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Abstract

Gene transfer into cells of the cochlea is useful for both research and therapy. Bovine adeno-

associated virus (BAAV) is a novel viral vector with potential for long term gene expression with 

little or no side effects. In this study we assessed transgene expression using BAAV with ß-actin-

GFP as a reporter gene, in cochleae of normal and deafened guinea pigs. We used two different 

routes to inoculate the cochlea: scala media (SM) or scala tympani (ST). Auditory brainstem 

response assessments were done prior to inoculation, 7 days after inoculation and immediately 

prior to sacrifice, to assess the functional consequences of the treatment. We observed threshold 

shifts due to the surgical invasion, but no apparent pathology associated with the virus. Fourteen 

days after the injection, animals were sacrificed and cochleae assessed histologically. Epi-

fluorescence showed that BAAV transduced the supporting cells of both normal and deafened 

animals through SM and ST inoculations. Transgene expression in cells of the membranous 

labyrinth following ST inoculation is an important outcome because of the greater feasibility of 

this route for future clinical application. BAAV facilitates efficient transduction of the 

membranous labyrinth epithelium with minimum pathogenicity and may become clinically 

applicable for inner ear gene therapy.
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Introduction

Sensorineural hearing loss is one of the most common disorders in our society today, and 

although it is not a life threatening impairment, it can have a substantial influence on the 
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patient’s daily life. A common cause of this disorder is the degeneration of the sensory hair 

cells in the organ of Corti. The loss of these cells is irreversible in humans and other 

mammals, leading to permanent functional impairment1, and treatments of this impairment 

have limited efficacy.

Gene transfer is a powerful technique to introduce potentially therapeutic genes into target 

cells. Using this technique, future otological therapies may be able to prevent hair cell loss 

or replace missing hair cells, and consequently reduce functional impairment. Side effects 

and other technical obstacles still make gene transfer in the inner ear clinically unfeasible. 

To produce safe and practical applications of this technique, improvements in both viral 

vectors and delivery routes are necessary. Previous studies on inner ear gene transfer 

demonstrate that the ear is a viable target for gene therapy2–6. The most efficient way to 

induce forced expression of transgenes in vivo is by viral mediated vectors, but the very 

nature of these vectors raises concerns about safety and potential side effects. In recent 

years, AAV has been found to have desirable characteristics such as low pathogenicity, high 

infectious efficiency in non-dividing cells and sustained gene expression; which could make 

it one of the most effective virus vectors7–9. However, one of the disadvantages of this 

vector is that the effect of AAV gene therapy could be diminished in patients who possess 

AAV neutralizing antibodies. AAV infection is common in humans and neutralizing 

anybodies against AAV-1, -2, and -3 are reported to be up-regulated in childhood10. To 

overcome this fundamental deficiency, investigation of other distinct AAV serotypes is 

necessary. Once such vector is the bovine AAV (BAAV), which has been shown to be 

serologically distinct from AAV serotypes 1 to 411 and has been recently cloned and 

characterized12. Furthermore, limited inhibition by pool human immunoglobulins suggest 

minimal neutralizing antibody levels in the general human population12. In a recent study, 

BAAV showed significantly higher efficiency than AAV serotypes -2,-4, and -5 for 

transducing explants of rat inner ear epithelia in vitro13. Thus BAAV presents several 

attractive features that could overcome potential side effects and make the virus a novel 

candidate for gene therapy.

In this study, we evaluated BAAV cell tropism and transduction efficiency in vivo, with β-

actin-GFP as a reporter gene, in the inner ear of normal hearing and deafened guinea pigs. 

We evaluated both the efficiency of transduction and its side effects for two different routes 

of inoculation: the scala tympani (ST) and scala media (SM). ST inoculation is feasible for 

clinical application and is minimally invasive. SM inoculation, while not feasible clinically 

in human ears, may be of importance for investigating protein function by forced gene 

expression in the membranous labyrinth. We compared BAAV-mediated gene expression 

and side effects between normal hearing and deafened guinea pigs. Our data indicate that 

BAAV transduces the auditory epithelia with low pathogenicity, through both SM and ST 

injection, in both normal hearing and deaf models, suggesting that BAAV is a useful gene 

carrier for both therapeutic and basic inner ear research.
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Results

1. Effects of innoculation on auditory physiology of normal guinea pigs

To evaluate the effect of BAAV inoculation on the auditory physiology of normal hearing 

guinea pigs, we assessed the ABRs to clicks at 4, 12, and 20 kHz at 3 time points: prior to 

surgery, 1 and 2 weeks after surgery. To separate effects of injection route from effects of 

the BAAV activity, the same tests were performed on animals receiving BAAV by each 

injection route (SM or ST). In addition, control groups were inoculated with 5µl of artificial 

endolymph or perilymph via SM or ST, respectively, and were assessed by ABR audiometry 

at the same frequencies and time points as BAAV treated animals. The contralateral ears 

(right ear) served as a second control.

Baseline thresholds were similar across all groups. At one week, the threshold shifts at all 

frequencies were significantly larger, indicating greater hearing loss, in SM inoculated 

animals (Fig. 1a and c) than in ST inoculated animals (Fig. 1b and d), whether the animal 

received BAAV or the appropriate control serum (p < 0.05). In all groups, the ABR 

thresholds appeared to improve slightly by week 2, but the differences between weeks were 

not significant. Threshold shifts in BAAV SM and ST inoculated animals were not 

significantly different from their respective control groups. The contralateral ears in all 

groups showed no change in thresholds across all time points and frequencies (data not 

shown).

2. Effect of BAAV SM and ST inoculation on histology of normal ears

We performed SM or ST inoculation in normal guinea pigs with 5µl of BAAV-ß-actin-GFP 

and sacrificed the animals 2 weeks after surgery. Whole mounts of the auditory sensory 

epithelium were stained to show distributions of GFP and F-actin by epi-fluorescence to 

evaluate quantity and location of BAAV transgene expression. The distribution of GFP in 

the different cell types in each cochlear turn following BAAV inoculation into SM or ST is 

summarized in Table 1.

Transgene expression of GFP in SM inoculated animals was robust near the inoculation site 

(2nd turn), less prevalent in the basal turn and absent in the higher (3rd and 4th) turns. 

Transgene expression was abundant in the supporting cells in the area of inner and outer hair 

cells, and in Reissner’s membrane (Fig. 2a–d). Among supporting cells, interdental, inner 

sulcus and Hensen cells were consistently transduced, but Deiters and pillar cells showed 

much less transgene expression. Hair cells were not transduced.

An important outcome of the SM inoculation was hair cell loss. The severity of the loss was 

substantial near the inoculation site, but it decreased further away from the site14. The 

contralateral (right) ears showed no transgene expression or pathological hair cell loss in any 

animals (data not shown).

In guinea pigs that received BAAV in ST, the gene expression was restricted to the vicinity 

of the inoculation site (basal turn). Cell types presenting gene expression in the basal turn 

epithelium were interdental, inner sulcus and Hensen cells, and rarely, outer hair cells (Fig. 

2e–f). Outer hair cell transduction could only be seen in the ST inoculation; however pillar 
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cells and Reissner’s membrane, which were transduced through the SM route, were not 

affected through the ST route. Partial hair cell loss was also apparent in the basal turn of the 

ST inoculated organ of Corti (Fig. 2h). In contrast, hair cell loss was not observed in the 

corresponding control group.

3. Effect of BAAV inoculation on histology of deafened guinea pigs

Animals were deafened by a combination of subcutaneous kanamycin and intravenous 

ethacrynic acid; subsequently, hair cells degenerated and were replaced by scars15,16. Three 

days later the deafened guinea pigs were inoculated with the same vector and concentration, 

by the same routes as normal guinea pigs and sacrificed 2 weeks later. In order to assess the 

transduction of BAAV in deafened ears, we counted the number of ears with positive 

transgene expression, as in BAAV inoculated normal guinea pigs (Table 1).

In SM injected deaf animals, GFP was seen in the 2nd and basal turn, with strong transgene 

expression near the inoculation site (Fig. 3). Transgene expression was especially robust in 

the inner sulcus cells (Fig. 3c) appearing more efficient than that seen in normal SM injected 

guinea pigs (Fig. 2b). Transgene expression was seen in the interdental, Hensen, and Deiters 

cells with apparently similar intensity and frequency to that seen in normal SM injected 

guinea pigs (Fig. 3a, b, and d compared to 2a and c).

In ST inoculated deafened guinea pigs, transgene expression was seen in interdental (Fig. 

3e) and Hensen cells. Positive cells were seen in the basal turn but were much less abundant 

than in normal ST injected guinea pigs. Pillar cells were not infected by BAAV, which is 

consistent with normal ST injected guinea pigs. The efficiency of the transduction was 

notably lower in the deafened ST inoculated guinea pigs, where numbers of transfected ears 

and frequencies of positive cells (%) were generally lower than in normal ST injected guinea 

pigs.

Discussion

This study characterizes the transgene expression of BAAV with ß-actin-GFP injected into 

the normal hearing and deafened guinea pig inner ear through two different routes: the SM 

and ST inoculation. We show that in vivo inoculation through both routes transduces hair 

cells in normal guinea pigs and a variety of supporting cells in both normal and deafened 

guinea pigs, with minimal side effects.

BAAV effects on the auditory system

The ABR results from our control group showed a significantly higher (worse) thresholds in 

the artificial endolymph inoculated SM animals (Fig. 1c) compared to the artificial 

perilymph inoculated ST animals (Fig. 1d) at both 1 and 2 week time points. The elevated 

threshold in artificial endolymph inoculated SM animals is thought to be the consequence of 

a mechanical disruption of the organ of Corti, possibly involving rupture of the Reissner’s 

membrane and/or mixing of perilymph and endolymph fluids around the inoculation site. 

Thus, hair cell loss is most severe in this area and gradually diminishes away from the 

inoculation site, as described in previous literature using this method in guinea pigs14. 

Animals inoculated with artificial perilymph into ST showed a threshold shift no more than 
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13 dB at the 1st week and 8 dB at the 2nd week which is also thought to be caused by the 

surgical procedure. ST inoculation caused little hair cell loss in any cochlear turn; most of 

the damage was again near the site of injection. For both surgical approaches, the threshold 

shifts seen in BAAV inoculated guinea pigs were comparable to those of the control animals 

(Fig. 1a and 1b), suggesting that the injection of the BAAV had little or no side effects on 

auditory function. In addition, after the initial threshold shift, the ABR thresholds improved 

between the 1st and 2nd week, supporting the inference that the functional effect of the 

procedure is due to the surgery, rather than the presence of the virus or the expression of the 

transgene. Together, these results indicate that BAAV has minimal detrimental effects on 

cell survival and function of the inoculated ears.

Distribution of transgene expression in normal guinea pigs

The distribution of transgene expression among cell types is shown in Table 1. Transduction 

of Hensen, interdental and inner sulcus cells was demonstrated in all groups receiving 

BAAV. The efficiency was high in the SM inoculated guinea pigs, with almost all ears 

inoculated with BAAV showing transgene expression. The ST inoculated guinea pigs 

typically did not show efficient gene expression, although a few outer hair cells did appear 

positive. The transgene efficiency was low in the ST inoculated guinea pigs in both normal 

and deafened conditions. Therefore, these results suggest that the cell types such as Hensen, 

interdental, and inner sulcus cells can be transduced consistently by BAAV through both 

routes but transduction of hair cells and Reissner’s membrane is dependent on the 

inoculation route. Additionally, the proportion of transduced cells is much higher through 

the SM inoculation compared to the ST inoculation.

In cultures of rat cochleae exposed to BAAV, an estimated 100% of Hensen cells; 40% of 

interdental and phalangeal cells; 10% of inner and outer hair cells; and 48% of vestibular 

cells were transduced13. The frequencies of Hensen, interdental, and outer hair cell 

transduction is consistent with our data. In contrast, transduction of inner sulcus, Deiters 

cells, pillar cells and Reissner’s membrane in the rat cultures was not observed. These 

discrepancies may be caused by differences in susceptibility to the effects of BAAV in 

organ of Corti among species and by differences between culture and in vivo conditions.

Transfer of genes into hair cells is of importance for research issues such as understanding 

function of gene products, and for clinical applications such as protection or phenotypic 

rescue for hereditary disease. However, work with adenovirus vectors in mature normal 

mammals has shown that the transduction was restricted to supporting cells14,17,18. The 

reasons for the lack of hair cell transduction are not clear, especially considering that these 

cells do express the CAR receptor17,18. As such, our current finding about BAAV 

transduction of hair cells is a positive first step toward work on protection and phenotypic 

rescue. However, means for increasing the efficiency of hair cell transduction need to be 

identified.

It appears that different viral vectors have different patterns of transduction in the cochlea. 

Inoculation with various serotypes of AAV (1, 2, 3, 5, 7, 8, and 9), into the murine or guinea 

pig cochlea in vivo, produced stronger transgene expression in the inner hair cells but 

weaker expression in the supporting cells. Inoculation with adenovirus showed robust 
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transgene expression in the supporting cells when inoculated through the SM route14 and in 

the mesothelial cells when inoculated through the ST route19. Therefore, the BAAV has 

similar transgene expression to adenovirus by showing high transduction efficiency in the 

supporting cells through SM route and differs from other AAV serotypes by transducing 

mainly the supporting cells through the ST route.

High transduction efficiency of supporting cells with BAAV through the SM route is an 

encouraging result for inducing transdifferentiation of supporting cells to hair cells, 

especially in research work. Such studies of regeneration are based on forced expression of 

genes that encode the hair cell phenotype during development, resulting in a phenotypic 

change of supporting cells20,21. Our data suggest that BAAV would be an appropriate gene 

vector for SM inoculation leading to forced expression of Atoh1 and other genes that may 

induce regeneration in the organ of Corti. For clinical application, however, SM approach is 

not feasible due to access limitation in the human ear. In contrast, the ST route is accessible, 

via the oval or round window. Our results on low efficiency transduction of non-sensory 

cells via the ST constitutes a proof for the principle that BAAV can accomplish such 

transduction, but higher efficiency will be needed for robust biological activity.

Distribution of transgene expression in deafened guinea pigs

The deafened animals exhibited scars that replaced missing hair cells. SM inoculation 

resulted in similar pattern of supporting cell transduction in normal and deafened animals. 

Following ST inoculation, the pattern of supporting cell transduction was also comparable 

between deafened and normal animals. However, the staining intensity in the transduced 

cells of the deafened animals was lower and the efficiency of transduction was notably 

lower compared to normal guinea pigs.

The reason for reduced transduction in traumatized ears as compared with normal ears is 

unclear. We speculate that the scarring process that follows hair cell loss leads to changes in 

supporting cells that reduce their affinity for transduction by BAAV after SM inoculation. 

Areas with no scarring, such as the inner sulcus, did not show a reduction in efficiency of 

transgene expression following a lesion. Changes seen after ST inoculation could be caused 

by structural change (thickening) of the basilar membrane, as seen after amikacin 

treatment22. Similar thickening of the basilar membrane can be observed in presbycusis in 

human23. This structural change of the basilar membrane may alter the permeability and 

allow less BAAV to reach the baso-lateral domains of membranous labyrinth cells. Changes 

of efficiency of virus uptake in the inner ear epithelium after induced lesions have been 

shown to occur, at times leading to increased efficiency 24,25. Because the traumatized 

auditory epithelium will be the target for clinical reparative procedures, it is important to 

characterize the optimal vector designs, promoters and inoculation methods that would yield 

the desirable outcome in terms of efficiency and safety in deafened ears.

Because the efficiency of transgene expression of BAAV is relatively low in deafened 

animals, practical application will require some means to enhance transgene expression. One 

important task is to elucidate the specific receptors for BAAV in the cochlea. Once receptors 

are identified, it would be possible to alter virus construct for augmenting the affinity of 

these receptors, thereby leading to better transgene expression efficiency. Gangliosides have 
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been reported act as receptors for BAAV in vitro26. Therefore, co-inoculation BAAV and 

gangliosides into the ST may enhance the transgene efficiency.

Pattern of GFP distribution within a cell

The intracellular distribution of the fusion β-actin–GFP protein was determined to be 

throughout the cytoplasm. This was expected given that G-actin is distributed throughout the 

cytoplasm. Over-expression of this fusion protein mediated by the BAAV is unregulated and 

as such excess gene product may even spread into the nucleus, but this was not observed in 

cochlear cells transduced with BAAV β-actin–GFP, demonstrating that the cells were able to 

contain the protein in the cytoplasm.

Time course of gene expression

The BAAV showed transgene expression most efficiently 2 weeks after inoculation. This 

onset of gene expression is slower compared to adenovirus which peaks several days after 

the inoculation, both in the ear4 and in other tissues27. The delay in gene expression of 

BAAV is related to its molecular structure. BAAV is a single stranded DNA virus; therefore 

conversion into a double stranded DNA in the nucleus is necessary in order for transgene 

expression. The late onset of gene expression makes this vector less desirable for goals 

related to rescue of cells after an insult has occurred. However, the long duration of gene 

expression (over several years) makes the vector attractive for long term protective effects or 

for substitution of a mutated gene7.

Side effects of BAAV in the cochlea

In our in vivo study it was possible to test toxicity as well as the extent of immune response. 

We determined that the auditory system was largely preserved and morphology of the 

middle ear was intact 2 weeks after the inoculation. All guinea pigs were healthy and had no 

signs of inflammation (discharge or contamination of fluids in the inner ear) 2 weeks after 

the surgery. Thus, no particular side effects from the BAAV were apparent in most of the 

animals. However, in ST inoculated guinea pigs with BAAV, few hair cells were transduced 

and there was sporadic hair cell loss (Fig. 2h). This may suggest possible cytotoxicity of the 

virus. Hair cells may take up the virus and possibly degenerate. For adenovirus, the volume 

of 5µl has been mentioned to be a safe volume with no apparent side effects28. However, 

the adenovirus injected into ST does not transduce cells of the membranous labyrinth, so 

comparison of side effects on hair cells and hearing are difficult. It is likely that the volume 

of 5µl may not be optimal for BAAV transduction. Modifying the virus volume or 

concentration of the BAAV may significantly reduce side effects.

BAAV delivery through SM and ST route

For future clinical intervention, the feasibility of inoculation surgery is a crucial factor. 

Because of the difficulty of reaching the endolymphatic space of human temporal bone, the 

SM inoculation is not readily adapted for humans, although other methods of reaching the 

endolymphatic space are possible (e.g. endolymphatic sac29). An important outcome in this 

study was transduction of cells in the membranous labyrinth through ST inoculation, which 

is more feasible for clinical intervention. These data indicate that the BAAV may be a 
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potential candidate for future clinical application, especially once means are found to 

enhance to efficiency of transgene expression in deafened animals.

Conclusions

We have shown that BAAV can shuttle genes into cells of the membranous labyrinth via 

endolymph or perilymph inoculation. Onset of gene expression is slow but once expressed, 

it is sustained over a log time, with little or no side effects. Once efficiency can be increased, 

this vector has the potential for becoming useful for a wide range of applications for inner 

ear research and future clinical intervention.

Material and Methods

1. Animals & Groups

Animal care and handling were approved by the University of Michigan Institutional 

Committee on the Use of Care of Animals and performed using accepted veterinary 

standards. Twenty male pigmented guinea pigs weighing 300–350g were purchased from 

Elm Hill, Chelmsford, MA USA. Each animal was tested for normal Preyer’s reflex before 

being included in the study. Normal hearing animals were divided into 4 groups, according 

to the inoculation site and injected reagent. One group of animals had BAAV ST inoculation 

(n=4). The second group had BAAV SM inoculation (n=4). The third group of animals had 

artificial perilymph (NaCl 145mM, KCl 2.7mM, MgSO4 2.0mM, CaCl2·2H2O, HEPES, 

HPLC grade water, and HPLC grade MeOH) ST inoculation (n=3). The last group had 

artificial endolymph (NaCl 1mM, KCl 126mM, KHCO3 25mM, MgCl2 0.025mM, CaCl2 

0.025mM and K2HPO4 1.4mM) SM inoculation (n=3). Deafened animals were divided into 

2 groups. One was inoculated in the ST with BAAV (n=3) and the other in the SM with 

BAAV (n=10). All cochleae in each group were processed for whole-mount (surface 

preparation) analysis.

2. Auditory brainstem response assessment

Auditory brainstem responses (ABRs) were assessed for each animal in both ears. The 

thresholds were measured by each ear for frequencies at 4k, 12k, and 20 kHz (tone bursts, 

15ms duration, 1ms cos2-shaped rise-fall times) as described previously30. ABRs were 

assessed prior to the inoculation surgery (baseline), 7 and 14 days after the inoculation 

surgery. We compared the threshold shift from baseline at 7 and 14 days. Furthermore, we 

compared the threshold shifts between the SM and ST inoculation for both BAAV and 

corresponding controls. Statistical analyses of ABR threshold shifts were performed by 

ANOVA in SYSTAT. A P value < 0.05 was considered statistically significant.

3. BAAV-ß-actin-GFP vector construction, preparation, and quantification

293T (human kidney) cells were maintained in Dulbecco's modified Eagle's medium 

supplemented with 10% fetal bovine serum. The media contained 2 mM L-glutamine, 100 U 

of penicillin/ml, and 0.1 mg of streptomycin/ml. Cells were maintained at 37°C under a 5% 

CO2 humidified atmosphere. Recombinant BAAV expressing β-actin–GFP was produced 

using a four-plasmid procedure previously described13. Briefly, semiconfluent 293T cells 
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were transfected by calcium phosphate with four plasmids: an adenovirus helper plasmid 

(pAd12) containing the VA RNA, E2, and E4; Two AAV helper plasmids containing the 

AAV2 Rep and BAAV Cap genes respectively and a vector plasmid containing AAV2 

inverted terminal repeats flanking CMV–β-actin–GFP fusion expression cassette. The 

AAV2 vector plasmid containing the AAV2 inverted terminal repeats (ITRs) flanking the 

CMV–β-actin–GFP fusion expression cassette was constructed by subcloning of the CMV 

promoter β-actin–GFP cassette from the β-actin–GFP plasmid (BD Biosciences) into the 

AAV2 RSV–GFP expression plasmid and replacement of the RSV–GFP cassette with the 

CMV β-actin–GFP. Forty-eight hours post-transduction the cells were harvested by scraping 

in TD buffer (140 mM NaCl, 5 mM KCl, 0.7 mM K2 HPO4, 25 mM Tris–HCl, pH 7.4) and 

the cell pellet was concentrated by low-speed centrifugation. Cells were lysed in TD buffer 

by three cycles of freeze–thaw. The clear lysate was treated with 0.5% deoxicolic acid 

(DOC) and 100 U/ml DNase (Benzonase) for 30 min at 37°C. Then the virus was purified 

using CsCl gradients. Particle titers were determined by QPCR. Amplification was detected 

using an ABI 7700 sequence detector (ABI). Specific primers for CMV were designed by 

using the Primer Express program (ABI): CMV forward 5'-

CATCTACGTATTAGTCATCGCTATTACCAT-3', CMV reverse 5'-

TGGAAATCCCCGTGAGTCA-3'. Following denaturation at 96°C for 10 min, cycling 

conditions were 96°C for 15 s, 60°C for 1 min for 40 cycles. The viral DNA in each sample 

was quantified by comparing the fluorescence profiles with a set of DNA standards. The 

BAAV particle titers were in the range of 1012 DNAse resistant particles (DRP)/ml.

4. Inoculation and Deafening surgeries

Under general anesthesia, the ST inoculation surgery was carried out as described 

previously24. We inoculated the left ear with 5µl BAAV and repeated the same procedure 

for the artificial perilymph for the control group. SM inoculation surgery was performed as 

described previously14 except that we performed cochleostomy in the second turn of the 

cochlea. We injected 5µl of BAAV and repeated likewise with artificial endolymph for the 

control group.

For the deafening surgery, we used a single systemic dose of kanamycin (500mg/kg, 

subcutaneously) followed by an intravenous injection of ethacrynic acid (50mg/kg)31. 

Deafness in each animal was verified by ABR 4 days after the surgery. Typically, animals 

showed a threshold shift of 80–90db. We excluded any animal with threshold shift less than 

this value after surgery. Excluded animals are not counted in the total number of animals 

reported here.

5. Immunohistochemistry

Fourteen days after the inoculation, animals had ABR assessment and were decapitated 

under general anesthesia. Both temporal bones were extracted and the cochleae were locally 

perfused with 4% paraformaldehyde (PFA). After 2 hrs of fixation with 4% PFA, the 

cochleae were rinsed in phosphate buffered saline (PBS).

The cochleae which were used for whole mounts in all groups were stained for reporter gene 

β-actin-GFP detection in both ears (including contralateral ear). Tissues were permeabilized 
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with 0.3% Triton X-100 for 10min, blocked against non-specific binding of secondary 

antibody by incubation in 5% normal donkey serum for 30min. We incubated the tissues in 

mouse monoclonal antibody to GFP (Chemicon, International), diluted 1:200 in PBS, for 1 

hr. After rinsing with PBS twice, we used fluorescent-labeled donkey anti-mouse IgG 

(Alexafluor 488 Molecular Probes) as secondary antibodies diluted in 1:200 in PBS. We 

counterstained the tissue for F-actin with rhodamine-phallodin for 2 min diluted to 1:300 in 

PBS. After the tissues were washed with PBS they were whole mounted on slides, cover-

slipped with Gel/Mount (Biomeda, Foster City, CA, USA) and observed with a Leica 

DMRB epi-fluorescence microscope (Leica, Eaton, PA, USA).

6. Quantification of β-actin–GFP positive transgene expression in normal and deafened 
guinea pigs

Images obtained from the epi-fluorescence microscope were processed by Photoshop CS2 to 

meet equal imaging conditions. Through the assessment of 200µm radius of every whole 

mount image, the guinea pigs with five or more β-actin–GFP transfected cells were 

considered positive (Table 1). Among the guinea pigs ears with positive expression, the β-

actin–GFP transfected cells were counted within a 100µm2 box, in each morphological 

segment (e.g. Hensen cell area, interdental area). Counting was performed in Image J, which 

was also used to estimate the size (apical surface area) of each positive cell. The areas of the 

positive cells fitting within the 100µm2 box were summed and converted to percentage. The 

ranges of these percentages among positive guinea pigs are reported in Table 1.
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Fig. 1. Threshold shifts (Mean and standard deviation) measured 1 week (black bars) or 2 weeks 
(gray bars) after inoculation, at 4, 12, and 20 kHz
(a) SM inoculation with BAAV (n=4). (b) ST inoculation in with BAAV (n=4). (c) SM 

inoculation with artificial endolymph (n=3). (d) ST inoculation with artificial perilymph 

(n=3). Threshold shifts were significantly larger at all frequencies in both SM inoculated 

animals compared to ST inoculated animals (p < 0.05). Threshold shifts were comparable 

between the BAAV inoculated animals and the sterile endolymph or perilymph injected 

animals.
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Fig. 2. Whole-mounts of the 2nd turn or basal turn auditory epithelium of normal (non-
deafened) guinea pigs after SM inoculation (a–d) or ST inoculation (e–h) viewed with epi-
fluorescence
β-actin-GFP positive cells (green) indicate transduction and phalloidin (red) represents the 

actin. (a) Interdental cells (IDC) and (b) inner sulcus cells (ISC) with β-Actin-GPF 

expression. (c) Hensen cells (H) show robust expression, and pillar cells (P) and phalangeal 

scars (PS) can be observed in place of outer hair cells. (d) Reissner’s membrane (RM) is 

broadly transduced. (e) Interdental cells and (f) Hensen cells are transduced. (g) Transduced 

Hensen cells and Deiters cells (arrow). (h) Outer hair cell rows (1, 2, and 3) with phalangeal 

scars (white arrow), residual hair cells (arrow head) and a transduced hair cell (black arrow). 

Bar = 20µm, for all images.
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Fig. 3. Whole-mounts of the 2nd turn or basal turn auditory epithelium of SM inoculated (a–d) 
or ST inoculated (e) deafened guinea pigs
(a) Interdental cells (IDC) show efficient transduction. (b) Hensen cells (H) are transduced, 

as are cells constituting the phalangeal scars (PS, arrows). (c) Inner sulcus cells (ISC) are 

transduced at high efficiency. (d) Deiters cells (arrow head) are transduced in moderate 

efficiency. (e) Efficiency of transduction of interdental cells is low compared to SM 

inoculation (compare to (a)). Bar = 20µm, for all images.
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