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The traditional definition of natural antibodies (NAbs) states that these antibodies are 
present prior to the body encountering cognate antigen, providing a first line of defense 
against infection thereby, allowing time for a specific antibody response to be mounted. 
The literature has a seemingly common definition of NAbs; however, as our knowledge of 
antibodies and B cells is refined, re-evaluation of the common definition of NAbs may be 
required. Defining NAbs becomes important as the function of NAb production is used to 
define B cell subsets (1) and as these important molecules are shown to play numerous 
roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current 
knowledge of NAbs in the context of initiating a discussion within the field of how such 
an important and multifaceted group of molecules should be defined.
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NAtUrAL ANtiBODY (NAb) PrODUciNG ceLLs

Both murine and human NAbs have been discussed in detail since the late 1960s (2, 3); however, 
cells producing NAbs were not identified until 1983 in the murine system (4, 5). These cells, named 
B-1 cells, were originally identified by their expression of CD5 and were further characterized by 
surface expression of IgMhigh, IgDlow, CD19high, B220low, CD23−, and CD43+ (6), which contrasts 
with the surface phenotype of follicular B-2 cells: CD5−, IgMlow, IgDhigh, CD19+, B220+, CD23+, and 
CD43−. Later, an additional population of B-1 cells was identified, which shared the characteristics 
of CD5+ B-1 but lacked CD5 expression (7). These two populations of B-1 cells are termed B-1a 
(CD5+) and B-1b (CD5−) cells. B-1 cells also express CD11b; however, this expression is limited to 
B-1 cells residing in the body cavities and is lost upon migration to the spleen (8, 9). Furthermore, 
the B-1 cell population can be divided not only phenotypically but also functionally into natural or 
antigen-induced antibody secreting cells (10).

B-1 cells are found in various tissues of adult mice, which include the peritoneal cavity, pleural 
cavity, spleen, bone marrow, lymph nodes, and blood [reviewed in Ref. (11)]. The tissue location 
may influence the functional role of B-1 cells. The peritoneal and pleural cavities have been shown 
to be an important reservoir for B-1 cells that respond to various stimuli (12–16) and subsequently 
migrate to the spleen/mesenteric or mediastinal lymph nodes, respectively, where they begin to 
secrete antibody (17). In mice depleted of B  cells, peritoneal B-1 cells have the ability to fully 
reconstitute natural serum immunoglobulin (Ig) M as well as B-1 cells in all tissue locations (18); 
yet, in normal healthy mice, peritoneal B-1a cells do not directly contribute to natural serum IgM 
(19). Instead, the direct sources of natural serum IgM are B-1a cells located in the spleen and 
bone marrow (19). It has been shown that peritoneal B-1a cells recirculate from the peritoneum 
to the blood in a CXCL13-dependent manner (20). Interestingly, in the absence of CXCL13, mice 
are devoid of peritoneal B-1 cells but still have splenic B-1 cells; yet, despite having normal levels 
of serum IgM these mice have significantly less natural IgM specific for phosphorylcholine (20). 
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FiGUre 1 | Overview of natural antibodies’ (NAbs) attributes. Graphical 
representation of the various NAb functions (outside green circle), epitope 
recognition (inside yellow circle), isotype (inside red circle), and cells shown to 
produce NAbs (inside blue circle).
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This study suggests that it is possible for peritoneal B-1 cells to 
contribute to the splenic B-1 cell population and this recircula-
tion might be particularly important for certain NAb reactivites. 
To date, the exact developmental relationship between the NAb 
secreting splenic/bone marrow B-1a cells and peritoneal B-1a 
cells is still unknown.

Beyond heterogeneity at different tissue sites, various subpop-
ulations of B-1a cells have been defined based on surface marker 
expression. In the peritoneal cavity, B-1a subpopulations include 
PD-L2 (PD-L2+/−) (21, 22), CD25 (CD25+/−) (23), CD73 (CD73hi/lo)  
(24), and PC-1 (PC-1hi/lo). The PD-L2, CD25, and CD73 subsets 
showed no difference in the amount of natural IgM secretion 
between positive and negative subsets (21–24). Conversely, PC-1 
B-1a cell subsets differed in the level of natural IgM secretion. 
PC-1lo B-1a cells were shown to produce the large majority of 
natural IgM (25). PC-1hi B-1a cells produced a significantly lower 
level of natural IgM and contained B-1a cells producing the 
antiphosphatidylcholine (anti-PtC) specificity (25, 26). B-1a cells 
have also been shown to produce IL-10 in the absence of stimula-
tion (27); however, the relationship between regulatory (B10) cells 
(28) and B-1a cells is still unknown. In the bone marrow, a fetal-
derived B cell subset was recently identified, which phenotypes 
as a plasmablast/plasma cell (CD5−IgM+IgD−CD138+B220lo/− 
FSChiCD43+) (29); it is unknown whether this population is a 
terminally differentiated B-1, B-2, or novel population of cells 
(19). In the spleen, a population of CD138 + B-1a cells is present 
in unimmunized mice, which rapidly respond to stimulation 
prior to immigration of peritoneal B-1 cells to the spleen (30). The 
spleen is also home to marginal zone B cells, which also produce 
NAbs (31); however, it has been demonstrated that greater than 
90% of NAb is produced by B-1 cells (18).

Given the evidence described previously, it is clear in mice, 
more than one B cell population is responsible for NAb produc-
tion and not all subsets of B-1 cells spontaneously secrete NAbs 
that accumulate in serum. Thus, the generalization that all B-1 
cells secrete NAbs should be avoided. This point has important 
implications when comparing the molecular repertoire of a 
certain B-1 cell subset as it relates to the total natural serum 
IgM repertoire, which would include the molecular repertoire of 
numerous B-1 cell subsets from various locations (10).

Natural antibody secreting cells in humans were first 
identified as CD5+ peripheral B  cells (32–35). Later, it was 
demonstrated that CD5−CD45RAlo peripheral B cells could also 
produce natural IgM (36). Much of the early work in humans 
focused on characterization and comparison of polyreactive 
antibodies, which were shown to utilize VH4 more frequently 
than monoreactive antibodies (37). More recently, strides 
have been made to refine the phenotypic characterization of 
NAb producing cells in the human system by starting with 
functional characteristics such as natural/spontaneous antibody 
secretion. This approach yielded a new phenotypic definition, 
CD20+CD27+CD43+CD70−CD38mod, of NAb secreting cells, 
the majority of which express CD5 (1, 38). Nevertheless, the 
phenotype of antibody secreting cells in the peripheral blood of 
humans is still evolving. Further investigation of NAb secreting 
cells in the human system is needed to elucidate the specific 
types of cells that are capable of producing NAbs, as well as the 
location of these cells beyond peripheral blood.

NAb reActivitY

Although NAbs are known for their broad reactivity against 
self-antigens, some have the ability to recognize evolutionar-
ily fixed epitopes present in foreign antigens. Whether or not 
NAb recognition of foreign structures is always the result of 
cross-reactivity against self-antigens is still a matter of debate. 
Generally, the most well-characterized epitopes to date include 
phospholipids, oxidized lipids, glycolipids, and glycopro-
teins. The best characterized B-1 cell-derived NAb binds the 
phospholipid phosphorylcholine and utilizes VHS107.1 (39). 
Phosphorylcholine is found within the bacterial cell wall of 
Streptococcus pneumoniae (40) and is also exposed on apop-
totic cells and oxidized lipids (41–45). In normal healthy cells, 
phosphorylcholine is hidden within the head group of another 
well-characterized NAb epitope, PtC. PtC is a normal constitu-
ent of cell membranes, which is exposed upon treatment with 
the protease, bromelain (46–49). Early studies revealed NAb 
binding to red blood cells treated with bromelain were B-1 cell 
derived and utilized VH11 (50, 51), VH12 (52), and Q52 (53).

Antibodies that recognize glycan epitopes are also highly 
abundant in both mice and humans (54, 55). Glycan epitopes 
are observed on both glycoproteins and glycolipids and can 
be present in autologous or pathogen-associated exogenous 
structures. In mice, the specificities of such antibodies are thor-
oughly reviewed by New et al., which include alpha-1,3-glucan, 
N-acetyl-d-glucosamine, and alpha-1,3-galactose epitopes (56). 
In humans, the best known antiglycan antibodies react with 
blood group antigens A and B (57), the xenoantigen Gal-alpha-1, 
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3Gal-beta-1,4GlcNAc (58, 59), Forssman glycolipid antigen,  
and gangliosides such as the tumor-associated antigen Neu-
5GcGM3 (60).

NAb FUNctiONs

Natural antibodies provide various essential functions 
within the immune system. The most prevalently studied 
function is the ability to provide protection against bacte-
rial, viral, and fungal infections. Such protection is afforded 
by NAbs’ epitope recognition. In particular, NAbs have 
been shown to provide protection against S. pneumoniae 
(61–63), sepsis (64), Borrelia hermsii (65), influenza virus 
(66), Listeria monocytogenes (67), vesicular stomatitis virus 
(67), lymphocytic choriomeningitis virus (67), Cryptococcus 
neoformans (68), and Pneumocystis murina (69). In addition 
to NAbs to the aforementioned organisms, B-1 cells produce 
“induced” antibody responses against S. pneumoniae (61),  
B. hermsii (65, 70, 71), influenza virus (12, 66, 72), and 
Francisella tularensis (13, 73).

Beyond protection against various infections, NAbs serve a 
number of other essential functions in the immune system. These 
functions have been reviewed extensively elsewhere (56) and 
include regulation of B cell development (10, 74, 75), selection 
of the B  cell repertoire (74, 76), regulation of B  cell responses 
(77), clearance of apoptotic debris (45), vascular homeostasis/
protection against atherosclerosis (78–81), allergic suppression 
(82, 83), and protection from cancer (84, 85) (Figure 1). Despite 
this broad range of identified NAb functions, the role of NAbs in 
the immune system continues to expand.

NAb cHArActeristics

In mice, typical characteristics of NAbs include germline-like 
nucleotide structure, repertoire skewing, IgM, IgA, or IgE (86) 
isotype, and T cell independence. Classically, NAbs are defined 
as being germline like as evidenced by these antibodies lacking 
non-templated nucleotides (N-additions) and having little to no 
somatic hypermutation (39, 87, 88). Antigen receptor diversity 
is increased during VDJ recombination when the enzyme TdT 
is present, which adds N-additions to the V-D and D-J junc-
tions (89). Such germline characteristics have been shown to 
be essential in NAbs’ ability to protect against infection. The 
prototypical B-1a anti-phosphorylcholine antibody, T15, has 
no N-addition (90, 91). In mice with forced expression of TdT, 
all anti-PC antibodies generated after vaccination with heat 
killed S. pneumoniae contain N-additions; however, these anti-
phosphorylcholine antibodies containing N-additions were 
shown to provide no protection against S. pneumoniae infection 
(92). This study highlights the importance of germline structure 
in the protection provided by evolutionarily conserved NAb. In 
addition, NAbs derived from murine B-1a cells have a restricted 
repertoire. On average 5–15% of peritoneal B-1a cells recognize 
PtC and utilize VH11 and VH12 (93).

Other studies have shown that these “classical” characteris-
tics of NAbs do not always apply. For instance, B-1a cells from 
6- to 24-month-old mice produce Igs with significantly more 

N-additions (94, 95). Furthermore, it was demonstrated that B-1a 
cells accumulate somatic hypermutations with increasing age, 
which is AID dependent (96). In this same study, isotype switch-
ing was also increased in B-1a cells with age (96). Nonetheless, 
throughout the decades of NAb investigation, IgG and IgA have 
been shown to be present within the NAb pool (97–99); however, 
natural IgG and IgA levels decrease significantly in germ-free 
mice, whereas IgM levels remain unaffected (100). This suggests 
the amount of natural serum IgG and IgA are dependent upon 
exogenous antigen stimulation, whereas the level of natural 
serum IgM is not.

In humans, studying NAbs in the absence of antigen expo-
sure is a challenge; however, studies performed during early 
human life provide a period of limited exogenous antigen 
exposure in the presence of undistributed, strictly controlled 
intrauterine antigen milieu (101). It was demonstrated that 
inside the fetal B  cell population at 12–14  weeks of human 
gestation, only IgM and IgD transcripts were detected (101). 
Yet, after 26  weeks of gestation, B  cell clones encoding IgG 
start to appear in a frequency similar to a frequency observed 
in healthy infants, which suggests IgM is not the only iso-
type present in the prenatal repertoire of human B  cells. 
Furthermore, somatic hypermutations occur during human 
fetal B cell development even in a T cell-independent fashion 
(101). As described in mice, early human NAbs are also diverse 
in isotype and structure.

Non-templated nucleotides (junctional diversity) are also 
an important mechanism of generating Ig structural diver-
sity, which along with combinatorial diversity and somatic 
mutation results in numerous Ig specificities (102–104).  
In mice, natural B-1a cell-derived IgM is characterized by a low 
number of N-additions (105). Interestingly, TdT expression is 
restricted to adult life in mice (89), which is after the majority 
of fetal derived B-1a cell development has occurred (105, 106). 
Therefore, in mice, fetal-derived B-1a cells lack N-additions 
(106), whereas adult bone marrow-derived B-1a cells display 
a high level of N-additions (95, 107–109). In contrast, TdT is 
expressed during both fetal and adult life in humans, and as 
a result, both fetal and adult derived human B  cells express 
Ig with numerous N-additions (110). Yet, it has been shown 
human and mouse fetal sequences share both similarities 
and differences in their repertories (111). For example, even 
though TdT is present throughout early human life, it has been 
demonstrated that the number of N-additions/CDR-H3 length 
in B cells from preterm and term infants are shorter than that 
of adults (112).

DeFiNiNG NAbs

As one reads through the body of NAb literature from the early 
1960s to the present day, it becomes increasingly difficult to 
find a common concrete definition. The most frequently used 
definition describes NAbs as preimmune antibodies generated 
in the absence of exogenous antigenic stimulation, which are 
non-specific, broadly cross-reactive, low affinity, germline-
like antibodies. As summarized in Figure 1, NAbs have many 
attributes, although NAbs cannot be defined by several of these 
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characteristics. Furthermore, NAbs cannot be defined based 
on a single B cell subset or location. Different subsets of B cells 
in different locations are capable of secreting NAbs. Neither 
a specific isotype nor a specific function can define NAbs. 
Therefore, the characteristics left to define NAbs include how 
they are generated (presence or absence of endogenous and/or 
exogenous antigen) and their structural composition (germline-
like or diverse).

In terms of specific reactivity to exogenous antigens, studies 
have indicated that B-1a cells in the peritoneal cavity serve as a 
long-term reservoir of “natural” antibody-producing cells after 
first exposure to the antigen (17). However, if these B-1 cells 
have previously seen their cognate antigen it might be more 
appropriate to term these as memory B-1 cells. In fact, some 
subsets of peritoneal B-1a cells share similarities to memory 
B cells such as PD-L2 and CD73 expression (21, 24). Thus, it has 
been suggested that within the B-1 cell population, those residing 
in the bone marrow and the spleen are the true NAb-secreting 
cells (17), whereas body cavity B-1 cells constitute a population 
of responder (memory type) lymphocytes, which after stimula-
tion migrate and differentiate to IgM-secreting cells. As such,  
it is possible body cavity B-1 cells should not be considered NAb 
secretors since intentional stimulation is required to upregulate 
the secreting process.

Other studies indicate exogenous antigens are required for 
selection of the overall B cell repertoire (76). In addition, alter-
ing antigenic exposure during neonatal life has been shown to 
significantly change the repertoire of adult B cells (82). B-1a cells 
are generated mainly during the fetal/neonatal period; therefore, 
any antigen exposure during neonatal life would be expected 
to significantly influence the development of B-1a cell-derived 
NAbs. Interestingly, it has been suggested that the neonatal 
period is subject to increased intestinal permeability and this 
access point for antigen exposure could direct the develop-
ment of NAbs (56). Nonetheless, no significant difference was 
observed between the B-1a cell derived IgM repertoire in germ-
free mice when compared with specific pathogen-free mice  
(96, 98, 113, 114). In adult humans, the issue of antigen exposure 
is more of a problem as the antigenic exposure of humans cannot 
be controlled; therefore, studying a pre-immune repertoire is 
nearly impossible.

Schroeder and colleagues demonstrated the importance of 
both endogenous self-antigens and germline structure of anti-
bodies in shaping the NAb repertoire. They showed the ability 
of the T15 NAb to clear endogenous antigen (oxidized low-
density lipoprotein) is only dependent upon selection driven 
by self-antigens regardless of germline antibody structure, 
whereas the effectiveness of T15 to protect against exogenous 
antigen (phosphorylcholine/S. pneumoniae) is dependent upon 
both germline conservation and selection by self-antigen (115, 
116). This is in line with studies by Kearney et al. demonstrating 
the influence of exogenous antigen upon the effectiveness of 
anti-phosphorylcholine antibody against S. pneumonia versus 
allergy (82). Together, these studies demonstrate how endog-
enous antigen, exogenous antigen, and germline composition 
create and alter the NAb repertoire.

Overall, these NAb studies call into question how NAbs can/
should be accurately defined. Recently, this point has been plainly 

FiGUre 2 | Determining how to define natural antibodies (NAbs). (1) Most 
frequently used definition of NAbs: preimmune antibodies generated in the 
absence of exogenous antigenic stimulation, which are broadly reactive, low 
affinity, germline-like antibodies selected in the presence of endogenous 
antigen (depicted in green). These antibodies are pre-existing/always present in 
the serum. The dotted outline represents the intrinsic properties the cell might 
have (e.g., increased levels of IgM and/or CD86/CD80, lower activation 
threshold). The dark outline indicates the cell is secreting Ig. (2–4) In panels 
2–4, we suggest possible antigenic experiences of NAbs; however, further 
investigation is required to determine whether antibodies produced after such 
antigenic experiences are the same as preimmune, pre-existing NAbs in terms 
of germline structure and/or repertoire. (2) Here, we suggest a NAb producing 
cell may require an extra antigen experience (light push(1)) to start immediately 
(within hours) secreting. This antigen experience contrasts the strong activation 
required for naive B-2 cells (depicted in red) to differentiate into plasma cells 
(PC), which results in highly specific non-germline antibody (depicted in blue). 
However, it is unknown what affect this light push might have upon the 
antibody produced by the NAb producing cell (this is depicted by giving the 
cell both blue and green antibody colors). (3) We suggest a NAb producing cell 
that is already secreting NAbs experiences antigen, which induces 
differentiation into a plasma cell (PC). Again, it is unknown what affect this 
differentiation might have upon the antibody produced (this is depicted by 
giving the cell both blue and green antibody colors). (4) Finally, we depict NAb 
producing cells experiencing strong/specific activation and subsequently 
following the traditional pathway leading to memory and plasma cell 
differentiation.
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perhaps this is the definition of NAbs in its purest form. Yet, it has 
also been demonstrated that NAbs are affected by the presence 
of exogenous antigen, which is encountered in normal function-
ing systems. As an attempt to incorporate the role of antigen in 
the NAb repertoire, we propose the following starting point for 
investigation. To be a NAb, two requirements are necessary:  
(1) the ability to exert a protective, regulatory, or other biologi-
cal function and (2) pre-existing/immediately responsive anti-
body. In the first requirement, the biological function might be 
protective, regulatory, or provide a function yet to be elucidated.  
In the second requirement, the antibody must already be pre-
sent and secreted, or the NAb encoding cell would need only 

a light push1 for the NAb to be secreted.2 The role of antigen 
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Furthermore, the ability of the NAb encoding cell to respond 
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