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Numerous structural studies have established that experience shapes and reshapes
the brain throughout a lifetime. The impact of early development, however, is still a
matter of debate. Further clues may come from studying multilinguals who acquired
their second language at different ages. We investigated adult multilinguals who spoke
three languages fluently, where the third language was learned in classroom settings,
not before the age of 9 years. Multilinguals exposed to two languages simultaneously
from birth (SiM) were contrasted with multinguals who acquired their first two languages
successively (SuM). Whole brain voxel based morphometry revealed that, relative to
SuM, SiM have significantly lower gray matter volume in several language-associated
cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in
the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the
left inferior temporal gyrus. Thus, as shown by others, successive language learning
increases the volume of language-associated cortical areas. In brains exposed early
on and simultaneously to more than one language, however, learning of additional
languages seems to have less impact. We conclude that – at least with respect to
language acquisition – early developmental influences are maintained and have an effect
on experience-dependent plasticity well into adulthood.

Keywords: multilingualism, bilingualism, age of L2 acquisition, magnetic resonance imaging, gray matter volume

Introduction

In recent years, numerous studies on neuronal plasticity have established that training results
in structural changes in critically involved cortical brain areas. On a macroscopic level, it
has been shown that gray matter (GM) density and GM volume are altered after different
kinds of training (for review see Taubert et al., 2010 and Zatorre et al., 2012). Within the
domain of neurolinguistics too, ongoing research has demonstrated that acquiring a second
language (L2) has a substantial influence on the anatomy of the brain (Li et al., 2014; Stein
et al., 2014). This was the case for a variety of language characteristics, such as non-native
speech sounds (Golestani et al., 2002, 2007, 2011; Crinion et al., 2006; Wong et al., 2008),
acquisition of vocabulary (Grogan et al., 2009, 2012; Hosoda et al., 2013), reading skills
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(Cummine and Boliek, 2013; Zhang et al., 2013), syntax abilities
(Nauchi and Sakai, 2009; Pliatsikas et al., 2014) and executive
language control (Elmer et al., 2011; Filippi et al., 2011; Abutalebi
et al., 2012, 2013b; Zou et al., 2012). In addition to these studies
on specific characteristics of L2 acquisition, research has also been
devoted to overall second language proficiency (Amunts et al.,
2004; Coggins et al., 2004; Mechelli et al., 2004; Osterhout et al.,
2008; Mårtensson et al., 2012; Mohades et al., 2012; Ressel et al.,
2012; Schlegel et al., 2012; Stein et al., 2012; García-Pentón et al.,
2014; Klein et al., 2014), i.e., to a broad level of L2 proficiency
as assessed by overall linguistic testing or by simply comparing
groups of bilinguals to groups of monolinguals (Stein et al.,
2014; Winkler, unpublished master thesis). Anatomical studies in
bilinguals are based on the investigation of GM density changes
(e.g., Mechelli et al., 2004; Osterhout et al., 2008; Stein et al.,
2012), cortical thickness (e.g., Mårtensson et al., 2012; Klein
et al., 2014), and GM volume (e.g., Golestani et al., 2007; Wong
et al., 2008). In language-associated areas and, in particular, in
areas implicated in control, these studies have generally found
alterations due to L2 acquisition, that increase with growing L2
proficiency (for a review, see Li et al., 2014; Stein et al., 2014).
Most recently, there have been morphometric studies suggesting
that the consequences of bilingualism are related to the form
of bilingualism, including not only the age of acquisition and
proficiency, but also the context in which the two or more
languages are used, i.e., whether speakers are immersed in the
language environment, whether they learned the language in a
classroom setting and so forth (see the current Special issue).

Neuroscientific studies with multilingual participants, i.e.,
with subjects speaking at least three languages fluently, are not
carried out very often. Only recently, Abutalebi et al. (2013a)
combined functional and structural MRI to examine the role
of the basal ganglia in multilingual participants. Because of the
permanent exposure to a major articulatory load when speaking
several languages during a lifetime, the authors hypothesized
that there is an enlarged density of gray matter in this
area in multilinguals. Indeed, as compared to monolinguals,
participants speaking three languages demonstrated increased
GM density in the left putamen, which supports the notion of
structural plasticity as result of handling a complex articulatory
repertoire. In order to compare high cognitive, linguistic, and
articulatory demands between multilinguals of two different
sorts, namely professional multilingual interpreters versus
control multilinguals, Elmer et al. (2014) conducted GM volume
analysis on regions previously shown to support language control
and executive functions in multilinguals. Interestingly, GM
volume was found to be reduced in highly trained multilingual
interpreters in a number of regions associated with language
control, which suggests that intense training can result in
more efficient neural networks, probably due to the pruning of
superfluous connections.

Most of the research on the (co)-organization of several
languages in the brains of multilinguals has been conducted
by using functional brain imaging. Vingerhoets et al. (2003)
demonstrated that – in multilinguals with comparable levels of
proficiency – late L2 acquisition results in greater activation in
L2 than in L1 (Vingerhoets et al., 2003; also shown by Perani

et al., 2003; Wartenburger et al., 2003; Kovelman et al., 2008
in bilinguals). In quadrilingual subjects, although there was no
clear association between the age of acquisition and the amount
of activation, a negative correlation was found between the
level of proficiency and the amount of activation (Briellmann
et al., 2004). This was also suggested by the data of Abutalebi
et al. (2013b) in trilinguals. Bloch et al. (2009) focused on the
relation between the age of L2 acquisition and the variability
of regional brain activation in Broca’s and Wernicke’s areas in
subjects speaking at least three languages fluently and where the
L3 had been learned after the age of 9 years. They demonstrated
that variability in the representation of the three languages of
the individual is related to the age of acquisition of L2, which
indicates that early exposure to more than one language gives
rise to a language processing network that can accommodate late
learned languages.

The present study is based on the work of Bloch et al. (2009)
and analyses structural MRI data of subjects fluent in at least
three languages. The design of the study allowed us to search
for structural differences between simultaneous and successive
acquisition of L2. Thus, we suppose that simultaneous (SiM)
versus successive or sequential acquisition of L1 and L2 (SuM)
is associated with differences in the structural organization of
brain areas subserving language processing. More precisely, we
hypothesize that groups who acquired L2 later also show higher
GM volumes in language-associated regions, as well as in other
brain areas belonging to the extended language network (Ferstl
et al., 2008). The design of the study provides us, further, with the
opportunity to consider the potential role of the late L3 acquired
by all participants. Structural differences between simultaneous
(SiM) and successive multilinguals (SuMs) could indicate that
very early acquired characteristics are maintained over a long
period of life.

Materials and Methods

Subjects
Forty-four healthy, right-handed [verified by the outcome of
the Edinburgh Handedness Inventory (Oldfield, 1971)], non-
smoking multilinguals voluntarily participated in this study
after receiving information about the investigation and the
scanning process and giving their written informed consent.
The subjects’ average age at MRI acquisition was 28 years
(range 18–37 years) and their female/male ratio was 22/22. The
Ethics Committee of the University Hospital of Basel (EKBB,
Switzerland) approved the study and confirmed its compliance
with all relevant regulatory standards. All subjects were fluent
and of medium to high proficiency in at least three languages (see
Table 1). They did not differ with respect to their acquisition of
their L3, which was comparable within all groups, and acquired
at 9 years of age or later at school (see Bloch et al., 2009).

Assessment of Language Profiles
Themultilinguals’ age of second language acquisition was defined
after analyzing each individual’s language biography (Schütze,
1988; Schwabe, 2003) through oral interviews lasting 2–3 h. These
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TABLE 1 | Language and proficiency profile of the 44 participants.

Group Subgroup in Bloch
et al. (2009)

L1 L2 L3

Level of
competence

Level of
competence

Level of
immersion1

Level of
competence

1 SiM Simultaneous English C2 Swiss German C2 High by context Italian B2

2 SiM Simultaneous Hungarian C2 Swiss German C2 High by context English B1

3 SiM Simultaneous Hungarian C1 Swiss German C2 High by context English B1

4 SiM Simultaneous Italian C1 Swiss German B2+ High by context French B1+

5 SiM Simultaneous French B2+ Standard German C2 High by context English C2

6 SiM Simultaneous French C2 Standard German C1 High by context English B2+

7 SiM Simultaneous Italian C1 Standard German B2+ High by context French B1+

8 SiM Covert simultaneous Italian C1 Swiss German C2 Medium-high by context Spanish B1+

9 SiM Covert simultaneous Italian C2 Swiss German C2 Medium-high by context English B2

10 SiM Covert simultaneous Greek B1+ Swiss German C2 Medium-high by context Spanish C1

11 SiM Covert simultaneous Slovene C2 Swiss German C2 Medium-high by context English C1

12 SiM Covert simultaneous French C2 Standard German C2 Medium-high by context English B2

13 SiM Covert simultaneous Serbo-Croatian C2 Standard German C2 Medium-high by context English C1

14 SiM Covert simultaneous Turkish C1 Standard German C2 Medium-high by context English B2+

15 SiM Simultaneous Standard German C2 English B2 High by family French A2

16 SiM Simultaneous Standard German C2 Indonesian B1+ High by family English C1

17 SiM Simultaneous Swiss German C2 Italian C1 High by family English C1+

18 SiM Simultaneous Swiss German C2 Italian C2 High by family English C2

19 SiM Simultaneous Spanish C2 Catalan C2 High by family Swiss German C2

20 SiM Simultaneous Spanish B2 Catalan B1 High by family Standard German C2

21 SiM Simultaneous Finish C2 English C1 High by family Standard German C2

22 SiM Simultaneous Portuguese B2 French C1 Japanese A1

23 SiM2 Simultaneous Catalan Spanish English

24 SiM Covert simultaneous Bulgarian C2 Russian C1 French C1

25 SuM 2nd to 5th year Spanish C2 Standard German C2 High by context English B1+

26 SuM 2nd to 5th year French B2 Standard German C1 High by context English C2

27 SuM 2nd to 5th year Swiss German C2 English C1 Temporary high by context French C2

28 SuM 2nd to 5th year Swiss German C2 English C2 Temporary high by context Ivrit (New Hebrew) B2+

29 SuM 2nd to 5th year Swiss German C2 English C1 Temporary high by context French B1

30 SuM 2nd to 5th year Standard German C2 French C2 Temporary high by context English B1+

31 SuM 2nd to 5th year Standard German B2+ French B2+ Temporary high by context English B1+

32 SuM 2nd to 5th year Spanish C1 Italian B2 Temporary high by context Swiss German C2

33 SuM Late Swiss German C2 English C1 Classroom learning French C1

34 SuM Late Standard German C2 French B2+ Classroom learning Russian B2+

35 SuM Late French C2 Standard German B2+ Classroom learning English B1+

36 SuM Late Swiss German C2 English B2 Classroom learning French B2

37 SuM Late Swiss German C2 English C2 Classroom learning Italian B2

38 SuM Late Swiss German C2 English C2 Classroom learning French B2+

39 SuM Late Italian C2 Standard German B2 Classroom learning English B2

40 SuM2 Late Swiss German French Classroom learning English

41 SuM Late Swiss German C2 French C2 Classroom learning English C2

42 SuM Late Italian C2 Standard German B2+ Classroom learning French B2

43 SuM Late French C2 English B2+ Classroom learning Standard German C2

44 SuM Late Swiss German C2 French B2 Classroom learning English B2

Here, the classification of the multilingual participants and their languages with individual proficiencies levels is presented. Multilinguals are grouped into SiM and SuM,
depending on their age of L2 acquisition. Prototypical details on level of immersion of L2 are given. A1 and A2 refer to competence levels of the basic user, B1 and B2
to the independent user, and C1 and C2 to the proficient user. A2+, B2+, and C1+ are intermediate stages [Common European Reference Framework for languages
(CERR), Council of Europe, 2001; North, 2000]. Given the diglossic situation in the German speaking part of Switzerland, Standard German, and Swiss German can both
be regarded as varieties of German. 1The classification into different levels of immersion is qualitative–descriptive and not quantitative-categorical and is aimed to give
further input on the characteristics of our individual subjects rather than to mark or define strict groups of learners. 2Subjects who did not return the CERR assessment
form.
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in-depth linguistic biographies are based on the observation that
free narrations give a more realistic account of the language
history of the participant (Franceschini, 2002). The subjects could
then be classified into four different groups of L2 acquisition: 16
(F = 10) simultaneous bilinguals, 8 (F = 3) covert simultaneous
bilinguals, 8 (F = 3) sequential bilinguals, and 12 (F = 6) late
multilinguals (Bloch et al., 2009). For the purpose of the present
study, we re-grouped the participants into two groups:

(1) The simultaneous multilingual (SiM) group (N = 24; F = 13;
average age: 27.7 years; age range: 18–36 years) consisting
of simultaneous bilinguals, i.e., participants growing up
in a bilingual family, where both parents/caregivers spoke
different languages, and covert simultaneous bilinguals, i.e.,
participants growing up in a monolingual family whose
language differed from that of the surroundings. This group
of bilinguals was exposed to the L2 by the environment
parallel to the L1, and for that reason they were grouped
together with the simultaneous bilingual group.

(2) The successive multilingual (SuM) group (N = 20; F = 9;
average age: 27.8 years; age range: 20–37 years) comprised
successive bilinguals who had acquired their L2 subsequently
to L1 between their second and fifth year of life, and late
multilinguals who had acquired L2 at school when they were
at least 9 years of age. Thus, this group covers multilinguals
who acquired their L2 at a distinct time point after the
acquisition of their L1.

Table 1 shows information on the multilingual profiles of the
SiM and SuMgroups. Additionally, it gives information about the
type of L2 immersion. The level of competence in the individual
languages was scaled by self-assessment, using the Common
European Reference Framework for Languages (CERR, North,
2000; Council of Europe, 2001). Calculations using the Mann–
Whitney U Test revealed no significant differences between SiM
and SuM concerning L2 and L3 proficiency (p> 0.05, one-tailed).

Language Immersion Profile
As the age of acquisition is not the sole or exclusive influence to
alter the structure of the brain, we provide here some additional,
post hoc information on the degree of immersion to L2 in our two
groups of participants. Immersion has been shown to affect the
brain’s anatomy (Pliatsikas et al., 2015) and can be defined as the
amount of naturalistic exposure, or immersion, that the speakers
receive to that language. It is the degree to which language
learners are exposed in their day-to-day activities, (see Pliatsikas
and Chondrogianni, 2015).

This study was conducted in the German speaking part of
Switzerland. This resulted in the recruited participants having
significant exposure to German (the exceptions are subjects 20,
21, 22, 23, and 24 of the SiM group who either acquired Standard
German in classroom circumstances as L3 after the age of 9 years
or who did not report speaking German at all or learned it
as an L4; and subjects 35, 39 and 42 of the SuM group who
acquired Standard German in classroom circumstances as L2,
see Table 1). Growing up in a German-speaking country makes
the context for the acquisition of the L2 – in the cases when

Standard German/Swiss German was learned as an L2 – one
of early and high immersion by context (due to the linguistic
dominance of the environment), or, in the case of the covert
simultaneous-participants, a context ofmedium–high immersion.
Similarly, growing up in a German speaking country with at least
one caregiver speaking another language than German makes L2
acquisition of high immersion by family. Thus the majority of
the members of SiM acquired their L2 by high immersion by
family/context or medium-to-high immersion by context. The
majority of the members of the SuM group learned L2 in a
classroom setting. The subgroup of multilinguals classified as
“2nd to 5th year” of age spent a period of their childhood/youth
outside a German speaking country or moved to a German-
speaking context. Their level of immersion to L2 is thus either
high by context (2 out of 8) or temporary high by context (6 out of
8). Therefore, the quality of immersion differs between SiM and
SuM (Table 1).

Magnetic Resonance Imaging
MR Image Acquisition
Magnetic resonance images of the 44 subjects were acquired
on a 1.5-T Magnetom Vision MRI Scanner (Siemens, Erlangen,
Germany) at the University Hospital of Basel.We used a standard
head coil to restrict head movements and to limit motion
artifacts. A three dimensional (3D) T1-weighted anatomical
high-resolution Magnetization Prepared Rapid Gradient Echo
(MPRAGE) sequence was applied with repetition time of 9.7 ms,
echo time of 4 ms, inversion time of 300 ms, and isotopic spatial
resolution 1 mm × 1 mm × 1 mm (see also Bloch et al., 2009).
The scans were all screened for major radiological abnormalities
or visual artifacts by an experienced neuroradiologist.

Voxel-Based Morphometry
These MRI data were analyzed on commercially available Intel-
based desktop computers with a Debian Linux 3.1 operating
system. The structural images were pre-processed using a Voxel-
Based Morphometry (VBM8) toolbox1, as implemented in the
Statistical Parametric Mapping software package2. The data
were registered with “Diffeomorphic Anatomical Registration
Through Exponentiated Lie” (DARTEL) within VBM8, running
under the MATLAB 7.11.0 (R2010b) environment (Members of
the Wellcome Trust Centre for Neuroimaging, 2009). Accuracy
and sensitivity were maximized by creating a study-specific
template and segmentation of each subject’s image (Yassa and
Stark, 2009). We conducted the following steps: (1) checking for
scanner artifacts and major anatomical abnormalities for each
subject; (2) aligning and reorientating the scans; (3) using New
Segmentation and high-dimensional normalization DARTEL
(Ashburner, 2007); (4) checking for homogeneity across the
sample; and (5) using 8 mm standard smoothing (Bailey, 2008).
The default values for realignment, warping, and normalization
were used (Kurth et al., 2010). Finally, realigned, segmented,
normalized, and smoothed data were subjected to statistical
analysis.

1http://dbm.neuro.uni-jena.de/vbm8/
2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Of the 44 samples of this study two were outliers, with a mean
covariance below 2 SDs. Repeated analyses without these two
subjects did not change the results (not shown). We therefore
decided to retain these two subjects.

Statistics
Voxel-based morphometry compares images on a voxel basis
after spatial normalization using deformation fields that discount
macroscopic differences in shape. We estimated between-group
differences in GM volume at each intracerebral voxel in standard
space by fitting a full-factorial analysis of covariance (ANCOVA),
and contrasted the SiM and SuM groups. We modeled age at
image acquisition and sex/gender as covariates of no interest, in
order to reduce the potential impact of these variables on the GM
volume in language-associated brain areas.We identified spatially
continuous voxels at a threshold of p < 0.01 (uncorrected; cluster
forming threshold; Petersson et al., 1999) and defined a family
wise error-corrected cluster-extent threshold of p < 0.05 to infer
statistical significance. In order tomark areas with significant GM
volume differences on this statistical threshold level, Montreal

Neurological Institute (MNI) coordinates were transformed
into Talairach space (MNI and Talairach Transformation, 2013;
Talairach.org Daemon, 2013).

Results

Gray matter volume was lower in the group of SiMs as compared
to SuMs in the following regions: bilaterally in the medial frontal
gyrus (MFG) and the left inferior frontal gyrus (IFG; p < 0.001,
FWE); in the right IFG and right medial temporal gyrus (MTG);
in the left inferior temporal gyrus (ITG); and in the right inferior
posterior parietal gyrus (p < 0.05, FWE; Table 2; Figure 1).
The opposite contrast SuM > SiM did not reveal any significant
results.

Discussion

The present study of 44 multilinguals is to our knowledge the
first VBM study in multilinguals as opposed to numerous studies

TABLE 2 | Results SiM < SuM.

ANCOVA full factorial 2 × 2, SiM < SuM. Height threshold puncorr < 0.01; extent threshold k = 2497 voxels.

Area MNI coordinates of cluster
maximum (x/y/z)

Cluster
PFWE-corr

Cluster size
kE (voxels)

Peak level
T

Frontal lobe Medial frontal gyrus L
R

−2/46/−9
2/56/−11

<0.001 4107 4.71

Inferior frontal gyrus L
R

−38/36/−8
44/26/−2

<0.001
0.015

4753
2788

4.61
3.58

Temporal lobe Inferior temporal gyrus L −63/−40/−24 0.016 2766 4.19

Medial temporal gyrus R 60/−27/−12 0.009 3071 3.90

Parietal lobe Inferior posterior parietal gyrus R 50/−79/48 0.027 2498 4.17

Clusters with significantly smaller gray matter volume in SiM are displayed.

FIGURE 1 | ANCOVA full factorial 2 × 2. Significant clusters (PFWE−corr < 0.05) with smaller GMV in SiM versus SuM shown in red. Group template used as
background image in gray.
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in bilinguals. It shows that GM volume was higher in the group
of multilinguals who learned their L2 successively compared to
the multilingual who acquired a second language simultaneously
with their L1. Thus, subjects who did not acquire two languages
simultaneously (by immersion) in early life but learned them
sequentially, mostly in classroom settings, showed larger GM
volume patterns in cortical language-associated regions and the
extended language network (Ferstl et al., 2008). This result
supports our thesis that early simultaneous bilingualism persists
in the anatomical make-up of the adult brain.

The exact degree to which the difference between SiM and
SuM is or is not influenced by a late learned L3 cannot be
determined based on the present design. However, the other
way round requires attention: testing trilinguals obliges us to
tentatively hypothesize that despite the fact of a late learned
L3 the differences based on the age of L2 acquisition persist
into adulthood and do not disappear. Thus SiM and SuM
remain different even though a late L3 was acquired. It can
be assumed that the earlier in life a language experience is
made, the more receptive the brain is to new learning and
the more efficiently the brain can incorporate new language
associated experiences, i.e., further input can be integrated into
the same structural substrates. This would then be mirrored in
GM patterns, particularly in the lower GM volume for early
simultaneous L2 acquisition, including the late learned L3.

Our result corresponds with previous research showing an
impact of L2 acquisition on GM volume of the bilingual brain
(Mechelli et al., 2004; Osterhout et al., 2008; Stein et al., 2012)
as well as research on GM volumetric changes in multilinguals
(Elmer et al., 2014). However, the comparison of work applying
GM density approaches and studies based on GM volumetric
methods remains challenging. VBM is a technique that permits
comparisons of the entire brain volume at the single voxel
level. In contrast to previous studies (Mechelli et al., 2004;
Osterhout et al., 2008; Stein et al., 2012) which reported GM
densities rather than volumes, we used “optimized” VBM,
which includes an additional modulation step to minimize
the potentially confounding effects of errors in stereotactic
normalization (Ashburner and Friston, 2001; Good et al., 2001).
All images were smoothed using a 8 mm full-width-at-half-
maximumGaussian kernel, as in a previous study (Mechelli et al.,
2004). According to the matched filter theorem, the width of the
smoothing kernel determines the scale at which morphological
changes are most sensitively detected (White et al., 2001). In
the present study, we have chosen a rather small smoothing
kernel, as this allows us to detect a greater number of regions
with small structures and to better compare our results with the
GM densities reported by Mechelli et al. (2004). Furthermore,
both samples are based on healthy participants, so that we did
not expect that regional changes would be very large or would
differ much between cortical regions or between the studies. As
expected, our results basically confirm the correlation (Mechelli
et al., 2004; Stein et al., 2012) and/or association between age of L2
acquisition and GM structure, as reported previously (Osterhout
et al., 2008).

In the present study, differences in GM volume were detected
in the temporal as well as inferior and medial frontal regions of

both hemispheres and the inferior parietal area. These are broadly
parts of regions involved in the functional anatomy of language
(Price, 2010) and may be linked, with the exception of the right
inferior prefrontal cortex, to the “extended language network”
outlined in influential work on the functional processing of
language comprehension (Ferstl, 2007; Ferstl et al., 2008).
Typically, primary language areas for language comprehension
and production, such as Wernicke’s and Broca’s areas, did
not display any significant difference between the SiM and
SuM group. In the related fMRI study on multilingualism by
Bloch et al. (2009), no specific group-dependent differences in
activation were found in these areas either, which shows, for our
population, that these regions are used, irrespectively of when a
language is learned. The degree of variability in which they were
activated by the three languages is, however, highly dependent on
the age of L2 acquisition.

In the following, our GMdata are discussed in relation to other
studies on structural changes of gray matter linked to overall
second language proficiency (Stein et al., 2014). Special attention
is given to the bilateral character of our results. In their whole
brain analysis of early and late bilinguals, Mechelli et al. (2004)
found structural changes in the inferior parietal cortex (IPC) in
relation to age; similarly Osterhout et al. (2008) employed an ROI
analysis and detected structural alterations in the same region.
Here too, GM changes in the IPC were detected and linked to
age of acquisition. Others have demonstrated that the GMdensity
of this region is positively correlated with vocabulary acquisition
and knowledge, suggesting that this area is important not only
for global L2 acquisition but for handling a large vocabulary (Lee
et al., 2007; Richardson et al., 2010). Contrary to Mechelli et al.
(2004), Osterhout et al. (2008), and Richardson et al. (2010),
however, the present work showed changes in the right (x/y/z,
50/−79/48) and not in the left hemispheric IPC and thus supports
the conclusions of Lee et al. (2007), who showed that vocabulary
mastery predicted GM density in the bilateral IPC.

While Stein et al. (2012), in their longitudinal study on L2
acquisition, reported an increase in GMdensity in the left inferior
frontal cortex (IFC) in close vicinity to the pars triangularis in
Broca’s area, the present study detected a bilateral pattern in this
region and revealed a difference with respect to the age of L2
acquisition: Stein et al.’s (2012) participants learned L2 as adults,
whereas our group of participants acquired their L2 as children.
The results in our group of SiMs in IFC is in line with data of a
recent cortical thickness study concerning the bilaterality of the
structural patterns in this very same region (Klein et al., 2014).
Klein et al. (2014) report, however, that thickness correlates
positively with age of acquisition in the left IFG and negatively
in the right IFG; this opposing interhemispheric effect was not
re-enacted in our study where the association of age with higher
GM volumes clearly counts for both the right and left IFG.

Our results on bilateral differences between SiM and SuM in
GM volume in IFC are corroborated by functional data from
bi- and multilinguals showing greater bilateral activation during
both L1 and L2 processing than for monolinguals (Hull and Vaid,
2006; Park et al., 2012), with a strong tendency for the right
Broca’s homolog to be activated in the L1 of multilinguals (Kaiser
et al., 2007). There is still little evidence about the function of the
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MFG in the context of structural changes due to L2 acquisition,
except that its cortical thickness shows alterations after very
intensive language training over many months (Mårtensson
et al., 2012). Again, our present results reveal structural bilateral
modifications in the MFG, whereas Mårtensson et al. (2012)
found these only in the left side. Data based on functional MRI
studies suggest that the MFG is crucial for text comprehension
(Ferstl and von Cramon, 2001).

It is well known that both the inferior and the middle temporal
gyrus handle various aspects of lexical semantic representation
and processing. Our study is, to our knowledge, the first to
present changes in the GM volume due to early L2 acquisition
in both the right MTG and left ITG.

Taken together, the right hemispheric trend (as exemplified in
r-IPC; bilateral IFC; bilateralMFG; r-MTG) –which characterizes
our set of multilinguals when differentiated by the age of L2
acquisition – could be influenced by two additional factors: by
the mode of L2 acquisition and/or by the interference of the L3.

Our subjects were carefully selected on the basis of their
multilingual profile and had to undergo extensive interviewing
for 2–3 h about their three languages. However, some
information about their languages was not captured. Thus, for
instance, it cannot be excluded with certainty whether any of the
simultaneous participants registered with German/Swiss German
as L2 grew up in a non-German speaking country and acquired
L1 from one caregiver and L2 (German/Swiss German) from a
second caregiver. Nevertheless, the presence of immersion as the
main access to L2 acquisition remains valid in SiM, as well as the
presence of classroom learning in SuM. Future cross-sectional
and longitudinal research is needed to identify which of these
ways of learning L2, i.e., L2 acquisition based on high immersion
by family, high immersion by context, medium-high immersion
by context, temporary high immersion by context, or classroom
learning has a greater impact on structural GM in relevant
brain areas. Most recently, Pliatsikas et al. (2015) demonstrated
the effects of immersion on brain structure in young, highly
immersed late bilinguals. In their view, “[immersion] can be
broadly defined as the degree to which language learners use their
non-native language outside the classroom and for their day-to-
day activities and usually presupposes that the learners live in
an environment where their non-native language is exclusively
or mostly used” (see Pliatsikas and Chondrogianni, 2015).
Interestingly, structural alterations in white matter were shown
to be effected by everyday L2 use in a naturalistic environment,
rather than by length of L2 learning or age of onset of L2
learning (Pliatsikas et al., 2015). Thus, our results in the group
of SiM can also be interpreted from this perspective showing that
naturalistic exposure, rather than age of L2 acquisition, impacts
on brain structure. This is not the case for the group of SuM
who in their majority acquired L2 as a foreign language in the
classroom.

Finally, the impact of the L3 on language-associated
brain areas and the extended language network remains to
be elucidated. In our experimental setup, the age of L2
acquisition is the variable determining the GM structure early in
development. However, the way in which training for additional
languages drives GM plasticity in regions already influenced

by bilingualism is open to speculation. Additional training
might result in pruning of language networks, as suggested
by Elmer et al. (2014), or might drive contralateral (right
hemisphere) cortical areas to participate in language related
tasks.

The results of the present study cannot prove a lifelong
plasticity of the brain for languages since the examined subjects
were chosen based on the fact of having learnt at least
three languages during early or late childhood, respectively,
and we do not know about further changes in their brains
during adulthood. Neither do the obtained outcomes give any
information if there is a critical age for the native-like acquisition
of one or many languages, although there are certainly studies
showing complex relations between the maturation of the brain
in children and the brain’s plasticity to adjust to structural
demands of (individual) language development (Brauer et al.,
2011).

Methodical Considerations
Modification of the user-options implemented in the analysis
software, such as setting the smoothing kernel, can influence
subsequent statistical results (Ashburner and Friston, 2001):
a larger kernel (12 mm instead of 8 mm) results in greater
cluster sizes (Friston, 2003, p. 5). We used a default option of
8mm as recommended. VBMcompares voxel-by-voxel images of
different groups and reports MNI standard coordinates for every
cluster center, which does not necessarily correspond to the actual
cluster localisation in an individual’s brain. Thus VBM statistics
do not differentiate between two clusters localized for example
in the medial plane. In the present case, the large clusters in the
medial frontal gyri on the left and the right are counted as one
cluster.

As to the statistical thresholds, it is still very difficult
to compare data from different studies. Height thresholds
range from puncorr < 0.001 up to pcorr < 0.05 in different
studies (Brambati et al., 2004; Eckert et al., 2005; Silani et al.,
2005; Hoeft et al., 2007; Steinbrink et al., 2008; Richardson
and Price, 2009). Here, an uncorrected height threshold
of p < 0.01 was used. The clusters found are therefore
large, although there are small differences between the two
groups.

Conclusion

Contrary to the successive acquisition of the second language,
simultaneous acquisition of L1/L2 (by immersion) from the first
year of life on is associated with low GM volume in language-
associated regions, in the prefrontal, medial temporal and parietal
cortex, in particular. This difference persists even though a late
L3 is learned. Growing up in a multilingual environment in
early childhood may change the individual’s cortical structure,
enforcing it to generally build more efficient synaptic networks
for language processing. To further understand structural
changes underlying brain plasticity during language learning
requires longitudinal studies with homogenous groups of SiM
and SuM.
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