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Abstract
Although remote ischemic preconditioning (RIPC) is an organ-protective maneuver from subsequent ischemia reperfusion injury
(IRI) by application of brief ischemia and reperfusion to other organs, its mechanism remains unclear. However, it is known that
RIPC reduces the heart, brain, and liver IRI, and that nitric oxide (NO) is involved in the mechanism of this effect. To identify the
role of NO in the protective effect of RIPC in renal IRI, this study examined renal function, oxidative status, and histopathological
changes using N-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor. Remote ischemic preconditioning was produced
by 3 cycles of 5 minutes ischemia and 5 minutes reperfusion. Blood urea nitrogen, creatinine (Cr), and renal tissue malondialdehyde
levels were lower, histopathological damage was less severe, and superoxide dismutase level was higher in the RIPC þ IRI group
than in the IRI group. The renoprotective effect was reversed by L-NAME. Obtained results suggest that RIPC before renal IRI
contributes to improvement of renal function, increases antioxidative marker levels, and decreases oxidative stress marker levels
and histopathological damage. Moreover, NO is likely to play an important role in this protective effect of RIPC on renal IRI.
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Introduction

Ischemia is defined as a state in which the blood flow is par-

tially or completely blocked in a tissue or organ. When ische-

mia persists, necrosis and cell death occur. On the other hand,

reperfusion is the restoration of the blood flow. Paradoxically,

reperfusion may be even more harmful than ischemic injury.

During the reperfusion, reactive oxygen species (ROS) cause

endothelial damage, increase microvascular permeability,

produce tissue edema, activate adhesion molecules, release

cytokines, and lead to systemic inflammatory response syn-

drome.1-4 The sequence of damage that occurs with ischemia

and reperfusion is termed ischemia reperfusion injury (IRI).

Renal IRI is one of the main causes of acute kidney injury

and occurs in various clinical situations, such as partial

nephrectomy, renal transplantation, aortic cross clamping sur-

gery, cardiopulmonary resuscitation, sepsis, and shock.5-8

Hydrogen sulfide, superoxide dismutase (SOD), apocynin,

allopurinol, hypothermia, ischemic preconditioning (IPC), and

remote ischemic preconditioning (RIPC) were found to reduce

IRI.9-11 Among these interventions aimed to attenuate IRI,

RIPC is known as a secure, noninvasive, and low cost method,

and is therefore a clinically compatible procedure.12,13 Remote

ischemic preconditioning of the limb is easily applicable and

attenuates IRI of the heart, lungs, and other organs in humans

and animals.14-16 Ischemic preconditioning is an organ-

protective maneuver produced by cycles of sublethal ischemia
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and reperfusion before prolonged ischemia, subsequently

attenuating IRI of the organ.17 Remote ischemic precondition-

ing, in which the IPC of one organ protects another distant

organ against prolonged IRI, may attenuate renal injury

induced by IRI.18

Brief ischemia and reperfusion produce large amounts of

oxygen-derived free radicals, which in turn release antioxidants

that act as free radical scavengers.19 Although the underlying

protective mechanisms of RIPC have not been fully under-

stood, nitric oxide (NO) generated by RIPC is considered to

have a protective effect against IRI of the heart, brain, and

liver.20-22 Regarding the cardioprotective effect of RIPC, a

previous study showed that NO is released at the RIPC appli-

cation site and is subsequently transferred to the target organ in

the form of nitrite (NO2
�) to generate protective signaling by

protective regulation of mitochondrial functions and reduced

ROS.23 In the brain and liver, IRI is reduced by the RIPC-

mediated endothelial nitric oxide synthase (eNOS)-NO path-

way.24,25 Although the effects of RIPC and its mechanisms,

including the role of NO, in the heart, brain, and liver IRI have

been studied, they remain unclear in the kidney.

In this study, a nonselective nitric oxide synthase (NOS)

inhibitor, N-nitro-L-arginine methyl ester (L-NAME), was

used to investigate whether NO is involved in the limb

RIPC-mediated attenuation of the renal IRI. Moreover, the

effect of RIPC on the renal function, oxidative status, and

histopathological changes in a rat model of hind limb RIPC

and subsequent renal IRI was evaluated.

Materials and Methods

Ethical Approval

The experimental protocols were approved by the Institutional

Animal Care and Use Committee (2017–0086) and in accor-

dance with the National Institute of Health guidelines

(Bethesda, Maryland) on laboratory animal welfare.

Experimental Animals

In this study, 30 male Sprague-Dawley rats (weight, 280-320 g)

were adapted in a temperature-controlled environment with a

12 hours light/dark photoperiod and free access to food and

water. After the rats were housed in separate cages and closely

observed for 1 week, the experiment was started. The experi-

mental protocols were approved by the Kyungpook National

University Institutional Animal Care and Use Committee (IRB

No. 2017 to 0086).

Experimental Protocol and Allocating Animals
to Experimental Groups

The rats (n ¼ 30) were randomly divided into the following 5

groups: (1) sham group; (2) IRI group (30-minute renal ische-

mia followed by 24 hours of reperfusion); (3) RIPC (3 cycles of

5 minutes of the right hind limb ischemia and 5 minutes of

reperfusion) þ IRI group; (4) L-NAME (10 mg/kg, intraper-

itoneally 1 hour before IRI) þ RIPC þ IRI group; (5) RIPC

group (Figure 1). Subsequently, the rats were anesthetized with

an intraperitoneal injection of ketamine (60 mg/kg) and xylene

(10 mg/kg). After the depth of anesthesia was evaluated, a right

flank incision and right nephrectomy were performed. The

dosage of L-NAME was chosen based on previous publica-

tions. Inhibition of NOS by L-NAME (10 mg/kg) attenuated

the effects of NO not only in a neuropathic pain model26 but

also in renal IRI.25

Ischemia Reperfusion Injury

During the operation, the body temperature was obtained using

a rectal probe and maintained at approximately 37�C. After the

right flank incision and right nephrectomy, a left flank incision

was performed and the left renal pedicles were clamped with an

atraumatic vascular clamp with 50 to 110 g of pressure

(Roboz Surgical Instrument; Gaithersburg, Maryland). After

Figure 1. Schematic overview of the study design and experimental groups. The number of rats per group is 6. IRI indicates ischemia
reperfusion injury; L-NAME, N-nitro-L-arginine methyl ester; RIPC, remote ischemic preconditioning.
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30 minutes of ischemia, the clamp was released to allow reper-

fusion. Ischemia was verified visually based on the color change

of the kidney to pale color, and reperfusion, to fresh red color.

Remote Ischemic Preconditioning

Remote ischemic preconditioning was induced by applying a

pneumatic cuff around the right thigh, inflated to 300 mm Hg.27

A protocol of 5 minutes of limb ischemia followed by

5 minutes of reperfusion for a total of 3 cycles was used.

Successful occlusion of the bloodstream was confirmed if a

color change to purple was observed in the foot and femoral

pulse was absent.28

Harvest

Twenty-four hours after the reperfusion, blood samples were

obtained via intracardiac puncture with minimal hemolysis and

the left kidney was harvested under anesthesia. For biochem-

ical analysis, plasma was separated from the blood samples

through centrifugation at 3000 rpm for 15 minutes. The kidney

was divided into 4 sections. One section was processed for

histopathological examination, and the other sections were

placed in liquid nitrogen and stored at �80�C for malondialde-

hyde (MDA) and SOD analyses.

Plasma Blood Urea Nitrogen and Creatinine
Measurement

Plasma blood urea nitrogen (BUN) and creatinine (Cr) levels

were measured spectrophotometrically using a Vitros 250 ana-

lyzer (Johnson and Johnson; New Brunswick, New Jersey).

Renal Tissue MDA Level and SOD Activity Measurement

The MDA levels in renal tissues were determined spectropho-

tometrically using thiobarbituric acid reactive substances.29

Renal tissue (300 mg) was homogenized with 1 mL of lysis

buffer using a tissue homogenizer (Kontes Glass Co; Vineland,

New Jersey). To 0.1 mL of the sample solution, 0.375% thio-

barbituric acid (Alfa Aesar; Ward Hill, Massachusetts), 15%
trichloroacetic acid (Sigma; St Louis, Missouri), and 0.25 N

HCl were added. The mixture was placed in glass test tubes,

sealed with foil, and heated in boiling water for 15 minutes.

After cooling at room temperature, the samples were centri-

fuged at 12 000 rpm for 10 minutes. The absorbance was mea-

sured spectrophotometrically at a 535-nm wavelength. Protein

concentration was determined using the Bradford assay. The

values were expressed as “nmol/mg” protein.

The SOD activity assay was performed using the pyrogallol

method.30 Tris–HCl and pentetic buffer were used as a reaction

medium, and the decrease in pyrogallol absorbance was mon-

itored spectrophotometrically at 420 nm. Tris–HCl (50 mM) to

900 mL of 1 mM pentetic acid (Sigma) buffer was adjusted to a

pH ¼ 8.2 and placed in a 1.5 mL cuvette. Pyrogallol (10 mL of

20 mM) in 10 mM HCl (Sigma) buffer and 10 mL of 0.1 M

EDTA buffer were added in the same cuvette and mixed well.

The increase in absorbance was measured for 1 minute at a

wavelength of 420 nm. The optical density value was derived

from approximately 0.1. Next, the 300 mg of renal tissue sam-

ple for analysis was homogenized with 1 mL of lysis buffer

using a tissue homogenizer (Kontes Glass Co; Vineland, New

Jersey). The sample was placed in a 10-mL sample solution and

controlled in a 1.5-mL cuvette. The abovementioned steps were

repeated. Protein concentration was determined using the Brad-

ford assay. Superoxide dismutase activity was evaluated as the

amount of enzyme that reduced the color change by 50% and

calculated as “m/mg” protein.

Histopathological Analysis

Histological damage scores were analyzed as described pre-

viously.31 Kidney specimens were fixed immediately in 4%
paraformaldehyde, embedded in paraffin, and cut in 3-mm

sections using a microtome. The sections were stained with

periodic acid-Schiff and observed under light microscopy at a

magnification of �200. The degree of damage was examined

in 10 fields per slide for histopathological analysis. To quan-

tify renal damage scoring, 50 outer medulla tubules were

observed and rated as follows: 0, no damage; 1, mild damage

with rounding of epithelial cells and dilated tubular lumen; 2,

severe damage with flattened epithelial cells, loss of nuclear

staining, and dilated and congested lumen; and 3, destroyed

tubules with flat epithelial cells lacking nuclear staining and

lumen congestion.32,33

Sample Size

Sample size calculation was performed based on the study of

Hussein and colleagues29 using PASS version 08.0.6 (NCSS

LLC, Kaysville, Utah). In the study, the means (standard devia-

tion [SD]) of the serum Cr levels between the IRI group and the

RIPC þ IRI group were 3.5 (0.8) and 1.69 (0.4). The signifi-

cance level a ¼ .017 was corrected by Bonferroni multiple

comparison procedure. Group sample sizes of 6 achieved

87% power.

Statistical Analysis

Data analysis was performed using the statistical software

SPSS version 23.0 for Windows (SPSS Inc, Chicago, Illinois).

Data were summarized as mean + standard error of mean. To

analyze the data, 1-way analysis of variance was used for

repeated measurements of the same variable, followed by Bon-

ferroni test for post hoc comparisons. Between-group differ-

ences were considered statistically significant at P values < .05.

Results

Renal Function

Blood urea nitrogen and Cr levels were significantly higher in

the IRI group than in the sham group (P < .05 for both), but

Jung et al 3



lower in the RIPC þ IRI group than in the IRI group (P < .05

for both). Compared to the RIPC þ IRI group, the L-NAME þ
RIPC þ IRI group showed significantly higher BUN and Cr

levels (P < .05 for both). Blood urea nitrogen and Cr levels

were significantly lower in the RIPC group than in the

L-NAME þ RIPC þ IRI group (P < .05 for both). No signif-

icant difference in plasma BUN level was observed between

the IRI and L-NAME þ RIPC þ IRI groups. In the RIPC

group, the BUN and Cr levels were not affected, unlike in the

sham group (Figure 2).

Renal Oxidative Stress

The IRI group showed significantly higher MDA levels than

the sham group, suggesting an increase in lipid peroxidation

(P < .05). Malondialdehyde levels in the RIPC þ IRI group

were significantly lower than those in the IRI group (P < .05).

The MDA levels in the L-NAME þ RIPC þ IRI group were

significantly higher than those in the RIPC þ IRI group (P <

.05). Malondialdehyde levels in the RIPC group were signifi-

cantly lower than those in the L-NAME þ RIPC þ IRI group

(P < .05). No significant differences in MDA levels were

observed among the sham, RIPC þ IRI, and RIPC groups. The

IRI group showed significantly lower SOD levels in contrast to

the sham group, suggesting a decrease in antioxidant defense

mechanism (P < .05). The SOD levels in the RIPC þ IRI,

L-NAME þ RIPC þ IRI, and RIPC groups were significantly

higher than those in the IRI group (P < .05). No significant

differences in SOD level were observed among all groups,

except the IRI group (Figure 3).

Renal Histopathology

Histopathological examination revealed no renal tissue damage

in the sham and RIPC groups (damage score [mean (SD)]: 0.03

[0.01] and 0.09 [0.01], respectively). In the IRI group (2.42

[0.18]), an increased number of destroyed tubules with flat

epithelial cells lacking nuclear staining and higher lumen

congestion were observed, in contrast to the sham group

(P < .05). The RIPC þ IRI group (0.87 [0.15]), however,

showed mild damage with rounding of epithelial cells and

dilated tubular lumen, compared to the IRI group (P < .05),

suggesting attenuated IRI-induced damage. The L-NAME þ
RIPC þ IRI group (1.88 [0.19]) showed severe damage with

flattened epithelial cells, loss of nuclear staining, dilated

lumen, and lumen congestion, compared to the RIPC þ IRI

group (P < .05; Figure 4).

Discussion

In this study, RIPC before renal IRI reduced BUN, Cr, and

MDA levels, as well as histopathological damage, and pre-

served SOD level in renal IRI. Inhibition of NO production

using L-NAME before RIPC attenuated the renoprotective

effects of RIPC on renal IRI.

Remote ischemic preconditioning releases endogenous

molecules, such as adenosine, bradykinin, opioids, interleu-

kins, stromal cell-derived factor, hypoxia-inducible factor 1a,

and NO.13,30 These molecules are transmitted by 3 major path-

ways: humoral, neurogenic, and immunological.13,30 Although

its organ protective action mechanism has not yet been eluci-

dated, some reports have indicated that RIPC increases shear

stress.31 Owing to the increase in shear stress, reperfusion is a

Figure 2. Plasma BUN (A) and Cr (B) levels in the experimental
groups. Plasma BUN and Cr levels were significantly lower in the RIPC
þ IRI group than in the IRI group. Compared with the RIPC þ IRI
group, the L-NAME þ RIPC þ IRI group showed significantly high
plasma BUN and Cr levels. *P < .05 versus the sham group; yP < .05
versus the IRI group; §P < .05 versus the RIPC þ IRI group; zP < .05
versus the L-NAME þ RIPC þ IRI group. Data are expressed as
mean + SEM (n ¼ 6 rats/group). BUN indicates blood urea nitrogen;
Cr, creatinine; IRI, ischemia reperfusion injury; L-Name, N-nitro-l-
arginine methyl ester; RIPC, remote ischemic preconditioning; SEM,
standard error of the mean.
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strong physiological stimulus of eNOS production.31-33 The

increased shear stress during RIPC-mediated reperfusion will

increase eNOS activation and subsequently enhance NO pro-

duction. The eNOS-mediated NO production has been known

as a potent modulator of vascular smooth muscle tone and

organ perfusion.34-37

Generally, NO has important roles in homeostasis and host-

defense mechanisms.38 Nitric oxide itself is a stable, but

highly reactive molecule. Thus, NO oxidation to nitrite occurs

rapidly in the systemic circulation. Based on the half-life of

sodium nitrite (35 minutes),39 the nitrite in the systemic cir-

culation has enough time to be transported in an organ before

prolonged ischemia.

Nitrite, a stable NO oxidation product, may become an alter-

native source of NO under hypoxic and acidic conditions by

xanthine oxidase (XO) pathway, which is a clinically relevant

environment of ischemia.40-42 In normal oxygen concentration,

NO is produced through the classical L-arginine-NOS-NO sig-

naling pathway. However, in the hypoxic state, it is impossible

to generate NO through this process because of oxygen defi-

ciency.43 Xanthine oxidase, an oxidized form of xanthine

oxidoreductase, is a key source of superoxide production dur-

ing IRI.44 Previous studies on IRI have shown increased XO

activity and negative clinical or biological outcomes.10,25

Both human and bovine XO have also been reported to exert

NO-generating nitrite reductase activities in chemical reac-

tion systems, with these reactivities possibly being relevant

during tissue ischemia and inflammation.45,46 The molybdop-

terin cofactor is the site of nitrite reduction under acidic pH

and hypoxic conditions.42,47 This nitrite reduction, even not

proven in vivo, suggests a paradigm shift on the redox patho-

mechanism of IRI.

The nitrite transferred to the target organ is chemically

reduced back to bioactive NO at lower oxygen concentration

and pH by several mechanisms, including reaction with deox-

ymyoglobin in the heart and with other heme proteins in organs

and the blood.48-50 In this process, the function of cardiac

myoglobin changes from an oxygen storage and NO scavenger

to an NO producer by reducing nitrite to bioactive NO.31,51,52

This can protect cardiomyocytes from cardiac IRI.53 Hemoglo-

bin (Hb) also has enzymatic characteristics of a nitrite reduc-

tase, particularly when Hb is in its allosteric deoxyHb form.49

Nitric oxide is well-known as a major ROS of IRI with

superoxide.54,55 Although the effects of NO on IRI remain

controversial, it is generally accepted that the proper amount

of NO is helpful for IRI. Inhibition of massively overexpressed

NO, such as NO from inducible NOS, attenuates IRI-mediated

organ dysfunction.10,25,54,56 On the other hand, other reports

have indicated that NO or NO donors increase IRI.57 The inter-

action between NO and superoxide produces peroxynitrite,

which acts as a strong oxidant. Instead of peroxynitrite produc-

tion, NO can reduce the bioavailability of superoxide, which is

also a strong oxidant, by interaction with superoxide.58,59 Thus,

balanced control of ROS, especially the interaction of NO with

superoxide, is important to attenuate IRI. As a consequence of

the nitrite reduction to NO, the net redox change during IRI will

decrease superoxide production and increase NO production. It

seems that RIPC-mediated renoprotection is related to these

roles of NO (Figure 5).

The RIPC-eNOS-mediated NO production was blocked

using the NO blockade induced by L-NAME, which reduced

the renoprotective effect of RIPC as expected. The role of NO

Figure 3. Renal tissue MDA (A) and SOD (B) levels in the experi-
mental groups. (A) the RIPC þ IRI group showed lower MDA levels
than the IRI group. The MDA levels in the L-NAME þ RIPC þ IRI
group were higher than in the RIPC þ IRI group. (B) Compared with
the IRI group, the RIPC þ IRI group showed significantly high SOD
levels. *P < .05 and .001 for MDA and SOD, respectively, versus the
sham group; yP < .05 for MDA and SOD, versus the IRI group; §P < .05
for MDA, versus the RIPCþ IRI group; P < .05 for MDA, versus the L-
NAME þ RIPC þ IRI group. Data are expressed as mean + SEM (n ¼
6 rats/group). MDA, malondialdehyde; SOD, superoxide dismutase;
IRI, ischemia reperfusion injury; RIPC, remote ischemic precondition-
ing; l-name, N-nitro-l-arginine methyl ester; SEM, standard error of the
mean.
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was confirmed using an NOS inhibitor (L-NAME) in

this study. An NO scavenger, such as carboxy-2-(4-

carboxyphenyl)�4,4,5,5-tetramethylimidazoline-1-oxyl-3-

oxide, which reacts with NO to yield nitrogen dioxide and

finally removes generated NO,60 might be also a candidate

to confirm the role of NO. When an NO scavenger is used, NO

generated by other mechanisms besides the RIPC-mediated

pathway may be also blocked; therefore, an NOS inhibitor

may be appropriate for confirming the effect of RIPC.

Malondialdehyde is a biomarker used to measure the level

of oxidative stress induced by lipid peroxidation. Superoxide

dismutase, a key endogenous antioxidant enzyme, scavenges

ROS and protects the function of mitochondria. The results of

this study demonstrated that while MDA concentration and

SOD activity were normal in the sham group, MDA concen-

tration increased and SOD activity decreased, due to oxidative

stress, in the IRI group. Further, when RIPC was applied, these

changes shown in the IRI group did not occur and the levels of

these 2 measures were as normal as in the sham group. In fact,

the application of RIPC has been shown to alleviate increased

MDA and decreased SOD, indicating reduced oxidative stress

induced by IRI. Specifically, these findings are consistent with

the result of Ozturk and colleagues,61 which showed that NO

attenuated MDA levels. However, blocking of RIPC-eNOS-

Figure 4. Histopathological photographs of renal tissue in the experimental groups. A, Periodic acid-Schiff (PAS) stain, original magnification �
100. (1) Sham group: no damage; (2) IRI group: destroyed tubules with flat epithelial cells lacking nuclear staining and lumen congestion; (3) RIPC
þ IRI group: mild damage with rounding of epithelial cells and dilated tubular lumen; and (4) L-NAME þ RIPC þ IRI group: severe damage with
flattened epithelial cells, loss of nuclear staining, dilated lumen, and lumen congestion; (5) RIPC group: no damage. B, Damage score on the basis
of the PAS staining. Renal tissue damage was lower in the RIPCþ IRI group than in the IRI group. In the L-NAMEþ RIPCþ IRI group, renal tissue
damage was significantly higher than in the RIPC þ IRI group. *P < .05 versus the sham group; yP <.05 versus the IRI group; §P <.05 versus the
RIPC þ IRI group; zP < .05 versus the RIPC þ IRI group. Data are expressed as mean + SEM (n ¼ 6 rats/group). IRI indicates ischemia
reperfusion injury; L-NAME, N-nitro-L-arginine methyl ester; PAS, periodic acid-Schiff; RIPC, remote ischemic preconditioning; SEM, standard
error of the mean.
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mediated NO using L-NAME increased MDA and induced no

changes in SOD. Based on obtained results on MDA and SOD,

the authors suggest that an NO-mediated mechanism during

RIPC is, in part, involved in attenuating the oxidative stress

induced by IRI.

Some issues about the methodology used in this study

should be acknowledged. An ischemic time between 30 and

60 minutes in the rat renal IRI model is usually used and known

to lead to acute renal dysfunction.62-65 It is also known that this

damage does not last long and is recovered within 7

days.62,64,65 Increased ischemic time can lead to more damage

and delayed recovery, which can cause death in the long

term.66,67 In previous studies,10,25 30-minute ischemia was

selected as a reversible response when treated. In the rat renal

IRI model with 30 minutes of ischemia, the damage tended to

increase up to 24 hours after reperfusion and then decreased.62

In this study, the blood and kidney samples were obtained 24

hours after reperfusion to proceed with the experiment at max-

imum damage and before the degree of damage was reduced.

Wang and colleagues applied RIPC using a small pneumatic

cuff inflated to 300 mm Hg around the right proximal thigh.22

A protocol of 5 minutes of limb ischemia followed by 5 min-

utes of reperfusion for a total of 3 cycles was used. In the

present study, 3 cycles of a RIPC protocol of 5-minute ischemia

and 5-minute reperfusion with a pneumatic cuff applied at the

thigh were used 30 minutes before renal IRI. Johnsen and col-

leagues evaluated the cardioprotective effects of RIPC, espe-

cially the number and duration of RIPC cycles and the effector

organ mass of RIPC.68 Two cycles of RIPC, rather than 4, 6, 8

cycles, and 2 and 5 minutes ischemia during RIPC, rather than

10 minutes ischemia, were more effective 30 to 90 minutes

before IRI. No difference was found between 1-limb and

2-limb RIPC. Hussein and colleagues reported suppression of

inflammatory cytokine genes, as well as activation of antiox-

idative and antiapoptotic genes, with the same protocol as that

used in this experiment.29,69

Owing to high metabolic activity, biotransformation of

enzyme activities, and oxygen consumption in the outer

medulla, this area is more sensitive to ischemic damage than

the cortex.70,71 Based on the results of previous studies,10,25

this study used the tubules of the outer medulla for histopatho-

logical analysis.

This study has some limitations. First, the most accurate

method for determining the NO role in the renoprotective effect

of RIPC is to directly measure the NO level. As NO is

extremely reactive with other substances, direct NO measure-

ment is difficult and many studies have been conducted using

NOS inhibitors or NO scavengers. Alternatively, the level of

nitrite, a stable reaction product of NO with molecular

oxygen, was determined using the Griess reaction.72 To clar-

ify this mechanism, further research with direct NO or nitrite

measurement is recommended. Second, it would also be pos-

sible to selectively block RIPC-eNOS-mediated NO using an

eNOS-specific inhibitor, as opposed to a nonspecific NOS

inhibitor. In this way, the eNOS-NO-mediated effect may

be more specific. Third, L-arginine, the precursor of NO, may

be used to determine the effect of NO. Further research could

be done to confirm that NO is involved in the renoprotective

effect of RIPC using L-arginine. Forth, if the urine output, the

basic test that evaluates kidney function, was measured, it

would have provided better insight.

In conclusion, our results show that renal damage is attenu-

ated by RIPC. The renoprotective effect is reversed by NO

inhibition by a nonspecific NOS inhibitor, L-NAME. Nitric

oxide seems to play an important role in the protective effects

of RIPC on renal IRI.
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