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Abstract

Finding optimal blood pressure (BP) target and BP treatment after acute ischemic or hemor-

rhagic strokes is an area of controversy and a significant unmet need in the critical care of

stroke victims. Numerous large prospective clinical trials have been done to address this

question but have generated neutral or conflicting results. One major limitation that may

have contributed to so many neutral or conflicting clinical trial results is the “one-size fit all”

approach to BP targets, while the optimal BP target likely varies between individuals. We

address this problem with the Acute Intervention Model of Blood Pressure (AIM-BP) frame-

work: an individualized, human interpretable model of BP and its control in the acute care set-

ting. The framework consists of two components: one, a model of BP homeostasis and the

various effects that perturb it; and two, a parameter estimator that can learn clinically impor-

tant model parameters on a patient by patient basis. By estimating the parameters of the

AIM-BP model for a given patient, the effectiveness of antihypertensive medication can be

quantified separately from the patient’s spontaneous BP trends. We hypothesize that the

AIM-BP is a sufficient framework for estimating parameters of a homeostasis perturbation

model of a stroke patient’s BP time course and the AIM-BP parameter estimator can do so as

accurately and consistently as a state-of-the-art maximum likelihood estimation method. We

demonstrate that this is the case in a proof of concept of the AIM-BP framework, using simu-

lated clinical scenarios modeled on stroke patients from real world intensive care datasets.

Introduction

Balancing the need for cerebral perfusion and the risk of hemorrhagic conversion or rehemor-

rhage make post-stroke blood pressure (BP) control a challenging problem. [1, 2] Proper BP
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management in the intensive care unit (ICU) following a stroke remains an unresolved issue,

despite numerous trials studying the effect of antihypertensives in stroke care. Both ischemic

and hemorrhagic stroke patients often exhibit elevated BP during initial treatment, but it is as

yet unclear whether lowering BP results in worse, better, or no difference in outcomes. [1–5]

One study found a U-shaped effect of BP on outcomes. [6] In addition, studies on raising BP

in the treatment of ischemic stroke have found no difference in the rate of complications. [7]

The inconsistency of these results are perhaps not surprising when we consider that each indi-

vidual stroke patient functioned at different baseline BPs before their stroke and had different

degrees and areas of brain injury during their stroke. Thus, a monolithic BP target for all stroke

patients, as seen in many of these trials, may be beneficial for some but detrimental for others.

We hypothesize that individualized BP goals and treatment regimens will produce better out-

comes than the current one-size-fits-all approach.

Current American Heart Association (AHA) ischemic stroke management guidelines,

updated in 2013 with minor updates in 2018, recommend antihypertensives in patients when

BP is greater than 220/120 mmHg and not receiving thrombolytics, or greater than 185/110

mmHg in patients who receive thrombolytics. [4, 8] These guidelines have not changed since

the previous edition in 2007. [9] Current studies examining the effect of BP control post-stroke

include the ENCHANTED trial, [10, 11] where the BP arm of the trial is scheduled to be com-

pleted in 2018. Current AHA guidelines for primary intracerebral hemorrhage (ICH) state

acute BP lowering to 140 mmHg systolic is safe in patients with systolic pressures of 150-220

mmHg, and that aggressive BP lowering may be considered, even if its safety is unknown, in

patients whose systolic pressures are even higher. [12] These guidelines provide no BP target

for ischemic stroke patients and one SBP target for every patient with primary ICH. We believe

that individualized BP targets will improve clinical outcomes.

The question of aggressive vs conservative BP lowering, as suggested in the primary ICH

guidelines, currently rely on clinical experience or institutional best practice guidelines to

decide which drug will be most effective for whom. In practice, this often results in a couple of

equally valid choices for management, with the specifics left to a physician’s practice style. This

in turn, often depends on a physician’s experiences and observations about the effectiveness of

medications she’s used to lower BP. These observations, however, are confounded by many

factors, such as non-linear pharmacodynamics, inaccurate measurements of BP, natural devia-

tions of BP, uncertainty regarding timing of medication administration and observed effects,

usage of multiple drugs in the same patient, biases in the patient population each individual

physician sees, and cognitive biases in remembering past results. In order to study which med-

ications are more effective in which people, an objective, quantitative approach is needed. Ide-

ally, this approach should be able to use data from existing medical records.

Quantitative approach to calculating drug effectiveness

Suppose that we have BP data from the medical record of a stroke patient during his stay in the

ICU. Suppose also that we can estimate concentrations of antihypertensives from the medica-

tion administration record using pharmacokinetics data. We have such an example from an

ICH dataset extracted from the University of Pittsburgh Medical Center (UPMC) Presbyterian

Hospital medical records (IRB PRO16110384). In order to study the effects of a drug on sys-

tolic BP, we might be able to plot a curve like Fig 1.

Just from glancing at the data, it is difficult to judge whether labetalol or nicardipine is

more effective at lowering systolic BP. First, we have to define what effectiveness is: Is it the

amount of mmHg drop per drug concentration? Second, we see that labetalol has many peaks,

each of which may be associated with different amounts of SBP drop. Third, there are periods
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of time during which the arterial line reading differs from the non-invasive reading. Which

one should we trust, and should we correct the other one? Fourth, we see that measurements

of BP are variable. How much is measurement noise, how much is actual BP variations, and

how much is from the effects of medication? These are all reasons why a qualitative assessment

by a physician may be error-prone. A quantitative assessment will be more objective. Fortu-

nately, the problem we are describing here is equivalent to calculating dose-response relation-

ships in the field of pharmacodynamics.

The Emax model is a popular model for studying dose-response relationships, and is usually

fit using maximum likelihood estimation via a non-linear regression method such as Gauss-

Newton or Levenberg-Marquardt. [13–15] Most studies of drug dose vs response, however,

are conducted in a tightly controlled experimental setting, where the drug effect is assumed to

be the only effect. Four our ICH patient, this is not the case; there is no guarantee that his sys-

tolic BP would have remained constant in the absence of his BP meds. In fact, all patients, and

particularly patients with both hemorrhagic and ischemic stroke, typically have elevated BP at

the beginning of their hospital course that then decreases spontaneously over the course of

their stay without administration of new antihypertensive drugs. [16–19] Britton et al. studied

spontaneous BPs for stroke patients and controls, and their systolic BP results are compared to

those from the UPMC ICH dataset in Fig 2. [17] In contrast to the Britton et al. results, the

UPMC dataset is only with primary intracerebral hemorrhage patients, while Britton et al.

included both hemorrhagic and ischemic stroke. In addition, the UPMC dataset consists of

patients in which antihypertensives were used to rapidly achieve a goal target of less than 140

Fig 1. Systolic BP and concentrations of two BP meds over an ICU course. BP data and medication admins taken from an ICH patient in an ICU dataset from

UPMC. Systolic BP can be measured using both non-invasive methods and an arterial line. Drug concentrations are estimated from the medication administration

record based on drug pharmacokinetics data.

https://doi.org/10.1371/journal.pone.0220283.g001
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mmHg SBP, while Britton et al. studied patients in which no additional antihypertensives were

used.

We can see that in general, there appears to be a positive perturbation to BP apparent dur-

ing admission that eventually decreases back to a homeostatic baseline in a manner similar to

exponential decay. By combining a model of this perturbation of BP homeostasis with an Emax

model of drug effectiveness, we can more accurately study the effectiveness of BP meds in the

setting of stroke.

A quantitative model for the study of BP control in stroke

We propose a model of BP dynamics which assumes that BP hovers around a homeostatic

level unless otherwise perturbed, such as in acute stroke. We propose a model of BP

Fig 2. Spontaneous systolic BP for UPMC intracerebral hemorrhage compared to Britton et al. results. Mean SBP for UPMC ICH patients compared with

Britton et al.’s results from stroke patients with and without existing hypertension. Error bars for UPMC data denote 1 standard deviation. For the last data point,

we provided SBP on day 8, while Britton et al. only reported SBP data for day of discharge.

https://doi.org/10.1371/journal.pone.0220283.g002
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homeostasis perturbations in acute stroke patients that consists of two chief components: One

the natural time trend of BP over time, and two, the effect on BP from medications. We model

the natural time trend as an exponentially decaying curve, as seen in patients in Britton et al.

[17] We model the effect of medications using an Emax model, also known as a Hill equation or

Michaelis-Menten equation model. [14]

We design a framework that we call the Acute Intervention Model of Blood Pressure

(AIM-BP). AIM-BP is a first order discrete dynamic linear model (DLM) that models the

body’s natural tendency towards homeostasis, the effect of external interventions on BP and

heart rate (HR), and the noisiness inherent in the system as well as in their measurement. By

modeling these separate effects together, we hope to better separate the various effectors of a

patient’s BP in the ICU in order to facilitate clinical research on the effect of critical care BP

management of stroke.

A major limiting factor on this kind of clinical research is the quality of clinical data avail-

able. Although high frequency measurements of BP can be done in the ICU, realistically most

recorded clinical data only has charted BP data to work with. While charted data can be from

multiple modalities (cuff and arterial line), they are usually recorded at irregular intervals rang-

ing from minutes to an hour, sometimes with longer periods of time where measurements are

missing. DLMs provide an easily extensible framework that intuitively handles missing data

and multi-modal measurements, two critical features when working with frequently measured

vital sign data. DLMs are a popular class of time series models, and have been used to predict

post-surgical blood count values, [20, 21] perform outbreak surveillance, [22] and estimate val-

ues in a noisy setting in a wide variety of medical and non-medical problems. Intuitively,

DLMs calculate the best estimate of a true parameter by combining information about the

parameter from the previous time point and noisy measurements of the parameter at the cur-

rent time point. We refer the reader to an introductory textbook on DLMs for a more in depth

explanation. [23]

BP modeling in the critical care setting has been studied mostly in the context of high reso-

lution, beat-to-beat tracking. [24–26] The Kalman filter (e.g. dynamic linear models) has been

used for modeling BP in this context for the purposes of reducing artifacts. [25] Lehman et al.

modeled ICU BP and HR data using switching vector autoregressive models (SVARs). [26–28]

SVARs are a form of autoregressive model very similar to DLMs, with the removal of a hidden

layer and the inclusion of a set of dynamic modes through which a time series can switch dur-

ing its course—in effect, SVARs model time series as a mixture of DLMs without the hidden

layer. Lehman et al. have applied this model to data from the Medical Information Mart for

Intensive Care (MIMIC) database, a publicly available dataset of electronic health record data

from critical care units at Beth Israel Deaconess Medical Center, [29], to predict mortality and

analyze BP variability. The advantage to the SVAR-based method used by Lehman et al. is its

ability to learn dynamic modes applicable across a whole population of patients and weight

them separately for each patient.

There are several disadvantages to using SVAR for our purposes, however. While the

dynamic modes learned by SVAR are useful for classification, they lack human interpretability.

In addition, the inclusion of multiple dynamic modes with multiple transition matrices, in

addition to the weights for each dynamic mode at each time point for each patient, add up to

much more parameters to estimate compared to a single DLM. Lehman et al. accomplish this

by using expectation maximization on high density data from MIMIC, using the MIMIC

waveform database that contains beat to beat BP information with low amounts of missing

data. [27]

For the purposes of identifying BP trends in stroke management in the ICU, we are inter-

ested in longer term, lower resolution measurements of BP, with a time scale on the order of
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minutes, hours, and even days. Studies at these time scales typically use more rudimentary

models of BP, such as mean, least squares slope, and standard deviation of the mean arterial

pressure. [30]

After our review of the literature, we decided that a clinically useful model of BP manage-

ment for stroke in the ICU setting must satisfy the following requirements:

1. Model multivariate time series data of BP and HR at a minute to hour timescale. This data

will include irregularly measured or missing values, as well as measurements of the same

variable via multiple modalities with their various measurement noises.

2. Provide human-interpretable, clinically relevant model parameters.

3. Model body homeostasis mechanisms and disease state perturbations to homeostasis, such

as the acute increase followed by spontaneous decrease of BP often found in stroke patients.

4. Model the effects of ICU interventions, such as BP medication.

Currently, no model exists that satisfies all of these requirements. We are particularly inter-

ested in separating out requirements 3 and 4. Separating out the effects of drugs versus a

patient’s natural BP time course is necessary in the context of several research questions: One,

which drugs are more effective for which people in the management of BP after a stroke? Two,

can we better determine drug effectiveness during acute care compared to current clinician

judgment? Three, does the relationship between managed BP and the natural homeostasis

level correlate with outcomes? To our knowledge, we are the first to design a modeling frame-

work that can satisfy the above requirements and answer these research questions.

The AIM-BP framework consists of two main parts (Fig 3). The first is the AIM-BP model

specification, which is composed of a homeostasis perturbation model and a DLM-based

AIM-BP temporal model. The second is the AIM-BP parameter estimator, which takes data

and learns parameters of an AIM-BP model instance using Markov Chain Monte Carlo

(MCMC) sampling. MCMC methods have gained popularity over methods like maximum

likelihood estimation and expectation maximization due to their flexibility in modeling non-

Gaussian probabilities and non-linear extensions to DLMs. [31–33]

We hypothesize that the AIM-BP framework will identify parameters that describe a

patient’s spontaneous trends and drug pharmacodynamics at least as accurately and consis-

tently as a current state-of-the-art maximum likelihood estimation method.

Materials and methods

The work included research on human subjects approved by the University of Pittsburgh Insti-

tutional Review Board (IRB PRO16110384). Consent for data usage was obtained in written

form. Data was analyzed anonymously.

Model design

The AIM-BP model consists of two components: A homeostasis perturbation model of BP

behavior in the acute stroke setting and a DLM-based AIM-BP temporal model. The homeo-

stasis perturbation model is a general model of BP behavior that can be used independently of

the AIM-BP temporal model. We describe both components of the AIM-BP model here.

Homeostasis perturbation model

The homeostasis perturbation model combines an exponential decay model (Pspon(t)) of

the natural time course of BP in an ICU stroke patient and an Emax model (Pmed(t)) of

Dynamic linear models for blood pressure management in hemorrhagic stroke
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antihypertensive drug effects. It can be described as follows:

PsponðtÞ ¼ Bmax � ð1 � rBÞ
t

PmedðtÞ ¼
Emax � cðtÞ
EC50 þ cðtÞ

SBPðtÞ ¼ PsponðtÞ þ
X

meds

PmedðtÞ þ SBPH þ �S ð1Þ

Fig 3. AIM-BP framework. The AIM-BP framework consists of two parts: The model specification (a structured dynamic linear model) and the parameter

estimator (a MCMC-based sampler).

https://doi.org/10.1371/journal.pone.0220283.g003
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DBPðtÞ ¼ ratioSD � ðPsponðtÞ þ
X

meds

PmedðtÞÞ þ DBPH þ �D ð2Þ

Where Bmax and rB parameterize the exponential decay of the spontaneous change in acute

stroke patients, and Emax and EC50 for each drug parameterize the Emax model for each drug,

c(t) is the drug concentration at time t. SBPH and DBPH are homeostasis levels of systolic BP

(SBP) and diastolic BP (DBP) without the effects of the perturbations. ratioSD describes the

proportional effect of the perturbation on diastolic pressure compared to the effect on systolic

pressure. �S and �D are normal white noise terms.

In our stroke homeostasis perturbation model, we model two types of perturbations. The

first is the increased BP post stroke, which often decreases spontaneously throughout the ICU

stay. We model this perturbation as an initial perturbation that decays exponentially to zero,

such that the BP eventually converges to a stable homeostasis value SBPH. In our model, we

allow both positive and negative perturbations, such that if a patient initially had a drop in BP

that then recovered (e.g. in the setting of shock), we could model that as well. Furthermore, by

varying the rate at which BP converges to SBPH, we can model quick returns to homeostasis vs

a more steady, almost constant return. What this model does not capture are situations in

which a constant homeostatic BP is never achieved. As such, cyclic effects such as the sleep-

wake effect on BP are not captured. Instead, these effects will factor into the noise components

of the model.

The second class of perturbations modeled are the effects of medications used in the man-

agement of the patient’s cardiovascular state, with a separate Pmed(t) for each medication used.

We chose the Emax model of pharmacodynamics to model these medications. Put together, the

homeostasis perturbation model combines an exponential decay model of spontaneous behav-

ior in acute stroke (Pspon(t)) in addition to Emax models of drug pharmacodynamics (each

Pmed(t)). This homeostasis perturbation model is a general model of BP behavior, and can be

fit to data without using the AIM-BP framework.

Dynamic linear model

We describe the dynamic linear model that underlies the AIM-BP framework. This system will

be tested on simulated data to demonstrate the feasibility of the framework. This model con-

tains parameters that will be held constant for the purposes of this paper to simplify evaluation,

but can be learned in the future when more data is available for a richer description of BP con-

trol. The AIM-BP dynamic linear model is characterized by the following variables:

Observed variable: y. The variable y = {y1, y2, . . .yT} describes observed measurements of

BP and HR. At a given time point t, yt contains all measurements of systolic blood pressure

(SBP), diastolic blood pressure (DBP), and heart rate (HR). For example, we could have mea-

surements from an automated pressure cuff and an arterial line, and a HR measurement from

an O2 saturation monitor. Our y variable space would then look like this:

y ¼

yð1Þ

yð2Þ

yð3Þ

yð4Þ

yð5Þ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼

Cuff measured SBP

Cuff measured DBP

Arterial line measured SBP

Arterial line measured DBP

O2 saturation monitor measured HR

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5
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By capturing all measurements of a vital sign at a given time point, our model can better

estimate the true value of these vital signs. For the purposes of the simulations in this paper,

however, we will use a simplified observed measurement space as follows:

y ¼

yð1Þ

yð2Þ

yð3Þ

2

6
6
6
4

3

7
7
7
5
¼

Cuff measured SBP

Cuff measured DBP

O2 saturation monitor measured HR

2

6
6
6
4

3

7
7
7
5

Hidden variable: x. We design a hidden variable x = {x1, x2, . . .xT} that describes the true

underlying BP and HR measurements of a patient. At a given time point t, xt contains informa-

tion about a patient’s true SBP, DBP, and HR, as well the baseline homeostasis target for SBP,

DBP, and HR. The homeostasis target for SBP, DBP, and HR models what the body’s natural

desired BP is absent outside interventions. Our AIM-BP model will model the tendency of

these vital signs to trend towards a homeostatic value. Finally, we include a constant value in x
to allow for the expression of non-white noise.

x ¼

xð1Þ

xð2Þ

xð3Þ

xð4Þ

xð5Þ

xð6Þ

xð7Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

SBP

DBP

SBP homeostasis target

DBP homeostasis target

HR

HR homeostasis target

Constant

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Input variable: u. The input variable u = {u1, u2, . . .uT} represents all the various pertur-

bations of the BP and HR system from the homeostasis perturbation model described previ-

ously. For the sake of simplicity in the following simulations, this proof of concept will model

two major modes of drug delivery for acute hypertension treatment in ICU settings: Intrave-

nous (IV) labetalol and IV nicardipine. Labetalol, a beta-adrenergic blocking agent, is modeled

here as an IV bolus push medication to immediately lower BP. Nicardipine, a calcium channel

blocker, is typically given as a continuous IV drip to maintain a target SBP, with titrations of

the drip rate as necessary to achieve this. Together, these two medications form an acute treat-

ment regimen for SBP. We do not explicitly model non-linear drug interactions. At a given

time point t, ut contains the post-stroke BP perturbation as well as the effect of each drug on

the patient. For example, a simple model with two drugs might have an input u as:

u ¼

uð1Þ

uð2Þ

uð3Þ

2

6
6
6
4

3

7
7
7
5
¼

Stroke BP perturbationðPsponÞ

IV labetalol bolus effectðPlabÞ

IV nicardipine drip effectðPnicÞ

2

6
6
6
4

3

7
7
7
5
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Translating the stroke perturbation Pspon(t) to ut:

uð1Þt ¼ Bmax � ð1 � rBÞ
t

Bmax and rB are the parameters to estimate.

The Emax model is translated from Pmed(t) to ut as follows:

uð2Þt ¼
Eð2ÞmaxcðtÞ

ECð2Þ50 þ cðtÞ

Where c(t) is the drug plasma concentration at time t. The same equation applies for uð3Þt . In

general, each antihypertensive drug used during the ICU course for one patient will have its

own Emax and EC50 parameter that can be used to calculate u.

Model parameters. The previous variables interact in a dynamic linear model via the fol-

lowing set of equations:

x0 � Nðm0;S0Þ

xt ¼ Fxt� 1 þ Uut þ wt

yt ¼ Axt þ vt
w � Nð0;QÞ

v � Nð0;RÞ

x0 is the initial value of x with mean μ0 and covariance S0. F is the transition matrix

between hidden states from one time point to the next. U is the response matrix to input inter-

ventions u. A is the emission matrix that translates the hidden state x to the observed measure-

ments y. Finally, w and v are white noise terms with mean 0 and covariance matrices Q and R,

respectively. Note the presence of a constant term x(7) in x allows us to model non-zero mean

Gaussian measurement noise with a white Gaussian v. The covariance of w and v was set to

values close to variances seen in actual data from MIMIC.

Because of the design of our homeostasis target variable, the homeostasis targets (X(3) for

SBP, X(4) for DBP, and X(6) for HR) depend solely on initial parameters μ0 and S0. We simplify

the model by zeroing out the rows and columns of S0 that correspond to the homeostasis tar-

get variables and constants. Thus, the homeostasis targets depend solely on μ0.

The AIM-BP DLM has a specific structure for F and U. These two parameters characterize

how a given individual’s vital signs trend over time, as well as how they respond to treatment.

The parameter F models the evolution of intrinsic vital signs. It has a specific structure:

F ¼

1 � rh 0 rh 0 0 0 0

0 1 � rh 0 rh 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 � rh rh 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

In this structure, rh 2 [0, 1] is a rate value that models various homeostatic mechanisms

affecting autonomic regulation of BP and HR, such as vasoconstriction/vasodilation, the
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renin-angiotensin system, and the baroreceptor reflex. Since the baroreflex operates at a time

scale of seconds [34] and has a large effect on short term BP homeostasis, we use a high rh of

0.9 to model this fast homeostasis mechanism. Although we could theoretically sample and

estimate a value for rh, for all practical purposes with the amount of noise found in real data

values of rh greater than 0.8 have more or less the same effect on the system.

The parameter U models the response to perturbations u. The parameter U will vary in size

depending on the number of input medications and vary in value depending on which vari-

ables in x the medications affect. With ndrug medications, U will be a 7 × 1 + ndrug matrix,

where the first column captures the spontaneous perturbation and the rest of the columns cap-

ture the medications. As an example, we simulate two theoretical medications for BP. U in this

case will have this specific structure:

U ¼

rh rh rh

rh � ratioSD rh � ratioSD rh � ratioSD

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Where ratioSD is the ratio of diastolic to systolic effects. Because both hypothetical drugs affect

only the systolic and diastolic BP, only the first two rows are non-zero. When multiplied by u
and plugged into the full DLM x equation, we get the following equation for systolic BP:

xð1Þt ¼ ð1 � rhÞ � x
ð1Þ

t� 1 þ rh � ðx
ð3Þ

t� 1 þ uð1Þ þ uð2Þ þ uð3ÞÞ

In effect, the perturbations from u modify the homeostasis target.

The emission matrix A translates the true BP and HR to observed BPs and HRs. In our sim-

plified system with only one modality of observation for each, A looks like the following:

A ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

2

6
6
6
4

3

7
7
7
5

We could add terms to A to capture non-zero mean errors in measurement, but for the sim-

plicity of the model, we assume zero mean measurement errors. A is thus treated as known.

The covariance matrix Q defines the inherent variability of BP and HR as a result of pertur-

bations to autonomic regulation, such as input and output of fluids, changes in metabolic

demand, or impairment of autonomic regulation due to damage caused by an acute stroke.

The rows and columns of Q that correspond to constants and homeostasis targets in X will

have zero variance and covariance. We can capture the covariance between systolic and dia-

stolic BP, as well as autonomic mechanisms that couple BP and HR variability. Other potential

perturbations in the setting of stroke, such as Cushing’s response to increased intracranial

pressure, are captured here in variability Q even if we do not explicitly model them in the per-

turbation model.
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The covariance matrix R defines the measurement noise. Each method of measuring BP

and HR has an inherent measurement error. For simplicity, we assume measurement noise

does not vary significantly from patient to patient and thus we set R to be a known value.

Sufficiency for modeling the homeostasis perturbation model. If we set rh = 1 and sub-

stitute Pspon(t) for u(1), Pmed1(t) for u(2), Pmed2(t) for u(3), and SBPH for xð3Þt� 1, with unitary and

known A and some noise �Q and �R generated from Q and R, we get Eq 3:

xð1Þt ¼ ðx
ð3Þ

t� 1 þ uð1Þ þ uð2Þ þ uð3ÞÞ þ �Q

xð1Þt ¼ ðSBPH þ PsponðtÞ þ
X

meds

PmedðtÞÞ þ �Q

SBPt ¼ yð1Þt ¼ ðAxtÞ
ð1Þ
þ �R ¼ ðSBPH þ PsponðtÞ þ

X

meds

PmedðtÞÞ þ ð�Q þ �RÞ

ð3Þ

Which is the exact homeostasis perturbation model described in Eq 1 with �S = �Q + �R. A

parallel construction can be made for DBP. Thus, we have shown that the AIM-BP model is

sufficient for capturing homeostasis perturbation model parameters.

For the purposes of this paper, we are interested in estimating the following parameters of

the AIM-BP model: the homeostasis targets (e.g. x(3) or m
ð3Þ

0 for systolic BP), the rate of decay

for the stroke BP perturbation rB, and the drug Emax and EC50 parameters.

Parameter estimation

A Metropolis-within-Gibbs sampler was written in Matlab (https://www.mathworks.com) for

parameter estimation. The method by which each parameter is estimated, as well as prior used,

is listed in S3 Table.

For μ0, we first estimate m
ð1;2;5Þ

0 using a Gibbs step with a conjugate multivariate normal

prior. We then estimate homeostasis targets m
ð3;4;6Þ

0 by individual Metropolis steps, sampling

from the probability:

Prðm0jS0;F;U;Q;A;R; x; x0; yÞ / Prðm0ÞPrðx0jm0;S0Þ
YT

t¼1

Prðxtjxt� 1;F;U;Q; utÞ

We use a normal prior for Pr(μ0). Bmax and rationSD is calculated from μ0.

For rB, we sample from the following probability:

PrðrBjm0;S0;F;U;Q;A;R; u; x; yÞ

/
YT

t¼1

Prðxtjxt� 1;F;U;Q; utÞPrðrBÞ

For Emax, and EC50, we sample from the following probability:

PrðEmax; EC50jm0;S0;F;U;Q;A;R; u; x; yÞ

/
YT

t¼1

Prðxtjxt� 1;F;U;Q; utÞPrðEmax;EC50Þ

We run our MCMC sampler with a burn-in period of 2000 steps and then sample every 5

steps until we reach 2000 samples. We take the mean of the sampled values as the estimate for

the parameters.

Dynamic linear models for blood pressure management in hemorrhagic stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0220283 August 5, 2019 12 / 28

https://www.mathworks.com
https://doi.org/10.1371/journal.pone.0220283


Evaluation

The utility of the AIM-BP framework can be judged on its two major components: the

AIM-BP model and the parameter estimator. Like any mathematical model of real world phe-

nomena, the usefulness of the AIM-BP model depends on whether it is descriptive enough for

its clinical application and simple enough to be reliably estimated from available data. The first

part is not able to be evaluated objectively—though we believe an exponential decay model of

homeostasis perturbation and an Emax model of drug pharmacodynamics will be sufficient to

characterize how individual stroke patients’ blood pressures behave in the days after a stroke.

The second part can be objectively evaluated, and can be done by evaluating the performance

of the AIM-BP parameter estimator.

We evaluated the performance of our AIM-BP parameter estimator by its ability to recover

three parameters of clinical importance: m
ð3Þ

0 , the systolic BP homeostasis baseline, and Emax

and EC50 for each medication. We chose to limit the evaluation to these parameters, instead of

the full set of learned parameters (S3 Table), for the purposes of clarity and simplicity.

In addition to the individual Emax and EC50 parameters, we also calculated an aggregate

parameter we call the Emax ratio, which is a normalized ratio of the two separate parameters:

ER ¼
Emax

EC50þmeanðcðc > 0ÞÞ

It has been shown that when dose-response curves do not explore the maximal dosage

ranges sufficiently, individual Emax and EC50 estimates can be highly inaccurate but their ratio

is a more stable parameter. [35] We thus introduced the Emax ratio parameter as a more stable,

aggregate metric of drug effectiveness. A drug is more effective when its Emax is higher or

when its EC50 is lower, so a higher Emax ratio corresponds to a greater measure of effectiveness.

We normalized the EC50 in the denominator by adding the mean concentration of the drug

during its active period (when the concentration is non-zero). This helps further stabilize the

ratio.

Ideally, we would compare the performance of the AIM-BP parameter estimator against the

performance of a state of the art algorithm. To our knowledge, however, we are the first to

attempt to model spontaneous BP trends and medication pharmacodynamics in the critical

care stroke setting simultaneously, so no such state-of-the-art algorithm exists.

While no studies have looked at our combined model, numerous studies fit pharmacody-

namics parameters for the Emax model when studying dose-response relationships. These are

usually fit using maximum likelihood estimation via a non-linear regression method such as

Gauss-Newton or Levenberg-Marquardt. [13–15] We will refer to these methods as Non-Lin-

ear Least Squares (NLLS) regression methods. Instead of fitting just the Emax model using

these methods, however, we fitted the combined perturbation model in Eqs 1 and 2. We used

NLLS fitting as a state-of-the-art comparison to the AIM-BP parameter estimator.

In order to see which method performs better, estimated parameters from each method

must be compared to ground truth. Unfortunately, no real world stroke dataset exists in which

personalized drug pharmacodynamics parameter values are known through other means and

could be used as ground truth. Furthermore, our homeostasis perturbation model is a novel

characterization of spontaneous blood pressure behavior post stroke, and as such no ground

truth values are available for real world data either. As such, we must use simulated data gener-

ated with ground truth parameters in order to compare the two methods. By using simulated

data, we must ensure that our data generation mechanism is sufficient to model a clinically sig-

nificant proportion of real data, particularly the amount of variance seen in real data. Because

of this variance, one set of ground truth parameters is capable of generating a whole set of
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simulated time series, some of which may be more likely represented by another set of parame-

ters. As such, our parameter estimation method must not only achieve good accuracy, but also

must be consistent across multiple simulations of data using the same ground truth parame-

ters. We will define what we mean by these terms after we discuss the data simulation

methods.

Data simulation. As a proof of concept of the AIM-BP framework, four clinical scenarios

with unique ground truth parameters were used to simulate BP data. Model parameters were

learned from the simulated data using the AIM-BP parameter estimator, and the learned

parameters were compared to the ground truth model parameters used to simulate the data.

To generate simulated data that resembled real world data, we analyzed charted vital signs

from a dataset of 497 primary intracerebral hemorrhage (ICH) patients extracted from the

electronic medical record at University of Pittsburgh Medical Center (UPMC) Presbyterian

Hospital (IRB PRO16110384) and 1367 ICH patients from the MIMIC III database. [29]

Patient data was used to estimate, to a rough order of magnitude, the amount of variance Q
and R that should be used for the simulated data.

To mitigate the effect of long term BP changes on variance calculations, variances were cal-

culated in 6 hour long segments, after a linear fit had been subtracted. The median variances

for systolic and diastolic BPs and HR as measured by BP cuff can be found in S1 Table. Since

arterial BP readings are treated as the gold standard with fewer potential sources of measure-

ment noise, we were hoping to use the difference between arterial and non-invasive variances

to inform the split between inherent BP variability Q and measurement noise R. We found,

however, that arterial BP variances estimated in this method were equal to or greater than

non-invasive BP variances. There are several possible explanations for this: One, non-invasive

BPs overestimate low BPs and underestimate high BPs compared to arterial lines. [36, 37]

Two, arterial BPs are taken more frequently when a patient’s BP is more unstable. Since we are

only interested in a rough order of magnitude correctness, however, we assigned Q and R arbi-

trarily within the order of magnitude of the variances seen.

Based on these findings, we introduced inherent BP variance Q in our simulation of

81mmHg2 for systolic and 49mmHg2 for diastolic BP and measurement noise variance R of

25mmHg2 for SBP and 16mmHg2 for DBP. HR data was not available for the UPMC dataset,

so only the variance from the MIMIC dataset was used to inform our choice of Q and R.

Because HR/BP interactions are not the focus of this paper, we simplified the model and did

not include a covariance between those terms.

At the beginning of each ICU admission, BP data was charted roughly every 15 minutes. As

such, a discrete time step of 15 minutes was chosen for the simulated data.

We crafted four different clinical scenarios that would present with similar BP time series,

based on the critical care stroke BP management protocol at the neuro ICU at UPMC Presby-

terian. Our goal is to demonstrate the ability of the AIM-BP framework to identify and esti-

mate different combinations of drug effects and spontaneous BP behavior that together add to

similar BP trends. The clinical scenarios all start out the same way:

A 70 year old male patient arrives at the ICU with a primary intracerebral hemorrhage. His

BP at admission to the ICU is 220/110 mmHg.

The scenarios then diverge as follows:

1. Scenario 1: The patient is given an initial push of 20mg IV labetalol bolus twice to bring his

systolic BP down to less than 140 mmHg. No further medication is needed to bring keep

his systolic BP under 140 mmHg. Under the hood, this patient’s BP would have
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spontaneously trended to 130/80 mmHg, and the IV labetalol bolus was of medium effec-

tiveness, with an Emax of -40 mmHg and an EC50 of 70 ng/mL.

2. Scenario 2: The patient is given the exact same push of 20mg IV labetalol bolus twice as in

Scenario 1, and his BP behaves similarly. Under the hood, however, this patient’s BP would

have spontaneously trended to 150/90 mmHg, but the IV labetalol bolus was particularly

effective with an Emax of -60 mmHg and an EC50 of 40 ng/mL.

3. Scenario 3: The patient is given the exact same push of 20mg IV labetalol bolus twice as in

Scenario 1, but it is not very effective. He is then started on an IV nicardipine drip, which is

titrated towards a target SBP at or below 140 mmHg and only a low drip rate is needed to

be effective. Under the hood, this patient’s BP would have spontaneously trended to 180/

100 mmHg, the IV labetalol bolus was not very effective with an Emax of -20 mmHg and an

EC50 of 160 ng/mL, and the IV nicardipine drip was very effective with an Emax of -60

mmHg and an EC50 of 40 ng/mL.

4. Scenario 4: The patient is given the exact same push of 20mg IV labetalol bolus twice as in

Scenario 1, but it is not very effective. He is then started on an IV nicardipine drip, which is

titrated towards a target SBP at or below 140 mmHg and a medium drip rate is needed to

be effective. Under the hood, this patient’s BP would have spontaneously trended to 160/

100 mmHg, the IV labetalol bolus was not very effective with an Emax of -20 mmHg and an

EC50 of 160 ng/mL, and the IV nicardipine drip was moderately effective with an Emax of

-40 mmHg and an EC50 of 70 ng/mL.

The BP chart of each clinical scenario is shown in Fig 4. These scenarios differ in three pri-

mary parameters that we will focus on: m
ð3Þ

0 , the homeostasis baseline for SBP, Emax, the maxi-

mum effect achievable by a drug, and EC50, the drug concentration needed to achieve half of

the maximum effect. The specific configurations of the relevant parameters for each clinical

scenario can be found in S2 Table.

Emax and EC50 ranges for labetalol and nicardipine were roughly estimated from the litera-

ture. [38–45] Time to onset of peak concentration, half-life and central volumes of distribution

were taken from literature or reference websites (https://www.rxlist.com, https://pubchem.

ncbi.nlm.nih.gov/). Volumes of distribution, peak onset, and half-lifes were used to estimate

drug plasma concentrations after doses in a rudimentary pharmacokinetics model, using the

volume of distribution to calculate the peak plasma concentration, with a linear slope up to the

peak for the duration of peak onset and an exponential decay after the peak concentration cal-

culated using the half-life.

We simulated the adminstration of medication in a manner that roughly adheres to the

ICH BP management guidelines at UPMC Presbyterian. In all clinical scenarios, a total of

40mg of IV labetalol in two pushes was given initially. In clinical scenarios 3 and 4, IV nicardi-

pine was started at 5mg/hr and uptitrated 2.5mg/hr to a maximum of 15mg/hr until an SBP of

140 mmHg or lower was achieved, then decreased to 3mg/hr for maintenance with adjust-

ments as necessary.

We chose to simulate our scenarios using 15 minute time intervals for a period of 200 time

points, or a little more than 2 days. We chose to simulate for a period of 2 days as a balance

between having enough time to observe patients stabilizing (factoring in drug half-lifes) and

being a short enough time to be within the median length of ICU stay for a stroke patient. In

the UPMC dataset, the median length of stay was 3.8 days, and 73% of all patients stayed lon-

ger than 2 days. This means that 73% of the UPMC dataset had a long enough ICU stay that

generated enough data that our results on simulated data would be applicable. We leave the
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Fig 4. Sample simulated BP time courses for each clinical scenario. Each clinical scenario presents with a BP of around 220/110 mmHg, which is managed

down to around 140 mmHg systolic using medication. Upon visual inspection, it is difficult to identify how each scenario’s patient responds differently to the

medications administered to them. AIM-BP can identify the different effectiveness of medications in each scenario.

https://doi.org/10.1371/journal.pone.0220283.g004
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investigation of parameter estimation performance given varying lengths of data to future

work.

Evaluation metrics. In order to evaluate accuracy and consistency, we compared the

AIM-BP estimator to a state-of-the-art parameter fitting method using Matlab NLLS

(lsqcurvefit using Levenberg-Marquardt) on Eq 1, where SBPH corresponds to m
ð3Þ

0 and

other variable names are equivalent.

First, the AIM-BP data simulator was used to simulate 100 sets of data for each clinical sce-

nario, with the corresponding parameters for the SBP homeostasis baseline and drug effects.

We then ran NLLS parameter fitting method and the AIM-BP parameter estimator once on

each simulated dataset to obtain a set of 100 estimated parameters for each scenario for each

method.

The absolute errors of estimated parameters from each method compared to ground truth

were calculated to determine if AIM-BP has on average smaller absolute error compared to

NLLS, using a t-test on the paired differences of the absolute errors. We call this metric accu-

racy. Similarly, whether AIM-BP has more consistent estimates compared to NLLS was deter-

mined using an F-test on variances of estimated parameters. We call this metric consistency.

An overview of the evaluation workflow is shown in Fig 5. In order to determine if the mecha-

nism of data generation was responsible for performance results, we repeated the experiment

for Clinical Scenarios 3 and 4, except using the homeostasis perturbation model plus noise as

the data simulation mechanism. We then investigated the correlation between absolute errors

from AIM-BP versus NLLS.

Finally, we identified 7 patients from the UPMC dataset who only received labetalol and/or

nicardipine during their ICU stay. We used the AIM-BP parameter estimator as well as NLLS

to estimate parameters for each patient. We cannot compare likelihoods for these two models

in order to perform model selection, as one model estimates SBP, DBP, and HR, while the

other one only estimates SBP. As such, traditional likelihood ratio tests based on maximum

likelihood, AIC, or BIC are not applicable. Thus, in order to compare these models, we used

both models’ estimated homeostasis perturbation models to compare residuals for systolic BP

only. In order to estimate homeostasis perturbation model SBP from AIM-BP parameters, we

generated data using the AIM-BP data simulated with Q and R set to 0. Calculating the homeo-

stasis perturbation model SBP from the NLLS parameters consists of plugging in the parame-

ters to the model. We compare residuals between the two methods to see if either is orders of

magnitude worse than the other.

Results

Accuracy results for all clinical scenarios are shown in Table 1. Consistency results for clinical

scenarios are shown in Figs 6, 7, 8 and 9.

In clinical scenarios 1 and 2, both the basic non-linear least squares (NLLS) and the

AIM-BP parameter estimation methods performed equally well in estimating the systolic BP

baseline m
ð

03Þ, achieving mean absolute errors of less than 2 mmHg (Table 1). Absolute errors

were significantly different for SBP baseline in Scenario 1, but by a negligible amount, and not

significantly different in Scenario 2. In both scenarios, NLLS exhibited wider variability in esti-

mating Emax and EC50 values, but no significant difference was seen in the Emax ratio parameter

(Figs 6 and 7).

In the more complex two-drug clinical scenarios 3 and 4, again we see more accurate and

consistent estimates for Emax and EC50 using AIM-BP, with the exception of the nicardipine

EC50 in scenario 3 (Table 1, Fig 8) and 4 (Fig 9). Again, although we see statistically more
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Fig 5. Experimental design. The accuracy and consistency of the AIM-BP parameter estimator is compared against Non-Linear Least Squares on a set of clinical

scenarios.

https://doi.org/10.1371/journal.pone.0220283.g005
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Table 1. Mean absolute error of estimated parameters from NLLS and AIM-BP compared to ground truth.

Scenario 1 Ground Truth NLLS AIM-BP

SBP homeostasis baseline (m
ð3Þ

0 ) 130.0 1.5 ± 0.9 1.3 ± 1.0 �

Labetalol Emax −40.0 8.2 ± 8.8 7.4 ± 6.3

Labetalol EC50 70.0 30.2 ± 34.8 31.9 ± 21.2

Labetalol Emax ratio −0.25 0.02 ± 0.02 0.02 ± 0.02

Scenario 2 Ground Truth NLLS Error AIM-BP Error

SBP homeostasis baseline (m
ð3Þ

0 ) 110.0 1.3 ± 1.3 1.1 ± 1.5

Labetalol Emax −20.0 10.4 ± 11.1 5.3 ± 5.6 ���

Labetalol EC50 110.0 103.6 ± 110.0 22.7 ± 17.9 ���

Labetalol Emax ratio −0.10 0.02 ± 0.02 0.02 ± 0.02

Scenario 3 Ground Truth NLLS Error AIM-BP Error

SBP homeostasis baseline (m
ð3Þ

0 ) 180.0 10.1 ± 21.2 5.7 ± 4.2 �

Labetalol Emax −20.0 10.1 ± 8.9 3.8 ± 2.8 ���

Labetalol EC50 160.0 130.6 ± 106.4 33.3 ± 15.8 ���

Labetalol Emax ratio −0.07 0.02 ± 0.03 0.01 ± 0.01 ��

Nicardipine Emax −60.0 7.3 ± 6.2 3.8 ± 2.8 ��

Nicardipine EC50 40.0 16.6 ± 27.0 17.6 ± 12.9

Nicardipine Emax ratio −0.34 0.06 ± 0.03 0.06 ± 0.04

Scenario 4 Ground Truth NLLS Error AIM-BP Error

SBP homeostasis baseline (m
ð3Þ

0 ) 160.0 7.3 ± 5.5 5.3 ± 3.4 ���

Labetalol Emax −20.0 10.6 ± 11.2 5.1 ± 6.1 ���

Labetalol EC50 160.0 135.7 ± 108.3 35.2 ± 17.6 ���

Labetalol Emax ratio −0.07 0.02 ± 0.02 0.02 ± 0.03

Nicardipine Emax −40.0 15.5 ± 14.5 5.1 ± 6.1 ���

Nicardipine EC50 70.0 85.6 ± 105.0 13.8 ± 9.3 ���

Nicardipine Emax ratio −0.19 0.05 ± 0.04 0.04 ± 0.03 ���

Mean and standard deviation of absolute errors from ground truth of estimated parameters from non-linear least squares (NLLS) and AIM-BP. Significantly lower

AIM-BP absolute errors are noted with asterisks (��� = p< 0.0005, �� = p< 0.005, � = p < 0.05).

https://doi.org/10.1371/journal.pone.0220283.t001

Fig 6. AIM-BP vs NLLS for Clinical Scenario 1. Box and whisker plots of estimated parameters using non-linear least squares (NLLS) and AIM-BP for Clinical

Scenario 1. Significantly lower variances of AIM-BP estimated parameters compared to NLLS are noted with asterisks and p-values.

https://doi.org/10.1371/journal.pone.0220283.g006
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significant consistency in SBP baseline and Emax ratio in some cases, the differences are not

large enough to be clinically significant.

In terms of mean absolute error, AIM-BP generally consistently had smaller errors than

NLLS in estimating Emax and EC50. For the SBP homeostasis baseline, AIM-BP was equally

good (with negligibly better statistically significant performance) as NLLS in Scenarios 1 and

2, but a larger performance gap was apparent in Scenarios 3 and 4. For Emax ratio, both meth-

ods performed the same in all scenarios. Overall, AIM-BP performed statistically significantly

better in estimating many of the parameters, but not to a degree that was clinically significant.

Because data was simulated using the AIM-BP model, one possible explanation for the

increased performance of the AIM-BP parameter estimator may simply be that the data was

simulated with the same model. To test if this is the case, we simulated data using just the

homeostasis perturbation model plus white noise with variance Q(1,2,5) + R, which is the same

model upon which NLLS is fit. For clarity, we will refer to this mechanism of data simulation

as the NLLS mechanism. We observed the same increase in performance for Scenarios 3 and 4

Fig 7. AIM-BP vs NLLS for Clinical Scenario 2. Box and whisker plots of estimated parameters using non-linear least squares (NLLS) and AIM-BP for Clinical

Scenario 2. Significantly lower variances of AIM-BP estimated parameters compared to NLLS are noted with asterisks and p-values.

https://doi.org/10.1371/journal.pone.0220283.g007

Fig 8. AIM-BP vs NLLS for Clinical Scenario 3. Box and whisker plots of estimated parameters using non-linear least squares (NLLS) and AIM-BP for Clinical

Scenario 3. Significantly lower variances of AIM-BP estimated parameters compared to NLLS are noted with asterisks and p-values.

https://doi.org/10.1371/journal.pone.0220283.g008
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using the NLLS mechanism as when the data was simulated using an AIM-BP mechanism

(Accuracy results in S4 Table and consistency results in S1 and S2 Figs).

We sought to answer the question of whether errors in estimation were correlated between

the two methods. For each scenario, we plotted the absolute errors for SBP homeostasis base-

line, Emax, EC50, and Emax ratio of one method against the other and calculated the Pearson

correlation coefficient for each parameter (S3, S4, S5 and S6 Figs for Clinical Scenarios 1-4,

respectively). We observed that most variables had a moderate amount of positive correlation

with r around 0.5. The negative or correlations close to zero were seen in EC50 estimates,

where NLLS had high errors while AIM-BP did not. This degree of correlation suggests that

the individual sets of simulated data themselves contribute to the error, in the sense that gener-

ally when AIM-BP had high errors, so did NLLS, and for variables that are not EC50, when

NLLS had high errors, so did AIM-BP.

Finally, we estimated AIM-BP parameters using the AIM-BP parameter estimator and

homeostasis perturbation model parameters using NLLS on 7 patients in the UPMC ICH data-

set that only used labetalol or nicardipine for blood pressure management. An example

AIM-BP fitted homeostasis perturbation model systolic BP is shown in Fig 10. The residuals of

the calculated AIM-BP homeostasis perturbation model SBP were compared against the resid-

uals of the NLLS homeostasis perturbation model SBP in Table 2. NLLS is slightly better in 4

patients and AIM-BP is slightly better in 3 patients, but neither is orders of magnitude worse.

Discussion

We evaluated the ability of our Acute Intervention Model of Blood Pressure (AIM-BP) to

identify drug effectiveness and parameters that govern spontaneous BP behavior post hemor-

rhagic stroke. We simulated 4 clinical scenarios with ground truth parameters. We compared

AIM-BP performance on these 4 scenarios to a state-of-the-art maximum likelihood estima-

tion method using non-linear least squares curve fitting. Compared to ground truth parameter

values, AIM-BP produced equal or smaller mean absolute errors than NLLS in the more com-

plex scenarios 3 and 4, and performed equally well in the simple scenarios 1 and 2. Specifically,

AIM-BP had more accurate and consistent estimates for Emax and EC50 parameters. This

increased accuracy was likely due to the use of prior distributions on Emax and EC50, which

limits the number of combinations that can produce similar drug effects. Notably, this increase

in accuracy largely disappears when we look at the transformed variable Emax ratio. In

Fig 9. AIM-BP vs NLLS for Clinical Scenario 4. Box and whisker plots of estimated parameters using non-linear least squares (NLLS) and AIM-BP for Clinical

Scenario 4. Significantly lower variances of AIM-BP estimated parameters compared to NLLS are noted with asterisks and p-values.

https://doi.org/10.1371/journal.pone.0220283.g009

Dynamic linear models for blood pressure management in hemorrhagic stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0220283 August 5, 2019 21 / 28

https://doi.org/10.1371/journal.pone.0220283.g009
https://doi.org/10.1371/journal.pone.0220283


addition, AIM-BP was more consistent in estimating parameter values, especially in the more

complex scenarios that involve multiple drugs. Finally, in estimating homeostasis perturbation

models on 7 real world intracerebral hemorrhage patients, NLLS and AIM-BP achieved similar

residuals, despite AIM-BP also fitting to DBP data. The number of patients we fitted models to

was limited by the drugs we researched pharmacokinetics data and pharmacodynamics priors

for. In future work, we plan to leverage data from DrugBank (https://www.drugbank.ca) to

auto-populate pharmacokinetics information and pharmacodynamics priors for more drugs.

Fig 10. AIM-BP homeostasis perturbation model SBP compared to actual SBP and drug concentrations. Example calculated homeostasis perturbation model

SBP using estimated AIM-BP parameters compared to actual SBP and drug concentrations. Dot-dashed red lines represent 2 standard deviations of Q from the

homeostasis perturbation model SBP.

https://doi.org/10.1371/journal.pone.0220283.g010

Table 2. Residuals of AIM-BP vs NLLS homeostasis perturbation models on 7 UPMC ICH patients.

Patient NLLS AIM-BP

1 28909.9 27006.0

2 10726.1 10371.3

3 39778.4 45074.0

4 33563.5 33916.3

5 18442.2 18784.3

6 23045.7 22859.4

7 34760.4 36461.1

Residuals are calculated by taking the sum of squares of homeostasis perturbation model SBP minus actual measured

SBP. If both a non-invasive BP and an arterial line were measured at a given time point, both residuals were added.

https://doi.org/10.1371/journal.pone.0220283.t002
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As with the choice of any model, there is a trade-off in AIM-BP between model complexity

and the full scope of what the model can capture. The assumptions that our spontaneous per-

turbation model makes are as follows: One, that there is some initial perturbation from

homeostasis seen at admission (whether that perturbation be positive, negative, or zero), and

two that a patient’s BP trends towards a constant homeostasis level. What this model allows for

is a variety of trajectories, including both increases and decreases in BP, and a fast return to

homeostasis vs a more gradual return that more closely resembles a constant decrease. What

this model does not explicitly capture are things like cyclic effects (e.g. sleep-wake cycle), or

time periods where a patient is acutely decompensating (e.g. if a patient develops symptoms of

shock). We can expand the flexibility of the spontaneous perturbation model by adding com-

ponents that reflect cyclic effects or replacing it with a piece-wise model with separate parame-

ters for individual time periods. These approaches increase model complexity by increasing

the number of parameters, and thus an increased amount of data will be required to accurately

learn model parameters.

A major limiting factor in our model design as it stands is the translation of medication

dosages into estimates of active concentrations at each time point. While this can theoretically

be calculated from information on the pharmacokinetics of the drug available from the manu-

facturer, in reality differences in individual metabolic and clearance rates mean the active drug

concentrations at a given time point will differ on a patient to patient basis even if the dosages

given were the same. In theory, these variations are yet another parameter that may be learned

using our MCMC-based parameter estimator framework. However, issues with the accuracy

of timestamps for medication administration in the ICU may limit the usefulness of a more

detailed modeling system. These issues can be circumvented in a research study setting if drug

plasma concentration is measured regularly.

Real world medical chart data often contains irregularly recorded or missing data. In our

neuro ICU dataset, measurements of arterial BP or non-invasive BP were recorded at irregular

intervals. Charting frequency was generally higher at the beginning of an admission, dropping

down to about once an hour once the patient is stable, then dropping down to once every sev-

eral hours later on in the admission. Occasionally, gaps can arise due to transfer of care from

the ICU, such as when a patient needs to undergo a surgery or other procedure. This missing

data will need to be accounted for when feeding ICU chart data into the AIM-BP parameter

estimator. Because data will need to be converted into discrete time steps, a combination of

interpolation and the inclusion of missing data will be needed. Fortunately, dynamic linear

models inherently handle missing data well, as the methods calculate the best estimate for hid-

den variables whether or not an observation was made at a given time point. In addition, it

handles measurements of BP from multiple modalities (e.g. both arterial line and pressure

cuff). Although we have not simulated multi-modal data in this paper, the AIM-BP system can

be easily adapted to handle it by changing the A emission matrix. By using a DLM, we can

combine multiple measurement modalities for a more accurate estimate of a patient’s true

underlying vital signs.

We have limited our current evaluation of the AIM-BP model to only parameters that are

directly comparable to those using a NLLS method. In future work, we plan to expand evalua-

tion to other parts of the AIM-BP model that have no direct correlate in the homeostasis per-

turbation model. The parameters we investigated in this paper are not the only ones that may

have clinical significance. One possible clinical parameter of interest is the inherent BP vari-

ability of a patient. Short-term BP variability has been associated with adverse cardiovascular

events such as stroke. [46, 47] BP variability has been used as a feature in the prediction of sep-

sis. [48] Instead of looking at BP variability as an aggregate mean and standard deviation over

time, the AIM-BP framework separates out external perturbatory effects and measurement
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noise and captures BP variability in the covariance matrix Q. In addition, by learning the

parameter rh in F that governs rate of return to homeostasis, AIM-BP can characterize the

responsiveness of a patient’s innate homeostatic drive, which may be an additional measure of

variability and a novel “vital sign” in ICU patients. By using the AIM-BP framework to esti-

mate these parameters, we can leverage multi-modal measurements of BP to increase accuracy

of variability measures, as well as describe variability in a multivariate sense. AIM-BP would

provide a more robust method of investigating differences in BP variablity compared to simple

variance calculations.

Conclusion

We constructed and tested the Acute Intervention Model of Blood Pressure (AIM-BP), a

personalized dynamic linear model-based framework for studying the effects of BP manage-

ment in the critical care setting. We built the AIM-BP framework and tested its ability to

estimate clinically important parameters using four simulated clinical scenarios. We showed

that the AIM-BP framework is sufficient for capturing parameters of a BP homeostasis per-

turbation model. We found that the AIM-BP parameter estimator is as accurate and consis-

tent in estimating the homeostasis perturbation model parameters as a state-of-the-art

maximum likelihood estimation method, and more accurate and consistent in estimating

specific Emax and EC50 parameters. By doing so, we have demonstrated the feasibility of

learning quantitative pharmacodynamics and disease perturbation parameters from clinical

data. Future work will evaluate the performance of the AIM-BP framework with missing and

multi-modal data.
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