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Dietary protein quantity and quality greatly impact metabolic health via evolutionary- 
conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, 
promote hyperphagia when dietary protein density is low, and conversely produce satiety 
when dietary protein density is high. Growing evidence supports the emerging concept 
of protein homeostasis in mammals, where protein intake is maintained within a tight 
range independently of energy intake to reach a target protein intake. The behavioral and 
neuroendocrine mechanisms underlying these adaptations are unclear. While peripheral 
factors are able to signal amino acid deficiency and abundance to the brain, the brain 
itself is exposed to and can detect changes in amino acid concentrations, and subse-
quently engages acute and chronic responses modulating feeding behavior and food 
preferences. In this review, we will examine the literature describing the mechanisms by 
which the brain senses changes in amino acids concentrations, and how these changes 
modulate feeding behavior.
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iNTRODUCTiON

Over the past 20 years, a large number of studies have refined our understanding of how neuroen-
docrine networks detect internal energy availability and modulate behavioral circuits controlling 
energy intake to maintain energy homeostasis (1). Food intake is also driven by factors independent 
of internal energy balance. This is well illustrated by the contribution of the sensory and hedonic 
value of a diet to the control of energy intake independently of energy homeostasis (2). In addi-
tion, the need for specific macronutrients or nutrients can affect appetite and food choices, but the 
mechanisms underlying how individual macronutrients influence feeding behavior or how appetite 
for specific macronutrients/nutrients influences energy intake remain unclear.

Ensuring sufficient consumption of protein is essential for growth, reproduction, and species 
survival (3). Animals, from insects to mammals, have evolved mechanisms to ensure quantita-
tively and qualitatively adequate protein intake (3, 4). Detection of lack or abundance of single 
amino acids can have profound acute and chronic effects on feeding behavior and food prefer-
ence (5, 6). In addition, within a certain range, dietary protein content is a determinant of total 
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rior piriform cortex; ATP, adenosine triphosphate; BBB, blood–brain barrier; BCAA, branched-chain amino acids; BCAT, 
branched-chain amino acid transferase; BCKDH, branched-chain ketoacid dehydrogenase; CNS, central nervous system; 
EAA, essential amino acids; GABA, γ-aminobutyric acid; GCN2, general control non-derepressible 2; HP, high protein; icv, 
intracerebroventricular; KIC, α-ketoisocaproic acid; KO, knock out; LP, low protein; MBH, mediobasal hypothalamus; mTOR, 
mammalian target of rapamycin; NPY, neuropeptide Y; NTS, nucleus tractus solitarii; OVN, overnight; POMC, pro-opio 
melanocortin; PVH, paraventricular nucleus of the hypothalamus; TCA, tricarboxylic acid; WT, wild type.
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energy intake (7). Moderately low-protein diets are associated 
with an increase in energy intake, adjusted to match minimum 
requirements for nitrogen and essential amino acids (EAA) (8). 
Conversely, high-protein diets reduce energy intake, presumably 
to prevent excessive amino acid levels potentially toxic for the 
brain (9). This remarkable bidirectional adjustment of energy 
intake based on dietary protein content has been proposed 
to target a protein intake of 15% across multiple species from 
insects to humans (10) and supports the idea that protein intake 
is regulated by homeostatic mechanisms somewhat independent 
of energy intake or intake of carbohydrate and fat.

In this review, we will examine the literature exploring how 
the brain monitors internal amino acid availability and how this 
central detection modulates food intake. We will not discuss 
in detail the peripheral mechanisms by which amino acids are 
sensed and how these mechanisms may interact with the brain to 
control food intake (8, 11).

DieT-iNDUCeD CHANGeS iN BRAiN 
AMiNO ACiD CONCeNTRATiONS

The unique morphological and functional properties of mamma-
lian cerebral endothelial cells that form the blood–brain barrier 
(BBB) allow the brain to be protected from toxins and sheltered 
from variations in blood composition, presumably providing 
the central nervous system (CNS) with an optimal chemical 
environment for cerebral functions. Amino acid homeostasis 
is particularly critical in the brain, as a number of non-EAA – 
l-glutamate, l-aspartate, l-cysteine, l-homocysteine, glycine, 
alanine, and taurine – can act directly as neurotransmitters 
when released at the synapse, while other amino acids, l-tyrosine 
and l-tryptophan, serve as precursors for neurotransmitters, 
the catecholamines, and serotonin, respectively. In addition, 
branched-chain amino acids (leucine, isoleucine, and valine – 
BCAA) serve as precursors for the neurotransmitter glutamate 
and pathologically high BCAA concentrations, as seen in Maple 
Syrup Disease, cause excessive glutamatergic signaling and neu-
rological symptoms (9).

Four facilitative saturable amino acid carriers have currently 
been identified to be expressed on the luminal side (blood 
side) of the mammalian BBB, maintaining intra-cerebral levels 
of amino acids within a narrow range to about 10% of plasma 
levels (12–14). However, the idea that all amino acids are non-
specifically buffered to that fraction is challenged by discoveries 
demonstrating selective transport of amino acids across the 
BBB. This was first suggested by the observation that following 
arterial delivery of radiolabeled amino acids in rats, brain uptake 
of essential neutral amino acids is 5- to 10-fold greater than that 
of non-EAA (15, 16). Molecular support for this observation 
indicates that the system L1 amino acid transporter, which car-
ries most EAA including branched-chain (leucine, isoleucine, 
and valine – BCAA) and aromatic (phenylalanine, tyrosine, and 
tryptophan – AAA) amino acids, is the predominant amino 
acid transport system expressed in the brain endothelium (13, 
17, 18). In addition, the luminal and abluminal (brain side) 
membranes of the brain endothelium are functionally distinct, 

as sodium-dependent amino acid transport systems are present 
exclusively on the abluminal membrane, providing the BBB 
with a mechanism to actively export amino acids against the 
concentration gradient (13, 19). Thus, the BBB expresses trans-
port systems that allow selective import and exports of amino 
acids and active regulation of brain extracellular amino acid 
composition.

BCAA and AAA compete for transport through system L1, 
and consequently, the blood ratio of BCAA to AAA levels is 
a major determinant of brain extracellular and cerebrospinal 
amino acid composition (9). Decreased plasma BCAA levels, 
as seen in specific contexts including endurance training or 
adaptation to ketogenic diets, are associated with decreased 
brain BCAA levels, increased uptake of tryptophan and tyrosine 
into brain, and increased synthesis of serotonin and catechola-
mines (20, 21). Conversely, increased plasma BCAA levels are 
reflected in brain BCAA levels, and negatively impact brain 
AAA uptake and serotonin synthesis (9, 13). Such changes have 
been reported in contexts associated with chronic increases 
in BCAA levels including diabetes or maintenance on a high-
protein diet (12, 22–25) but also acutely following food ingestion 
(26). In fact, while the plasma level of most amino acids remains 
relatively stable in the postprandial period, BCAA levels rapidly 
and transiently rise as they largely escape first-pass splanchnic 
metabolism (27–29), resulting in a rapid increase in brain BCAA 
levels (26, 30–32). This observation led to the hypothesis that 
circulating BCAA levels may represent a signal of postprandial 
protein availability that regulates various anabolic functions 
modulated by dietary proteins. Consistently, BCAA have been 
shown to mediate protein-induced transcription, insulin secre-
tion, and protein synthesis (33–35). Likewise, brain BCAA 
levels may mediate protein-induced modulations of centrally 
controlled functions, including appetite and metabolism, as 
discussed below.

Only a few studies have explored the regional differences in 
the kinetics of brain amino acid uptake following meal inges-
tion. Microdialysis studies in rats demonstrated that after oral 
gavage of a balanced amino acid mix or ingestion of a 50% 
protein meal, there were consistent increases in the concen-
trations of BCAA in the lateral and periventricular nuclei of 
the hypothalamus within 20–40  min of meal consumption, 
while the concentrations of the majority of other amino acids 
remained unchanged, with the exception of methionine and 
tyrosine that consistently increase in these brain regions fol-
lowing a meal (36–38). Whether this effect is specific to these 
brain regions or also occurs in other areas of the brain, includ-
ing other hypothalamic nuclei, remains to be determined. In 
contrast, regional differences in the concentration of BCAA and 
AAA following the ingestion of amino acid imbalanced diets 
have been described. In this context, while the concentration 
of the limiting amino acid decreases in discrete sites, includ-
ing the pyriform cortex, locus coeruleus, and the nucleus of 
the solitary tract, hypothalamic areas are protected from this 
deficiency (39–41). Collectively, these data indicate that amino 
acid concentrations in the brain are not a simple reflection of 
the plasma amino acid profile but vary selectively in discrete 
sites under specific dietary contexts.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 1 | Brain regions and signaling pathways involved in central amino acid sensing. (A) Sagittal representation of the rodent brain with amino acid 
sensing brain regions identified. Blue – regions sensing amino acid imbalanced diets or very low-protein diets, Red – regions sensing increases in amino acid 
concentrations, Purple – regions involved in sensing bidirectional changes in amino acid concentrations, White – regions involved in neurocircuitory of amino acid 
sensing, which are not primary sensing sites. (B) Signaling pathways implicated in central sensing of amino acid deficit or excess.
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CeNTRAL DeTeCTiON OF eSSeNTiAL 
AMiNO ACiD DevOiD OR UNBALANCeD 
DieTS

The marked reduction in energy intake and growth of animals 
maintained on diets containing very low protein amounts (<8% 
in rats; <5% in mice) or imbalanced EAA ratios was first described 
over 100 years ago (42). Seminal studies from Harper and col-
leagues demonstrated that the anorectic response to imbalanced 
amino acid diets is the cause rather than the consequence of 
growth failure, supporting a direct role for dietary amino acids in 
the regulation of food intake (43–46). Analysis of the behavioral 
responses to the ingestion of a diet devoid in one EAA indicated 
that the initial rapid anorectic response is followed by the onset 
of a learned conditioned taste aversion and the development of a 
specific appetite for the limiting amino acid (5, 47–51). These two 
latter adaptations have been associated with chronic changes in 
feeding-regulating circuits and are secondary to acute neuronal 
amino acid sensing, as reviewed in (52).

The rapid initial aversive response to EAA-devoid diets, mani-
fested by a decrease in meal size and an increase in inter-meal 
interval, occurs within 20–40 min following feeding onset and 
is dependent on acute amino acid interoception. This response 
is independent of food sensory stimuli or peripheral signals 
(53–55) and instead relies on direct neuronal sensing of EAA 

imbalance by the anterior piriform cortex (APC). This assertion is 
supported by the following observations: (i) APC lesions prevent 
rats discriminating between AA containing and AA devoid diets 
(56, 57), (ii) concentrations of the limiting EAA in the APC rap-
idly fall after the introduction of the devoid diet (41, 48), through 
competition at the capillary endothelial amino acid transport 
system (58–60), and (iii) replacement of the limiting EAA into 
the APC via microinjections rapidly increases intake of a diet 
deficient in that EAA (49, 57, 61, 62). Importantly, this aversive 
response was shown to be independent of diet palatability and 
novelty (63). Thus, the APC is both necessary and sufficient to 
produce rapid hypophagia in response to EAA imbalanced diets.

Neurophysiological and neuroanatomical evidence further 
indicate that local APC EAA sensing initiates the response 
to EAA-devoid diets and engages neurocircuits connected to 
hypothalamic, pontine, and hindbrain feeding-regulating net-
works (Figure 1A). Neurons in the APC have been shown to be 
excited by the absence of threonine or the presence of the amino 
alcohols, which cause tRNA uncharging (61, 64). Changes in 
local interneuron interactions, at least in part via decreased local 
inhibitory GABAergic tone (65), cause a change in output signal 
from glutamatergic APC neurons (66) – their excitatory output 
is potentiated when GABAergic inhibitory control is lost. Tracing 
studies from the APC identified the projection targets of APC 
EAA sensing neurons [reviewed in Ref. (52)], but the functional 
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relevance of the targets in the acute aversion to EAA deficiency 
has not been directly addressed. Two hypothalamic regions have 
been implicated in this acute response: the VMH and the LH, 
both rapidly activated in response to a lysine-deficient meal 
according to fMRI assessments in rats (67). Norepinephrine and 
dopamine levels are rapidly increased in these regions under these 
conditions (39, 62), providing some neurochemical insights into 
the circuits engaged from APC EAA imbalance chemodetection. 
Clearly, the precise circuits engaged downstream from the APC 
in mammals to produce the rapid aversion to EAA imbalance 
remain partially characterized, and novel circuit mapping tools 
would prove useful to decipher these circuits.

Work by two independent groups demonstrated that the rapid 
detection of dietary EAA deficiency within the APC occurs via 
a GCN2-dependent mechanism in mice; this pathway is also 
required for rejection of for EAA imbalanced diets in drosophila 
(68). The GCN2 pathway is an evolutionarily conserved pathway 
identified in yeast to mediate the detection of amino acid defi-
ciency (69, 70). When cellular amino acid levels fall, uncharged 
tRNAs accumulate in the cell, bind to GCN2 that displays kinase 
activity toward eiF2α (eukaryotic initiation factor 2α), causing a 
global suppression of translation, but increased transcription of 
starvation relevant transcripts (Figure 1B). Evidence supporting 
a role for this pathways in the aversion to unbalanced EAA diet 
was obtained using GCN2 knockout mice, in which the rapid 
aversion to unbalanced diets is markedly blunted (71, 72) and 
downstream signaling, increased eiF2α phosphorylation (73), is 
absent (71, 72). In addition, direct injection of amino alcohols 
(that cause tRNA uncharging and GCN2 activation), into the 
APC of rats fed a normal diet, caused a suppression of feeding 
but had no effect when mice were on a diet devoid of the amino 
acid for which the matched amino alcohol was injected (71). This 
effect is specific to EAA, with proline and serine amino alcohols 
having no effect on feeding.

However, a recent study challenged these findings and failed 
to observe a rapid GCN2-dependent hypophagic response to 
threonine and leucine deficient diets (74, 75). Mice switched from 
a control to a leucine or threonine-devoid diet did not display 
a rapid hypophagic response during the first 3 h of feeding the 
novel diet but did show a hypophagic response after this time 
point. This delayed hypophagia was GCN2 independent. This 
latter observation is not necessarily in opposition with previous 
reports, as GCN2 signaling in the APC is restored within 2  h 
following the ingestion of an imbalanced diet and is not involved 
in the longer term hypophagic response to EAA imbalanced 
diets (76). However, the lack of acute aversion to the imbalanced 
diets in the Leib study contrasts with the rest of the literature. 
These discrepancies could be explained by diverging experi-
mental paradigms (duration of fast, amino acid composition of 
the baseline diet) that may affect the production or kinetics of 
central EAA imbalance (77). In paradigms evidencing a rapid 
aversive response to EAA imbalance diets, a rapid fall in the 
APC concentration of the limiting amino acid occurred in the 
same time course as the production of the hypophagic response, 
within 40 min of diet exposure (41, 48, 78), and correlated with 
the activation of the GCN2 pathway in the APC (71, 72). In the 
Leib study, plasma concentrations of the missing amino acid and 

APC GCN2 signaling 1 h after diet exposure were unchanged, 
suggesting that the EAA imbalance failed to reach the APC dur-
ing early exposure to the diet in these conditions.

More recently, the mediobasal hypothalamus has been 
proposed to be a primary sensing site of EAA deficiency (79). 
After an overnight fast, a leucine devoid diet caused an increase 
in eIF2α phosphorylation in the MBH within 40  min of diet 
consumption. Adenoviral-mediated knockdown of GCN2 in the 
MBH blunted the anorectic response to a leucine deficient diet 
over an hour of diet consumption. In addition, icv L – leucinol 
injection increased eiF2α phosphorylation selectively in the 
MBH and was sufficient to inhibit feeding in WT mice, but not 
GCN2 KO mice. Importantly, L – leucinol did not activate eiF2α 
signaling in the APC, demonstrating (i) the specificity of the 
protocol to target the MBH alone and (ii) the sufficiency of the 
MBH to initiate an aversive response to a leucine deficient diet. 
However, in earlier studies, no changes in the concentration of 
the limiting amino acid were found in three hypothalamic nuclei 
studied (39), suggesting changes in amino acid concentrations 
are not uniform across the brain. While the hypothalamus 
is clearly involved downstream of the APC in the anorectic 
response to AA deficient diets (80–82), further work will be 
needed to explore if the MBH is required for primary sensing 
of EAA deficiency.

While there is controversy about the mechanism and site(s) of 
central amino acid sensing in this context (75, 77), the ability of 
central amino acid absence to regulate feeding behavior is clear, 
and further work will be required to clarify these mechanisms 
and the neural circuits involved.

CeNTRAL SeNSiNG OF AMiNO ACiD 
ABUNDANCe AND THe CONTROL OF 
FeeDiNG BeHAviOR

Early work from the Mayer and Harper labs identified that dietary 
supplementation with amino acids, in particular l-leucine, 
induces a hypophagic response comparable to that seen follow-
ing adaptation to high-protein diets in rats (83, 84). Panskeep 
and Booth suggested that hypothalamic amino acid sensing may 
contribute to this anorectic response and reported that direct 
administration of a balanced mixture of amino acids into the 
hypothalamic parenchyma reduces food intake within 1  h fol-
lowing the injection (85). Subsequently, several groups confirmed 
that administration of physiologically relevant amounts of leucine 
into the 3rd ventricle or discrete brain nutrient-sensing regions 
of fasted rodents reduces energy intake during the subsequent 
refeeding period (26, 86–88). This anorectic response is not 
produced by other branched-chain amino acids or any aromatic 
amino acids (26, 87), is not accompanied by the development of 
conditioned taste aversion (26, 86), persists for 24 h, and produces 
a significant decrease in body weight gain (26, 86), as summarized 
in Table 1. Brain leucine levels are increased following a meal, and 
brain leucine administration reduces food intake, suggesting that 
brain amino acid levels may constitute a signal of energy and/
or protein availability detected by brain nutrient-sensing regions 
that modulate homeostatic feeding-regulatory circuits.
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TABLe 1 | effects of centrally administered amino acids on food intake.

Paper Species Conditions Time of injection Route Amino Acid Dose Food intake

(86) Rat 24 h fast Before onset of dark cycle 3rd icv Leucine 1.1 μg ↓

(88) Rat 24 h fast – 3rd icv RPMI Amino Acid Mix 1 μg Leucine, and other EAA ↓
Leucine 1, 3, 10 μg ↓

(89) Rat 6 h fast 5–6 pm (onset of dark cycle) 3rd icv Leucine 197 ng, 787 ng, 1.6 μg No effect of 197 ng, 
others lowered feeding

(26) Rat OVN fast 1 h before onset of dark cycle MBH Leucine 56 ng ↓
Mouse 6 h fast 1 h before onset of dark cycle MBH Leucine 28 ng ↓

Valine 28 ng No effect

(90) Rat OVN fast 1 h before onset of dark cycle NTS Leucine 28 ng ↓
Valine 28 ng No effect

(87, 91) Rat 24 h fast 2 h prior to lights off 3rd icv Leucine 10 ug ↓
Rat 24 h fast 2 h prior to lights off 3rd icv Tryptophan, Methionine, 

Lysine, Threonine, Serine
10 ug No effect

Rat No fast LP diet 2 h prior to lights off 3rd icv Leucine 10 μg ↓

(92) Mouse OVN fast After overnight fast 3rd icv Leucine 2.2 μg No effect

(93) Mouse 6 h fast 1 h before onset of dark cycle NTS Leucine 14 ng ↓
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Leucine abundance is detected in the brain through neuro-
chemically diverse and neuroanatomically distributed networks 
modulating feeding behavior. This is supported by the observa-
tion that both the mediobasal hypothalamus and the nucleus of 
the solitary tract in the caudomedial brainstem contain leucine-
sensing cells that can modulate feeding behavior in response to 
leucine abundance (Figure 1A). Although these two apparently 
redundant sensing sites produce similar behaviors when injected 
with leucine, further studies are necessary to understand how 
they may differently be engaged in physiological contexts. Within 
each of these sensing sites, the population of leucine-sensing 
cells is heterogeneous. In the mediobasal hypothalamus, POMC 
neurons but also non-POMC neurons are activated in response 
to local leucine administration (26). Likewise, in the NTS, 
leucine-sensing cells are diverse and comprise POMC neurons, 
catecholaminergic neurons, and maybe as yet uncharacterized 
cell types (90). However, this is based on the sole use of c-FOS 
as a marker of neuronal activation, and we know very little about 
the electrophysiological response of these cells to leucine. Based 
on c-FOS studies, only a sub-population of cells within the 
MBH or NTS respond to leucine (26, 90), but what makes a cell 
leucine-sensitive or not is an open question, and whether leucine-
sensing cells share a common molecular signature remains to be 
determined. To date, only arcuate POMC neurons have been 
shown to depolarize in response to leucine bath application in 
slice preparations, and the underlying mechanisms remains to be 
characterized (26, 92) (Figure 1B).

The detailed analysis of the feeding response to increased 
leucine levels within the hypothalamus or brainstem further 
supports the idea that leucine sensing engages multiple behav-
ioral output circuits to control food intake. Indeed, meal pattern 
analyses show that the reduction in food intake measured in 
food-deprived rats and mice who received brain injections of 
leucine results from the alteration of various components of the 
feeding sequence: increased first meal latency (and therefore 
decreased orexigenic tone), decreased meal size and decreased 

meal frequency. One circuit implicated in the acute reduction in 
meal size following hypothalamic leucine sensing involves hypo-
thalamic POMC neurons, their melanocortinergic projections 
to PVH oxytocin neurons and oxytocinergic projections to the 
nucleus of the solitary tract in the caudomedial brainstem (26). 
However, pharmacological inhibition of this circuit is neither 
sufficient to suppress the rapid reduction in first meal latency 
nor entirely blunt the anorectic response to leucine, suggesting 
that other circuits are involved in the overall behavioral response 
to brain leucine detection. One possible candidate to mediate 
the immediate increase in first meal latency following leucine 
hypothalamic administration in fasted rodents is AgRP neurons. 
This neuronal population is critical to the development of hunger 
and foraging during food deprivation (94, 95). Consistent with 
this possibility, leucine was found to regulate AgRP expression 
in hypothalamic GT1-7 cells (88). However, whether leucine 
can rapidly affect electrical or synaptic activity of AgRP neurons 
is unknown, and more generally, how changes in extracellular 
concentrations of leucine can rapidly and more chronically affect 
neuronal activity remains poorly characterized.

Activation of mTORC1 has been consistently associated with 
brain leucine sensing in the regulation of feeding (86). mTORC1 is 
an evolutionary-conserved signaling pathway that couples nutri-
ent and growth factor sensing in the control of protein synthesis, 
growth, cell cycle progression and other processes (96). Within 
30  min following discrete injections of leucine into the rodent 
MBH or NTS, phosphorylation of one of the major effector of 
mTORC1, p70 S6 kinase 1 (S6K1), increases in the respective 
site (26, 90). In rats, co-administration of rapamycin, a specific 
mTORC1 inhibitor, blunts leucine’s effect on meal size and early 
hypophagia, implicating activation of mTORC1 in the mecha-
nisms underlying leucine-sensing in hypothalamic and brainstem 
feeding-regulating circuits. Further evidence in support for a role 
of mTOR in the regulation of feeding indicates that inhibition of 
MBH or Dorsal Vagal Complex mTOR signaling with rapamycin 
in fed rodents rapidly drives feeding and increases meal size 
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(26, 86, 90). Conversely, constitutive activation of S6K1 inhibits 
feeding via a specific decrease in meal size in both the MBH and 
the Dorsal Vagal Complex. These data support a role for endog-
enous mTOR signaling in the control of meal size and foraging 
behavior. Interestingly, activation of neuronal TOR signaling has 
also been implicated in the control of feeding in drosophila. In 
this invertebrate, activation of p70 S6K1 signaling in neurons that 
control feeding produces hypophagia in fasted larvae, whereas its 
down-regulation produces increased foraging and feeding in fed 
larvae, and these responses engage neuropeptide Y-like signal-
ing (97). Collectively, these data indicate that mTOR in discrete 
nutrient-sensing neurons is an evolutionary-conserved regulator 
of feeding behavior.

To better characterize the neurochemical populations of the 
MBH in which mTOR signaling is important in the control of 
feeding and metabolism in mice, Smith et  al. generated mice 
with germline deletion of S6K1 from either POMC or AgRP 
neurons (92). Unexpectedly, a thorough metabolic phenotyp-
ing revealed that both lines had normal food intake, feeding 
behavior and energy expenditure under various experimental 
conditions. S6K1 deletion in both POMC and AgRP neurons 
reduced neuronal excitability, and reduces synaptic strength in 
AgRP neurons, resulting in impaired POMC and AgRP tone in 
these mice, but these alterations are not sufficient to produce a 
phenotype. This latter observation is consistent with reports 
showing that germline loss of AgRP neurons fail to affect energy 
balance, which supports the idea that feeding-regulatory circuits 
are plastic during development (98). This raises the possibility 
that S6K1 loss of function is compensated for in these lines. 
Further investigations are required to clarify the role of S6K1 in 
AgRP and POMC neurons in the regulation of energy balance in 
adult rodents.

As mentioned above, increased mTOR signaling is not sufficient 
to account for decreased meal frequency following MBH or NTS 
leucine administration (26, 90). We hypothesized that intracellular 
leucine metabolism, leading to ATP production, may contribute 
to neuronal leucine sensing in a mechanism analogous to the pan-
creatic and brain glucose sensing mechanism (99–101). Leucine 
undergoes intracellular metabolism, producing α-ketoisocaproic 
acid (KIC) and isovaleryl – CoA, respectively by branched-chain 
amino acid transferase (BCAT) and branched-chain ketoacid 
dehydrogenase (BCKDH), leading to the production of TCA 
cycle intermediates and ATP production that could contribute to 
leucine sensing in the MBH. Consistently, KIC injection into the 
mouse MBH suppressed feeding but through a specific decrease 
in meal number, without affecting meal size, suggesting that this 
mechanism is not recruited for the acute effects of leucine on 
foraging and meal size (26). Moreover, injection of an activator 
of BCKDK, resulting in an increase in the metabolism of leucine, 
caused a suppression of food intake, due to specific reduction in 
meal number. In addition, data obtained in mice bearing a whole 
body deletion of BCATm, expressed in astrocytes in the CNS and 
peripheral tissues, suggest that long-term high BCAA levels in the 
brain affect dietary preferences (102). This deletion produces high 
brain leucine concentrations. Although energy intake does not 
differ between the KO and the controls, these mice have a higher 
preference for a low BCAA diet over a normal diet, indicating that 

chronic abundance of BCAA in the brain induces changes in food 
choices that do not require BCAA transamination.

To our knowledge, leucine is the only EAA that has been 
found to produce an anorectic response when administered alone 
(Table  1). Orexin/hypocretin neurons, an orexigenic neuronal 
population in the lateral hypothalamus, have been shown to 
respond specifically to non-EAA using c-FOS staining and slice 
electrophysiology (103). The depolarization of these neurons in 
response to non-EAA was mediated by System A amino acid 
transporters and a suppression of the hyperpolarizing activity of 
KATP channels. Unlike in the MBH, leucine did not activate these 
neurons, as assessed by c-FOS immunohistochemistry and elec-
trophysiology. The sensing of non-EAA was shown to be mTOR 
independent. Whether this sensing mechanism modulates feed-
ing behavior remains to be established.

DieTS wiTH vARYiNG PROTeiN 
CONTeNT: THe PROTeiN LeveRAGe 
HYPOTHeSiS

As discussed above, a number of species avoid and develop 
conditioned aversion for diets very low in protein or with imbal-
anced EAA compositions. In contrast, marginally low-protein 
diets (LP, 8–10% of energy as protein in rats) with balanced EAA 
profiles induce a hyperphagic response restoring nitrogen and 
EAA intakes which, together with various metabolic adaptions, 
are sufficient to enable growth (87, 91, 104–108). Conversely, 
high-protein diets (HP, 20–70% of energy as protein) produce 
a sustained decrease in energy intake that is not caused by taste 
aversion even at very high-protein levels (109, 110). These bidi-
rectional behavioral responses to shifts in dietary protein content 
are evolutionary conserved from insects to humans (111), and 
protein intake has been proposed to be regulated independently 
of energy intake (7, 112). In the following section, we will high-
light the literature describing the role of brain amino acid sensing 
in the bidirectional regulation of energy intake in response to 
changes in dietary protein content.

Response to Low-Protein Diets
Rats develop hyperphagia (starting day 2) following transition 
to a 10% protein diet (87, 113), but little is known about the 
behavioral components of this response, and to our knowledge, 
meal pattern analysis has not been performed in this context. 
Plasma levels of most EAA drop in the first 24 h after shift to 
a LP diet, but this response is only transient (87), and consist-
ently, brain levels of amino acids, including BCAA and AAA, are 
not affected by LP feeding (12, 87). However, plasma and brain 
levels of BCAA and AAA fail to increase in response to food 
ingestion in rats adapted to a LP diet (87), suggesting that the 
inability to detect amino acids in the postprandial period could 
reduce satiety and contribute to hyperphagia. Consistent with 
this hypothesis, icv administration of leucine produces anorexia 
in LP-fed rats (87). To directly test the role of brain BCAA 
sensing in the hyperphagic response to LP diets, Morrison et al. 
measured energy intake in rats fed LP diets supplemented with 
leucine or BCAA (87). None of these treatments suppressed the 
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hyperphagic response to LP diets, but confirmation that they 
produce increases in brain BCAA levels is missing. The authors 
went on and treated LP-fed rats with icv chronic amino acid 
infusions (87). They found that icv amino acid infusions could 
only partially blunt LP-induced hyperphagia, suggesting that the 
hyperphagic response to LP diets primarily involves peripheral 
amino acid sensing sites. These data argue against a role for 
direct brain amino acid detection in LP-induced hyperphagia 
but are not sufficient to rule out a contribution of brain amino 
acid sensing is this adaptation, as a lack of dynamic changes in 
BCAA or leucine levels in discrete nutrient-sensing regions, 
typically in the postprandial period, may contribute to reduced 
satiety in this model.

Data from the same group implicate hepatic FGF21 produc-
tion in the metabolic and feeding responses to LP diets (91, 114). 
FGF21 circulating levels are dramatically increased in response 
to LP diets in mice, rats, and humans (91), and remarkably, Fgf21 
knockout mice are protected against the metabolic effects of LP 
diets (114). Using Gcn2 knockout mice, the authors provided 
evidence suggesting that hepatic GCN2 responds to LP diets 
and promotes FGF21 production and release. These data clearly 
implicate FGF21 signaling in the metabolic adaptations to 
protein restriction, but whether brain amino acid sensing con-
tributes to these responses remains to be clarified (Figure 1B). 
Interestingly, mTOR signaling interacts with GCN2 signaling 
(115, 116) and bidirectionally regulates FGF21 production 
(117), suggesting that multiple amino acid sensing pathways 
may orchestrate the overall metabolic and feeding responses to 
LP diets.

Response to High-Protein Diets
At the other end of the spectrum, high-protein diets have been 
consistently shown to reduce energy intake in multiple species, 
from flies to humans (7, 111). When rats previously adapted to 

a normal-protein diet are offered a HP diet, they immediately 
decrease their food intake and progressively but incompletely 
re-increase food intake on the following days (118–121). Gut 
amino acid sensing and recruitment of local vagal afferents have 
been implicated in these responses, as reviewed in Ref. (11, 122). 
However, vagal afferents are not sufficient to produce the anorec-
tic response to HP diets, as subdiaphragmatic vagotomy does not 
abolish the ability of a HP diet to reduce food intake (123). Brain 
detection of increased amino acid levels, particularly BCAA, may 
therefore also contribute.

Meal pattern analysis of rats exposed to a HP diet indicates 
that the initial important anorectic response to HP diets is 
mainly driven by a transient decrease in meal size, whereas after 
adaptation to the diet, decreased meal frequency is primarily 
accounting for the reduced energy intake (109). Ropelle et  al. 
implicated activation of hypothalamic mTOR signaling in this 
response and found interestingly that although adaptation to 
a HP diet induced a chronic increase in brain leucine concen-
trations, hypothalamic mTOR signaling was only transiently 
increased (89). Thus, transient increase in hypothalamic mTOR 
signaling could account for the transient decrease in meal size 
during early exposure to HP feeding. In contrast, increase 
hypothalamic leucine catabolism may underlie the chronic 
decrease in meal frequency. However, there is currently no direct 
evidence to support this interpretation, and research in this field 
would significantly progress with the identification of a central 
mechanism specifically mediating the identification of protein 
abundance. Likewise, little is known about the neurocircuits 
involved in the hypophagic response to HP diets. Expression 
of Pomc-, Npy-, and Agrp-feeding neuropeptides is altered in 
response to a HP diet in rats (89), but these findings have been 
recently challenged (124), leaving open the contribution of 
melanocortinergic feeding circuits in the hypophagic response 
to increased dietary protein intake.
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CONCLUSiON

Collectively, the data reviewed here support a role for a dis-
tributed network of discrete brain regions in primary amino 
acid sensing in the control of multiple behavioral responses to 
changes in dietary amino acid intake, as summarized in Figure 2. 
Many gaps remain to be filled to complete our understanding of 
these processes, and a key poorly described step is the intracel-
lular coupling of intracellular amino acid availability to neuronal 
electrical and synaptic activity, as highlighted in Figure  1B. 
Does this coupling rely on specific intracellular components that 
could perhaps represent a unique molecular signature of amino 
acid sensing neurons, making these cells amenable to molecular 
genetics? Identifying a molecular marker for amino acid sensing 
neurons would prove extremely useful in the characterization of 
neurocircuits engaged downstream from primary brain sensors 
to regulate feeding behavior.

Brain amino acid sensing also modulates feeding behavior on 
a chronic basis and in some cases affects food preferences. The 
neurobiological substrates supporting these chronic changes are 
poorly characterized, and how dietary amino acids may affect 
the remodeling of central circuits regulating energy balance is 
unknown.

Central amino acid sensing has also been implicated in the 
regulation of metabolism and glucose homeostasis. Studies in 

flies and rodents suggest that decreased protein intake accounts 
for the beneficial metabolic effects of caloric restriction (3, 4, 125). 
Further work is required to determine how central amino acid 
sensing processes implicated in the control of feeding behavior 
may also coordinate metabolic effectors of energy balance and 
possibly mediate the beneficial effects of caloric restriction of 
metabolic health and lifespan.

Lastly, although we did not discuss in depth the evidence sup-
porting the concept of protein homeostasis, understanding how 
distributed peripheral and central amino acid sensors monitor 
amino acid quantitative and qualitative availability to adjust 
feeding behavior is a long-term challenge in the field. The charac-
terization of this “homeostatic” control could help identify novel 
targets for the prevention or treatment of obesity, potentially 
uncoupling the beneficial satiety effects of protein from their 
deleterious consequences on metabolic health.
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