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ABSTRACT
◥

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive
disease with poor 5-year survival rates, necessitating identification
of novel therapeutic targets. Elucidating the biology of the tumor
immune microenvironment (TiME) can provide vital insights into
mechanisms of tumor progression. In this study, we developed a
quantitative image processing platform to analyze sequential multi-
plexed IHC data from archival PDAC tissue resection specimens. A
27-plex marker panel was employed to simultaneously phenotype
cell populations and their functional states, followed by a compu-
tational workflow to interrogate the immune contextures of the
TiME in search of potential biomarkers. The PDAC TiME reflected
a low-immunogenic ecosystem with both high intratumoral and
intertumoral heterogeneity. Spatial analysis revealed that the rela-
tive distance between IL10þmyelomonocytes, PD-1þCD4þT cells,

and granzyme Bþ CD8þ T cells correlated significantly with sur-
vival, from which a spatial proximity signature termed imRS was
derived that correlated with PDAC patient survival. Furthermore,
spatial enrichment of CD8þ T cells in lymphoid aggregates was also
linked to improved survival. Altogether, these findings indicate that
the PDACTiME, generally considered immuno-dormant or immu-
nosuppressive, is a spatially nuanced ecosystem orchestrated by
ordered immune hierarchies. This new understanding of spatial
complexity may guide novel treatment strategies for PDAC.

Significance: Quantitative image analysis of PDAC specimens
reveals intertumoral and intratumoral heterogeneity of immune
populations and identifies spatial immune architectures that are
significantly associated with disease prognosis.

Introduction
Pancreatic cancer is projected to be the second leading cause of

cancer-related death worldwide by 2030 (1). Pancreatic ductal ade-
nocarcinoma (PDAC) is the most prevalent type of pancreatic cancer
accounting for over 90% of all pancreatic malignancies diagnosed (2).
PDAC is highly aggressive and demonstrates a strikingly poor 5-year
survival rate of approximately 10% in the United States (3). Surgical

resection is generally considered the only curative treatment for
localized PDAC, when clinically a viable option (4). However, more
than 80% of tumors are nonresectable at the time of diagnosis, and
most patients who benefit from surgery may eventually recur (5, 6). As
a result, developing novel treatment strategies for PDAC is an urgent
yet unmet medical need.

In recent decades, advancements in immunotherapy have led to
some modest improvements in PDAC treatment. Currently, there are
several clinical trials evaluating anticancer efficacy of immune check-
point inhibitors and cancer vaccines (7–9). For instance, Jaffee and
colleagues evaluated neoadjuvant GVAX with or without low-dose
cyclophosphamide in patients with resectable PDAC and reported
evidence of proinflammatory immunologic changes within PDAC
tumors in response to GVAX (10). Bockorny and colleagues evaluated
the synergistic effects of a CXC chemokine receptor 4 antagonist (BL-
8040) in combination with PD-1 inhibition (pembrolizumab) and
chemotherapy in PDAC, and reported that dual blockade improved
clinical outcomes (11). Despite significant survival benefits associated
with aforementioned treatments, the overall response rates were
modest. Therefore, identifying novel therapy targets and predictive
biomarkers will guide new clinical strategies for PDAC treatment. In
general, searching for novel biomarkers relies on the notion that an
activated tumor immune microenvironment (TiME) favors positive
response to immunotherapy. The PDAC TiME has traditionally been
considered T cell suppressive, thus presenting considerable barriers to
establishing effective biomarkers for patient stratifications (12, 13). As
a result, a more nuanced understanding of the biology of TiME is
warranted for rational disease control.

Recent developments in high-dimensional multiplexed imaging
technologies allow for simultaneous phenotyping of multiple cell
populations with their spatial domains preserved, thus facilitating a
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better understanding of TiMEs. For instance, previous studies have
reported the prognostic significances of spatial landscapes for a series
of immune populations featuring B cells, T cells, myelomonocytes, and
cancer-associated fibroblasts in PDACTiMEs (14–18). Although these
studies shed light on features of distinct immune populations, how
they cooperatively impact antitumor immunity remains unknown.
Indeed, antitumor immunity requires structured, spatially coordinated
interplay between components of the TiME. Sch€urch and colleagues
reported that coupling of distinct cellular neighborhoods alters anti-
tumor behaviors in colorectal cancer (19); similarly, Jackson and
colleagues described higher-order interactions between immune phe-
notypes, namely spatial communities, to be correlated with clinical
outcomes for patients with triple-negative breast cancer (20).

To this end, we deployed amultiplexed IHC (mIHC)-based compu-
tational pathology framework and applied it to tumor resections from
archival single-institution patient cohorts with PDAC consisting of a
treatment-na€�ve group and a presurgically treated group. This frame-
work is a significant expansion of our previous studies (21–23), while
also building on studies from other groups (19, 24). The imaging
system herein utilized a comprehensive lymphoid andmyeloidmarker
antibody panel to profile leukocyte populations in histopathologically
defined regions within PDAC TiMEs. An image processing pipeline
was then implemented to capture the multiscale immune architec-
tures. Altogether, such workflows enable assessment of complex TiME
biology and relationship to clinical outcomes, with potential applica-
tions to informing effective patient stratification and rationally
designed clinical trials.

Materials and Methods
Data acquisition with mIHC

mIHC staining was performed as described previously (25). mIHC-
stained mages utilized in the current study included specimens from
cohort 1 of the treatment-na€�ve group and presurgically treated group,
stained previously with the functional panel (Supplementary
Table S1). A subset of biomarkers from this panel was used to evaluate
higher-order cell typeswith greater expected abundance. In the current
study, the treatment-na€�ve group was used for biomarker discovery,
denoted as discovery cohort; presurgically treated group was used for
validation, denoted as validation cohort. Patient characteristics for
both cohorts were summarized in Supplementary Tables S2 and S3.
Imageswere acquired using anAperioAT2 scanner (Leica Biosystems)
at 20� magnification. Human PDAC specimens were obtained in
accordance with the Declaration of Helsinki and were acquired with
written informed consent by Institutional Review Boards at Johns
Hopkins University (Baltimore, MD) and Oregon Health and Science
University (Portland, OR).

Image processing and analysis
Regions were selected and annotated in Aperio ImageScope (Leica

Biosystems, RRID: SCR_014311) and saved as an XML. Selected
regions of each stain from each tissue were extracted and registered
to the final hematoxylin stain in MATLAB version R2018b (The
MathWorks, Inc., RRID: SCR_001622) using detectSURFFeatures to
identify the strongest matching key points from each of the RGB
channels and selecting the channel with the highest matching key
points. Region of interest (ROI) areas for each patient are summarized
in Supplementary Table S4. A geometric transformation for each
mIHC stain to the corresponding hematoxylin was estimated on the
basis of similarity of matched key points with outliers excluded using
the M-estimator Sample Consensus algorithm (MSAC). The trans-

formation was applied to each RGB channel and merged to create the
composite registered RGB image region. Color deconvolution was
performed in FIJI (RRID: SCR_002285) by converting the RGB image
to CMYK and using the Y channel to extract AEC chromogenic signal.
Nuclei segmentation was watershed based and performed in FIJI by
first using color deconvolution (H AEC) to separate hematoxylin
signal, followed by smoothing, background subtraction and Otsu
thresholding. Cell Profiler was used to quantify mean intensity of
each segmented cell, along with area and centroid location (Fig. 1A).
The resulting feature matrix was used in FCS Express 7 Image
Cytometry RUO (De Novo Software) where each tissue region was
manually gated for single-cell classification and visually validated with
live rendering of the segmentation mask on top of the signal extracted
image (Fig. 1B; Supplementary Fig. S1). Phenotyping results as well as
the registered pseudocolored multi-channel images were visualized
in Fig. 1C.

Characterization of spatial heterogeneity
A previously introduced spatial form of Shannon entropy (ESP) was

implemented to quantify the spatial heterogeneity (22). ESP is formally
defined as:

ESP ¼ �
Xn
i¼1

dinti

dexti
pilog2pi

where dinti denotes the average Euclidean distance between all cell
centroids of type i; dexti represents the average distance between all cells
of set i and cells of all other types; pi is the percentage of type i within
the core.

Evaluation of spatial correlations
To evaluate the spatial correlation between each pair of immune cell

phenotypes, we utilized the spatial G(r) function (Gcross) tomodel the
clustering pattern. Gcross computed the likelihood of seeing at least
one cell of phenotype j around a cell of phenotype i, denoted as Gcross
(i-j) within a series of radii. Here, we chose the maximum evaluable
radius as 50 mmol/L, to ensure clustering patterns were fully captured.
Gcross values were estimated at every 0.05 mmol/L to maximize
continuity, then stratified into four bins based on the evaluated radius:
(i) 10–20 mmol/L, (ii) 20–30 mmol/L, (iii) 30–40 mmol/L, and (iv) 40–
50 mmol/L. The bin selection was based upon previous studies that
evaluated direct cell–cell interactions and enables a plausible profiling
of clustering (26–28). G(r) was computed using “Gcross” function
from R package “spatstat” (29).

Enrichment score
ROIs with at least 10 CD4þ T cells and 10 myelomonocytes were

subjected to analysis. The enrichment score was computed for both
CD4þ T cells and myelomonocytes on a per-ROI basis. For example,
for myelomonocytes, the procedure is as follows: For each evaluable
ROI, we computed the distance from all myelomonocyte centroids
to CD4þ T-cell centroids. Next, myelomonocytes located within
50 mmol/L of at least one CD4þ T cell were identified and defined
as neighbors of those CD4þ T cells. Then, for every protein x 2 X ¼
{PD-L1, PD-1, IL-10, GZMB, Ki67, EOMES, ICOS}, the following
procedures were conducted: (i) the ratio of neighbors positive for x was
computed, denoted as R0 (ii); repeatedly randomize the location of
myelomonocytes. For the ith randomization, the ratio was also com-
puted and denoted as Ri, where i 2 {1, 2, 3, . . .., n} (iii); Enrichment
score was formally defined as the proportion of R0 greater than Ri. The
protocol was also implemented in reverse with CD4þ T cells as
neighbors of myelomonocytes. Here, distances were computed using
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Figure 1.

A, Overview of mIHC staining and analysis pipeline including ROI selection from a PDAC resection, image registration, nuclei segmentation, color deconvolution, and
single-cellmeasurements.B,Tabledescribingbiomarkersused for identifying cell typesand functional states (left) alongside avisual of thegating strategy (right). The full
gating strategy and description can be found in Supplementary Fig. S1.C,Gated phenotypemap shows cells classified frommanual gating (left); same region shown as a
pseudofluorescent image (middle).White box indicates area of the right panel image; zoomed in region frommiddle panel image showing cellswith biomarkers used for
identification. White arrows (left to right) point to a CD3 T cell, CD20 B cell, CD8 T cell, and CD68 myelomonocytic cell. (Schematics created with BioRender.com.)
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“dist2” function from R package “flexclust”; randomization was
implemented using “runifpoint” function from R package “spatstat”.

IL10þ myelomonocyte RiskScore
ROIs with at least one IL10þ myelomonocyte, at least one PD-1þ

CD4þ T cell, and at least one granzyme B-positive (GZMBþ) CD8þ T
cell were subjected to analysis. For every IL10þ myelomonocyte, the
distances to its nearest PD-1þ CD4þ T cell and GZMBþ CD8þ T cell
were computed and denoted as d1 and d2, respectively. The IL10þ

myelomonocyte RiskScore (imRS) is formally defined as:

RiskScore ¼ d1
d1þ d2

RiskScore, also termed as imRS in this study, reflects the balance
of IL10þ myelomonocyte between high immunosuppressive risk
and low immunosuppressive risk. Close proximity to PD-1þ CD4þ

T cells will result in d1 decreasing and d2 increasing, therefore
resulting in low imRS.

CD8þ T-cell–B-cell network morphometrics
ROIs with at least 100 total CD8þ T cells and 100 total B cells were

subjected to analysis. For each evaluable ROI, cell dataset were
truncated to include CD8þ T cells and B cells only. A HDBSCAN
algorithm was first applied to identify clusters. For each cluster,
Voronoi tessellation was then generated. Here, each cell was treated
as a node. For each pair of Voronoi polygons that share at least one
border, the associated nodes were connected to formulate a link. The
set of nodes and links formed the cluster network. To facilitate the
computation of clustermorphometrics, thea-shape and convex hull of
each cluster was also derived. In this study, four morphometrics were
gauged:

Cluster area: measures the area of convex hull.
Circularity:measures the roundness of the object. Here, circularity

is defined as:

Circularity ¼ 4 � Aap

P2
conc

;

where Aconc is the area of the a-shape, Pconc is the perimeter of the
concave hull.

Eccentricity:measures the degree of the object deviation frombeing
circular. Here, we computed the fitting ellipse by first computing the
covariance matrix from the cluster point clouds. Assuming the point
clouds follow Chi-squared distribution Q � x2ðkÞ, the eigenvectors
can be calculated from the covariance matrix yielding the orientations.
Thus, the major and minor axis length can be computed as:

a ¼ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1X2

2ð0:95Þ; b ¼ 2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2X2

2ð0:95Þ
q

;

respectively, where l1 and l2 are eigenvalues of the covariance matrix.
According to the definition, the ellipse represents the contour that
covers 95% of point clouds. Thus, the eccentricity is computed as:

Eccentricity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

l1

s

Convexity:measures the curvature of the object. Here, convexity is
defined as:

Circularity ¼ Aa

Aconv
;

where Aconv is the area of convex hull.

HDBSCAN algorithm was implemented using “hdbscan” function
from R package “dbscan”; neighboring Voronoi polygons were iden-
tified using “voronoi_adjacentcy” function fromRpackage caramellar;
a-shape was computed using the “ashape” function from R package
“alphahull”; concave hull was computed using the “chull” function
fromR package “grDevice”; covariancematrices from the cluster point
clouds were computed using “cov.wt” function fromR package “stats”;
eigenvectors were computed using “eigen” function from base R
package;x2 distribution at 95% confidence interval (CI) was computed
using “qchisq” function from R package “stats”.

Statistical analysis
Two-sided Wilcoxon rank-sum test was performed for pairwise

comparisons using “wilcox.test” function from R package “stats”. FDR
adjustment for P values were performed for multiple comparisons
using “p.adjust” from R package “stats” and adjusted P < 0.05 was
considered significant. Pearson correlation coefficients were computed
to assess the linear correlation between two sets of data using “cor”
function from R package “stats”; x2 test was performed to assess the
correlation between categorical variables using “chisq.test” function
from R package “stats”; heatmaps and hierarchical clustering were
generated using “Heatmap” function from R package “ComplexHeat-
map” (RRID: SCR_017270).

Data availability
The data supporting the findings of this study (single-cell and

patient data) are available online at Zenodo (RRID: SCR_004129,
https://zenodo.org/record/6416102#.Yky33jfMIrY). Raw images are
available from corresponding author upon reasonable requests.

Code availability
The codes for computationalmethods aremade publicly available at

GitHub: https://github.com/popellab/PDAC-mIHC-processing-pipe
line. And an online-executable capsule is made available at Code
Ocean (https://codeocean.com/capsule/2525016/tree/v1) and the link
is provided in the GitHub repository.

Results
Patient stratifications

Acknowledging the fact that PDAC is highly aggressive and has poor
prognosis, we stratified treatment-na€�ve patients into two groups reflect-
ing long-term survivors, that is, abovemedian, and short-term survivors,
that is, below median [based on overall survival (OS) days; threshold ¼
619 days], for downstream evaluations. A merit of such approach is that
survival differences can be maximized therefore the subtle spatial
heterogeneity can be scaled to facilitate the prognosticmarker discovery.
Identifying differences first and then correlating to survival may weaken
the significance due to misclassification of certain patients. While
different splitting strategies have been employed by previous studies for
biomarker discovery (25, 30, 31), there is no consensus on the optimal
split approach. In this study, 50% was selected as the cut-off point
produced two groups of comparable size, also reducing the risk of
overfitting for the downstream analysis. The resulting long-term group
consisted of 22 patients with amedianOS¼ 832days, whereas the short-
term group consisted of 23 patients with a median OS ¼ 313 days
(Fig. 2A).Using 50% as the cut-off point produced two groups of
comparable size, reducing the risk of sample limitations in downstream
analysis. In addition, this stratification also exhibits statistical significance
between survival groups at the same level (log-rank test P < 0.001), as
opposed to alternative stratification strategies (Supplementary Fig. S2).
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Figure 2.

Characterization of the PDAC immune ecosystem. A, A discovery cohort was split into short-term and long-term groups by OS using 50% as the cut-off threshold
(long-rank test). B, Density of each immune phenotype was compared between long-term and short-term groups; CD45þ other: CD45þ population other than
identified immune phenotypes (B cell, myelomonocyte, CD4þ T, and CD8þ T); ns, not significant (Wilcoxon rank-sum test). C, Immune cell densities of all patients
were sorted in ascending order and the associated compositions at both patient and ROI level were visualized. D, Correlation analysis identified strong negative
correlations between B-cell and myelomonocyte density, and positive correlation between myelomonocyte and other immune phenotypes (Pearson coefficient).
E, Correlation heatmaps for all immune phenotype pairs showed similar patterns between short- and long-term groups (Pearson coefficient). F, Immune-infiltration
levels were quantified into low,medium, and high categories and comparedwithin each category; ns (Wilcoxon rank-sum test); the distribution among all categories
was also compared between short- and long-term groups (x2 test). G, Exemplary ROI with high and low spatial Shannon entropy. H, Spatial Shannon entropy was
computed for each ROI and then averaged to the patient level for comparison between short- and long-term groups; ns (Wilcoxon rank-sum test).
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Quantitative image analysis reveals poor immunogenicity in
PDAC TiME

We applied automated image analysis to profile the immune
populations for all patients. Specifically, we quantified the cell densities
per ROI for every immune cell phenotype and averaged to the patient
level. Region properties associated with each ROI are summarized in
Supplementary Table S4. Average densities of each cell type were
compared between survival groups, but there were no significant
differences found (Wilcoxon rank-sum test P > 0.05; Fig. 2B). None-
theless, all immune cell phenotype densities showed moderate to large
variability, thus we further sought to analyze whether such variations
were driven by different patterns reflecting immune subset composi-
tions. We first sorted leukocyte densities for each patient from low to
high, and then calculated the percentage of each leukocyte subset at the
per-patient and per-ROI level. We then correlated overall immune cell
densities with each immune cell phenotype. Previous studies reported
that the compositions of immune subsets were highly correlated with
overall immune cell abundances in triple-negative breast cancer (24).
Specifically, CD4þ T cells were enriched whereas myelomonocytes
were sparse in patients with high-leukocyte infiltration. We observed
the same significance for CD4þT cells but notmyelomonocytes in this
study for both short- and long-term groups (Supplementary Fig. S2A–
S2F). However, correlations were identified between immune cell
populations densities (Fig. 2C); for instance, myelomonocyte densities
were positively correlated with other CD45þ density, but were neg-
atively correlated with B-cell densities (Fig. 2D) in both short- and
long-term groups. In fact, the density correlation heatmaps revealed
that the two groups shared similar correlation profiles. That is,
whichever cell correlation pair that was significant in the short-
term group, was also significant in the long-term group, with the only
difference reflected in significance level (Fig. 2E). Next, we stratified all
patients into tertiles reflecting low-, medium-, and high-leukocyte
infiltration. We then decomposed each tertile based on the patient’s
survival group. Results demonstrated no correlation between immune
infiltration levels and survival, as short- and long-term survivors were
evenly distributed across all categories (x2 P ¼ 0.9149; Fig. 2F). The
immune infiltration profiles were further gauged by evaluating com-
positional heterogeneity. Here, a spatial form of Shannon entropy
(Esp) was implemented. Briefly, the metric attributes the sources of
spatial entropy to the distance between cells and the diversity of cell
species and their abundance, that is, close proximity between cells
of different types and enrichment of unique cell phenotypes
both lead to the increase of Esp (Fig. 2G; Materials and Methods).
Previously we reported that high Esp, that is, high spatial immune
heterogeneity, is associated with response to immune therapy in
the context of hepatocellular carcinoma (32). The results here
however show no significant difference between short-term and
long-term groups (Fig. 2H). Univariate analysis on the aforemen-
tioned first-order features included immune population densities
and Shannon entropy (Supplementary Fig. S3A). We first aggre-
gated features from core level to patient level by taking the mean.
Univariate Cox regression analysis revealed that none of the fea-
tures significantly associated with survival (P > 0.05) with four
features conferred HRs ¼ 1, suggesting these features provide zero
risk reduction. Similarly, none of the features was prognostic in
multivariate Cox regression analysis (Supplementary Fig. S3B). It is
noteworthy that Shannon entropy yields a relatively higher HR
(mean ¼ 4.21); however, the 95% CI extended over a wider range,
suggesting less clinical interest.

Together, these findings may potentially indicate that char-
acterization of TiME at low resolution is not able to make dis-

tinctions among patients and it requires higher-order, more com-
plex characterizations to establish potential biomarkers in sepa-
rating short- versus long-term survivors, though validations on
additional cohort is required to eliminate overfitting issues due to
small sample size.

Spatial correlation analysis of PDAC delineates orchestrated
architecture of immune cell phenotypes

To further model the spatial organization of the immune landscape
in PDAC, we applied spatial G(r)-cross function (Gcross) to evaluate
cell-cell colocalizations. At this point, CD45þ other cells were not
included because their phenotype and functional states were not
determined. Gcross was applied to each pair of immune cell pheno-
types with both directions (Fig. 3A; Materials and Methods). For
instance, Gcross (CD4þ–myelomonocyte) evaluates the likelihood of
observing CD4þ T cells colocalized with at least one myelomonocyte
within a series of radii. High Gcross (CD4þ–myelomonocyte) values
indicate clustering of myelomonocytes around CD4þ T cells, reflected
by steep climbing curves along with the radius gradient (Fig. 3B).
Because Gcross is not a symmetrical metric, cell type pairs were
evaluated in both directions, where CD4þ T cells or myelomonocytes,
were evaluated as the focal cell type. Gcross values were computedwith
a radius gradient and then binned into four categories for every
10 mmol/L (Materials and Methods) and compared between survival
groups within each category. Comparisons identified three pairs that
were significant in each category spanning all distances (FDR-adjusted
Wilcoxon rank-sum test P < 0.05; Fig. 3C; Supplementary Table S5).
Here, we focused on two-way clustering involving CD4þ T cells and
myelomonocytes, indicating a spatial mutual signaling axis, and one-
way clustering from B cells to CD8þ T cells, highlighting lymphoid
aggregate (LA)-like structures. Indeed, the prognostic significance of
both patterns has been reported in broader contexts (33–35). Specif-
ically, Gcross values were significantly higher in long-term survivors
for both directions between CD4þ T cells and myelomonocytes, while
only Gcross (B cell–CD8þ T) was significantly higher in short-term
survivors. These results indicate that CD4þ T cells and myelomono-
cytes exhibited a higher level of mutual colocalization in long-term
survivors, while short-term survivors tended to reflect increased
density of CD8þ T cells in areas containing B cells (Fig. 3D).

Spatial proximity signature of CD4þ T cell, CD8þ T cell, and
myelomonocyte subpopulations associated with PDAC survival

To further decipher the underlying biology of the association
between survival and mutual clustering of CD4þ T cells and myelo-
monocytes, we studied each pair of the relevant cell types and presence
of key mediators they express (e.g., PD-L1, PD-1, IL10, granzyme B,
Ki67, EOMES, ICOS) to evaluate their influence on the clustering. We
first quantified the composition for each immune cell phenotype
within the cohort and revealed similar patterns across cell types: a
majority of myelomonocytes, B cells, CD4þ and CD8þ T cells, were
IL10 positive, with GZMB positivity in a minority of these subsets
(Fig. 3E). On the basis of this, we investigated the enrichment score to
account for such potential bias caused by the skewness of positive-
protein distribution. For each ROI, we repeatedly randomized the
geolocations of cell of type X positive for protein a and recorded the
ratio of positive cells within 50mmol/L of all cells of type Y (neighbors).
The enrichment score SEn of the ROI is formally defined as the ratio of
the times that the randomization ratio is smaller than the ratio derived
from the real point pattern (Fig. 3F; Materials and Methods). The
benefit of this approach lies in the fact that the proportion of cells
positive for each protein within the ROI is kept consistent throughout
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Figure 3.

Spatial correlation analysis identifies topological features associated with prognosis. A, schematic of spatial G(r) function (Gcross). B, Exemplary Gcross
curves computed for ROIs associated with short-term (red) and long-term (blue) groups. C, Comparisons of Gcross values between short- and long-term
groups at four distance intervals identifies three spatial clustering pairs; ���� , P < 0.0001 (Wilcoxon rank-sum test). D, Aforementioned spatial clustering
pairs were summarized into a two-way clustering involving myelomonocytes and CD4þ T cells, and a one-way clustering involving B cells to CD8þ T cells.
E, Functional marker expressions across immune phenotypes. F, Schematic of computation of enrichment score. G, Enrichment score computed for each
functional marker on both myelomonocytes and CD4þ T cells. H, Schematic of imRS, derived from the relative distances from IL10þ myelomonocytes (mean
of five nearest neighbors, if any) to PD-1þ CD4þ T cells and GZMBþ CD8þ T cells (mean of five nearest neighbors, if any). I, imRS was computed at per-cell basis
and compared between short- and long-term groups; ���� , P < 0.0001 (Wilcoxon rank-sum test). J, Exemplar topological graph of IL10þ myelomonocytes,
PD-1þ CD4þ T cells, and GZMBþ CD8þ T cells in short- and long-term groups. (Schematics created with BioRender.com.)
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the randomization, resulting in the global proportion bias becoming a
recurrent constant factor. Under such conditions, high SEn indicates
that more neighbors are observed than at random. Given that the
global proportion always has the same weight, such close proximity is
likely driven by an underlying biological process rather than bias or
coincidence. We computed SEn for all ROIs and found that PD-1
positivity had the highest mean for CD4þ T cells (median SEn ¼ 1,
mean SEn ¼ 0.65) whereas IL10 had the highest mean for myelomo-
nocytes (median SEn ¼ 1, mean SEn ¼ 0.70) compared with other
markers; the conclusion held under different simulation rounds
(Supplementary Table S6), indicated that PD-1þ CD4þ T cells and
IL10þmyelomonocytes were key contributing factors to the clustering
(Fig. 3G).

Previously, Phillips and colleagues developed SpatialScore and
reported relationships between spatial proximity of immune subpo-
pulations and response to immunotherapy in cutaneous T-cell lym-
phoma (36). Of note, the concept of SpatialScore is to characterize the
balance between CD4þ T-cell effector and immunosuppressive activ-
ity. Here, we propose a modification to represent the relative distance
of PD-1þCD4þ T cell to IL10þmyelomonocyte and GZMBþCD8þ T
cell. To recapitulate this proxy, we included GZMBþCD8þ T cells
given that IL10þ myelomonocyte have been reported to inhibit CD8þ

T-cell cytotoxicity by direct and indirect mechanisms (immunosup-
pressive activity; refs. 37, 38). In this study, the prediction is that closer
proximity between CD4þ T cells and myelomonocytes will correlate
with better survival (inhibited immunosuppressive activity). In prac-
tice, we first identified the mean distance of each IL10þ myelomono-
cyte (evaluable interaction pairs n ¼ 13,451) to its k-nearest PD-1þ

CD4þ T cell and k-nearest GZMBþ CD8þ T cell for each ROI
(evaluable n ¼ 141), then computed the relative distance ratio to
generate the IL10þ imRS (Fig. 3H; Materials and Methods). Here, we
set the threshold k ¼ 5 (or equals to the total number of candidates if
not abundant) to reduce the sensitivity to outlier or misclassified cells.
Quantitative results revealed that the imRS was significantly higher in
short-term survivors (mean imRS ¼ 0.44) than long-term survivors
(mean imRS¼ 0.23). It is also noteworthy that the distribution of imRS
from long- and short-term groups indicated a distinct IL10þ myelo-
monocyte behavior, as they were clearly separated by the 0.5 threshold
(Fig. 3I). Visualizations further corroborated such finding: we linked
IL10þ myelomonocyte to their nearest PD-1þ CD4þ T cell and
GZMBþ CD8þ T cell on a per-cell basis and visualized the proximity
of IL10þ myelomonocyte adjacent to PD-1þ CD4þ T cells, while
remaining distal to GZMBþ CD8þ T cells in long-term survivors
(Fig. 3J). Given that the sample size is relatively modest, we sought to
test whether such signal was biased that originated froma single ROI or
patient. Therefore, we further performed exclusion analysis on the
imRS data. We iteratively excluded data from a patient (evaluableN¼
31). For each iteration, imRS between short- and long-term survivors
was compared using Wilcoxon rank-sum test and P values were
recorded. Results showed that the statistical significances retained
over all iterations under both conditions, therefore confirmed the
robustness of imRS (Supplementary Table S7). Collectively, we dem-
onstrated that the spatial proximity signature of IL10þ myelomono-
cyteto PD-1þ CD4þ T cell and GZMBþ CD8þ T cell correlates with
patient survival in PDAC.

Compositions of B-cell and CD8þ T-cell clustering associated
with PDAC survival

Next, we sought to further interrogate the second significant pattern
identified previously, that is, one-way colocalization between CD8þ T
cells and B cells. Visual inspections indicated that the clustering

patterns resembled LAs (Fig. 4A). Here, we quantified the CD8þ

T–B-cell aggregates by applying the HDBSCAN algorithm to identify
aggregates (n ¼ 125). For all cells within each identified aggregate, a
network was constructed by first generating the Voronoi tessellation
and then connecting all neighboring cells (Materials and Methods).
For each network, we measured the following metrics: convex hull
area, CD8þ T-cell density, B-cell density, circularity, eccentricity, and
convexity. While results revealed that cluster morphometrics did not
associate with survival (Wilcox rank-sum test P > 0.05), CD8þ T-cell
density per aggregate was significantly higher in long-term survivors
(Fig. 4B). In addition, we aggregated the density from per-LA basis to
patient level and fitted a univariate Cox regression model. Results
revealed that the density feature significantly contributed to the risk
reduction (Wald test P ¼ 0.03) with HR ¼ 0.997 (95% CI, 0.9938–
0.9997). Correlation analysis using Spearman method demonstrated
same pattern that the density positively correlated with OS (r ¼
0.3658, P ¼ 0.35; Supplementary Fig. S3C).

To further characterize the CD8þ T-cell–B-cell aggregates, we
computed the percentage of CD8þ T cells and B cells that are positive
for each functional marker and then applied hierarchical clustering to
group networks with similar compositions (Fig. 4C). Results indicated
that the clustering algorithm identified three major clusters: in cluster
1, all networks were dominated by IL10þ B cells and CD8þ T cells; in
cluster 2, an accumulation of EOMES positive cells was identified and
the majority of aggregations associated with short-term survivor
samples (30/36) from 11 patients; in cluster 3, diversified dominancy
was observed. Of note, the distribution of clusters indicated a signif-
icant association to survival (x2 test P ¼ 0.00018; Fig. 4D).

Validation of the spatial TiME architectures with a presurgically
treated PDAC cohort

In this study, we selected an independent cohort (evaluableN¼ 12)
that had received presurgically treatment to validate our previous
findings. The cohort composed of 6 patients treated with (chemo)
radiation and chemotherapy (class 1), 5 patients treated with chemo-
therapy only (class 2), and 1 patient treated with radiation or chemo-
therapy only (class 3), prior to resection surgery (Supplementary
Table S3). We first characterized the differences in survival and TiME
compositions between classes. Class 3 was removed from this analysis
since it only contains 1 patient. Importantly, we observed trend toward
better prognosis in class 2 patients (mean OS days¼ 809.4) compared
with class 1 (mean OS days¼ 531.8) but such survival advantage is not
significant (log-rank test P ¼ 0.07; Supplementary Fig. S4A). TiME
composition analysis revealed no significant differences in immune
populations (Wilcoxon rank-sum test P > 0.05). However, it is
noteworthy that class 2 patients tended to have global higher numbers
of CD4þ T cells and CD8þ T cells, suggesting that chemotherapy may
be more effective in activating the antitumor immunity (Supplemen-
tary Fig. S4B).

Among 12 patients, 3 had marked response/minimal residual
disease (grade 1), 3 had moderate response (grade 2), and 3 had poor
or no response (grade 3). In this study, we define patients with grade 1
and 2 as responders (R) and patients with grade 3 as nonresponders
(NR).While we recognize that this presurgically treated validation
cohort does not represent the discovery cohort in terms of clinical
scenario, due to limitations in data availability, the neoadjuvant cohort
provided the best option for further investigation. Importantly, we
demonstrated that the presurgical treatment-na€�ve long-term and
presurgically treated validation groups both had significantly longer
OS than the treatment-na€�ve short-term group, with no statistical
difference in OS between the treatment-na€�ve long-term and
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Figure 4.

Spatial correlation analysis revealed prognostic significance of LAs. A, First-order properties (cell densities) and morphometrics were computed and
compared between short- and long-term groups; �� , P < 0.005; ns, not significant (Wilcoxon rank-sum test). B, Exemplar circular (criteria: eccentricity < 0.8
and convexity > 0.8 and circularity > 0.5) and elongated (criteria: eccentricity > 0.8 or convexity < 0.3 or circularity < 0.3) LA. C, Hierarchically clustered
heatmap of marker expression compositions in LAs, for example, PD1._CD8T represents PD-1þ CD8þ T cells. Bar plot shows the B-cell and CD8þ T-cell densities
for each LA, respectively. D, Comparison of cluster distribution in different survival groups (x2 test).
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presurgically treated groups (Fig. 5A). Therefore, we sought to deter-
mine whether the presurgically-treated cohort also resembled the
long-term survival group in terms of the spatial features described
above. We first computed the imRS for all IL10þ myelomonocytes
(evaluable interaction pairs n ¼ 102) using the same ROI selection
criteria and protocol (evaluable ROI n¼ 16). Results revealed that the
mean imRS in the validation cohort was significantly lower than both
short-term (Wilcoxon rank-sum test P < 0.001) and long-term survi-
vors (Wilcoxon rank-sum test P < 0.05), validating our hypothesis that
the imRS is indeed associated with improved OS (Fig. 5B). Again,
visualization recapitulated the same proximity pattern observed in
long-term survivors (Fig. 5C). However, it is noteworthy that pre-
surgically treated group that bear significantly higher imRS seems to
not benefit from further improved survival (log-rank test P ¼ 0.11),
likely due to other changes in TiME altered by the therapy and
warrants further analysis to confirm.

Next, we identified CD8þ T cell–B cell aggregates (n¼ 31) from the
validation cohort and compositions were quantified (Fig. 5D). Similar
to the discovery cohort, results revealed no significant difference in
terms of B-cell density per cluster; however, CD8þ T-cell density was
significantly elevated in the validation cohort compared with short-
term survivors (Fig. 5E). Of note, hierarchical clustering demonstrated
that the majority of aggregates in the validation cohort were EOMES
dominant, which was contrary to the findings from the discovery
cohort (Fig. 5F).

In addition, we explored the prognostic values of imRS and CD8þ

T-cell density in LAs in predicting presurgical treatment efficacy. We
observed that imRS in Rs group (mean ¼ 0.179) is significantly lower
compared with NRs (mean ¼ 0.303, Wilcoxon rank-sum test P ¼
4.098 � 10�7; Fig. 5G), However, we did not observe the same
significance of CD8þ T-cell density in Rs (Wilcoxon rank-sum test
P ¼ 0.4945; Fig. 5H). This is likely related to the limited sample size
because LAswere identified in only 6 of 12 patients. Specifically, 15 LAs
were detected in 3 Rs and 16 in 3 NRs, hence limiting the statistical
power of the comparison. It is worth noting, the mean CD8þ T-cell
density in Rs is 297.4 cells � mm�2, which is much higher compared
with the density in NRs of 176.4 cells � mm�2. Univariate Cox
regression model indicated that R group with higher density trended
toward lower risk (HR ¼ 0.981; CI ¼ 0.94–1.02; Wald test P > 0.05).
Correlation analysis revealed the same trend that CD8þ T-cell density
positively correlated with OS compared with the discovery cohort
(r ¼ 0.6, P ¼ 0.35; Supplementary Fig. S5).

Collectively, the validations indicated that the stratification power
of imRS was in agreement with both the presurgically treated cohort
and long-term survival group, hence suggesting prognostic values.
However, the LA-associated features were not recapitulated in the
validation cohort and responders to presurgical treatment, demon-
strating that these patterns shall be interpreted with caution and
further validations on extended dataset are required.

Collectively, these results indicated that pretreatment differences in
immune architectures within TiME likely possess prognostic values in
patient with pancreatic adenocarcinoma. We observe that PD-1þ CD-
4þ T cells appear to present adjacent to IL10þ myelomonocytes in
long-term survivors but adjacent to GZMBþ CD8þ T cells in short-
term survivors. Though the signaling insights remains unknown, we
proposed two hypothesis models that likely reflect the underlying
biology (Fig. 6). Previous research provides evidence of the immu-
nosuppressive role of IL10 by downregulating the cytotoxicity ofCD8þ

T cells (38). Meanwhile, activated CD4þ T cells, signatured by
expression of PD-1, are able to secrete IFNg that can inhibit the
production of IL10 (39–41). Taken together, we hypothesized that in

the long-term survivors, the immunosuppression of IL10þ myelomo-
nocytes is impeded by the IFNg production on activated CD4þ T cells;
whereas in short-term survivors, IL10þ myelomonocytes may inhibit
the cytotoxic CD8þ T cell to promote tumor progression. We also
reported that the CD8þ T-cell densities in lymphocytes aggregates are
significantly elevated in long-term survivors. Therefore, distinct func-
tional states of immune populations, coupled with their spatial topol-
ogy, can likely to predict the survival of patients with PDAC.

Discussion
In this study, we investigated features of immune contexture and the

spatial landscape of archival PDAC specimens from 45 treatment-
na€�ve PDAC surgical resections, using an mIHC pipeline followed by
quantitative spatial characterizations using a computational image
processing workflow. The imaging approach and computational pipe-
line enable simultaneous profiling of multiple leukocyte populations
and quantitative assessment of their spatial architectures to identify
potential prognostic biomarkers.

Using sequential mIHC on 45 archival pathologic formalin-fixed
paraffin-embedded (FFPE) samples with a panel of 27 antibodies
enabled identification of cell lineages and their functional states from
at least three ROIs per patient and ensuring tumor-immune hetero-
geneity was captured. The image processing workflow was then
applied to extract a single-cell database of 4,026,079 cells featuring
CD4þ T cells, CD8þ T cells, CD20þ B cells, myelomonocytes, and
neoplastic tumor cells. Their functional states were also determined,
reflecting expression of PD-L1, PD-1, IL10, GZMB, Ki67, EOMES, and
ICOS. The methodology described in this study represents a multi-
scale analysis of the tumor TiME ecosystem spanning from single-cell
level properties to spatial clustering patterns. In addition to the PDAC
specimens evaluated herein, elements of this platform have been used
for biomarker discovery in the context of triple-negative breast cancer,
muscle-invasive bladder cancer, and hepatocellular carcinoma, and
revealed efficacy in predicting response to cancer treatment, thus
providing a general digital pathology framework for deciphering
complex spatial biology (22, 23, 32). Given that FFPE specimens are
ubiquitously available in laboratories that conduct diagnostic clinical
tasks, the merit of the methodology also lies in the minimal materials
required for analysis, enabling broad applicability using archival tissue
samples. Considering the current advancements in single-cell multi-
plex proteomics, the framework can also be easily adapted to high-
dimensional imaging systems for detailed immune phenotyping
that further accelerates biomarker studies with increased profiling
bandwidth.

The major goal of this study was to discern subtle biological
differences between patients with poor and improved survival for the
establishment of prognostic biomarkers. Although PDAC is an aggres-
sive cancer with poor survival, we split the patients into long-term and
short-term groups with near equivalent sizes (42). It is important to
note that long-term survivors are significant only at statistical level and
do not necessarily possess clinical meaning since the median OS is
832 days. This limitation in searching for predictive biomarkers could
apply to PDAC generally. Nevertheless, we reasoned that the distinc-
tion in OS between long- and short-term survivors was driven by
underlying biological behaviors, considering the strong statistical
difference.

Here, we focused on the immune populations within the PDAC
TiME. To start, we quantified the first-order properties of each
immune phenotype. Specifically, we observed that short-term and
long-term survivors tended to have similar compositions of immune
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Figure 5.

Validation of potential spatial biomarkers with an independent cohort (presurgically treated). A, Validation of imRS by comparing of OS between short-term group,
long-term group, and the validation cohort (log-rank test). B, Comparisons of imRS between the short-term group, long-term group, and validation cohort. � , P <
0.05; ���� , P < 0.0001 (Wilcoxon rank-sum test). C, Exemplar topological graph of IL10þ myelomonocytes, PD-1þ CD4þ T cells, and GZMBþ CD8þ T cells in the
validation cohort.D, Immunodetection of CD8 andCD20 featuring LAs of B cells and CD8þ T cells. E,Validation of immune cell density by comparing B-cell and CD8þ

T-cell densities between short-term and long-term groups, and the validation cohort; ns, not significant; �� , P < 0.01 (Wilcoxon rank-sum test). F, Hierarchically
clustered heatmap of marker expression compositions in LAs. Bar plot show the B-cell and CD8þ T-cell densities for each LA, respectively.G, imRSwas computed at
per-cell basis and compared between R and NR groups; ���� , P < 0.0001 (Wilcoxon rank-sum test). H, Comparison of CD8þ T-cell density in LAs between R and
NR groups.
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populations. Although the immune infiltration levels varied across
tissue regions, highly immune-infiltrated regions existed inTiME from
both long-term and short-term groups. By computing spatial Shannon
entropy, we observed that the TiME from both groups were equally
heterogeneous. Taken together, these results support the notion that
the high intertumoral and intratumoral heterogeneity is a hallmark of
PDAC independently of survival status (43). Previous studies reported
that immune components within TiME were highly coordinated to
orchestrate antitumor immunity, thus we further sought to study the
TiME as an ecosystem (25). Using spatial G(r) function, we identified
two pairs of immune phenotypes that exhibited spatial clustering
and associated with survival: CD4þ T cell–myelomonocyte and CD8þ

T cell–B cell. CD4þ T cell and myelomonocyte pairs were a two-way
clustering, that is, cells accumulated around cells of different pheno-
types. To interrogate the clustering pattern, we developed enrichment
scores and discovered that IL10-expressing myelomonocytes and PD-
1–expressing CD4þ T cells were key determinants of the spatial
dependence. In addition, we proposed an imRS and found that
long-term survivors associated with decreased distance between IL10þ

myelomonocytes andPD-1þCD4þTcells; whereas decreased distance

between IL10þ myelomonocytes and GZMBþ CD8þ T cells instead
associated with short-term survivors. imRS revealed the balance of
IL10þ myelomonocytes between high and low risk of immunosup-
pression for patient prognosis. Previous research provides evidence of
the immunosuppressive role of IL10 by directly and indirectly impact-
ing cytotoxicity of CD8þ T cells (38). Moreover, activated CD4þ

T cells, indicated by expression of PD-1, can secrete IFNg and thereby
inhibit neighboring production of IL10 (39–41). Taken together, we
hypothesized that in the long-term survivors, immunosuppression of
IL10þ myelomonocytes is impeded by the IFNg production from
activated CD4þ T cells; whereas in short-term survivors, IL10þ

myelomonocytes in turn inhibit the cytotoxic properties of CD8þ

T cells and thereby foster tumor progression. It is worth mentioning
that some studies report contradictory findings: Wang and colleagues
found that instead of being immunosuppressive, IL10 could enhance
antitumor immunity by hampering suppressive CD4þ T cells, thus
indicating an opposite signaling axis as compared to the aforemen-
tioned hypothesis (44). Therefore, this finding should be interpreted
with caution, as we were not able to also evaluate FOXP3 expression to
differentiate suppressive T-regulatory CD4þ T cells from Th cells.

Figure 6.

Proposed TiME landscape modeling the differences between patients with long-term survival and short-term survival PDAC with regard to immune population
activities. In long-term survivors, the immunosuppression activity of IL10þmyelomonocytes were hypothesized to be inhibited by their adjacent PD-1þCD-4þ T cells
through IFNg production; in short-term survivors, IL10þmyelomonocytes were hypothesized to suppress their adjacent GZMBþ CD8þ T cells by direct inhibition on
cytotoxicity; in addition, low density of CD8þ T, rather than B cells, in LAs was also observed in short-term survivors. (Schematics created with BioRender.com.)
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Second, we examined the one-way clustering pattern of CD8þT cell–B
cell, also termed as LAs in this study.We found that the high CD8þ T-
cell density in LA was associated with long-term survival. Similarly,
Gunderson and colleagues reported a distinct type of T- and B-cell
aggregates, namely early-stage tertiary lymphoid structure, featuring
high CD8þT-cell infiltration that associated with improved survival in
PDAC (45).

There are important limitations in our study. First, the discovery
dataset (treatment-na€�ve) is relatively small. However, it is noteworthy
that we sampled multiple regions from each patient, sampling on
average 89,469 cells per patient. The approach also preserved the
intratumoral heterogeneity, thus entailing a generalized platform less
sensitive to sampling bias. In addition, the biology of IL10 in PDAC is
still poorly understood and limits us to corroborating the connection
of PD-1þCD4þT cell – IL10þmyelomonocyte –GZMBþCD8þT-cell
signaling axis to overall patient survival. Although we did validate our
findings with an independent cohort, the clinical parameters of the
validation cohort were not identical to the discovery cohort, thus the
hypothesis requires further validation on larger external datasets.

In conclusion, we developed a multiscale quantitative assay com-
bining sequential IHC imaging and spatial analysis to study the TiME
in patients with PDAC in search of potential prognostic biomarkers.
While the platform still requires intensive validation on external
cohort, it might complement current standard pathology staging and
serve as a research tool for quantitative immuno-oncology domain.
The proposed platform also reveals a broad applicability and repre-
sents a novel application in thefield of translationalmedicine, aswell as
prospects in initialization and parameterization of computational
models (46–52).
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