click reactions were determined based on the absorbance of the ONs at 260 nm: 92%
(ON3), 20% (ON4), 77% (ON5), and 17% (ON6).

Table 4. Sequence and MALDI-MS of conjugated ON3–ON6.

ON Sequence Calculated Found

ON3 5′-GTGAM2ATGC 3198.33 3198.25
ON4 5′-GM2GAM2AM2GC 4087.19 4087.93
ON5 5′-GTGAM3ATGC 4160.77 4160.66
ON6 5′-GM3GAM3AM3GC 6974.51 6974.76

M3 is triantennary galactopyranosyl-conjugated triazole-linked 2′-amino-LNA, and M2 is monoantennary
galactopyranosyl-conjugated triazole-linked 2′-amino-LNA.

4. Conclusions

In summary, we have successfully developed the copper(I)-catalyzed azide alkyne cycloaddition
click chemistry conjugation of mono- and triantennary galactospyranosyl units to internally-positioned
amino-LNA nucleotides. This method is efficient and provides the desired products in a remarkable
purity. High-affinity recognition of complementary DNA and RNA strands has been demonstrated,
thus confirming the suitability of the N2′-position 2′-amino-LNA nucleotides for attachment of
targeting ligands for therapeutic oligonucleotide constructs.
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