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Abstract

Rare variants have increasingly been cited as major contributors in the disease etiology of several complex disorders.
Recently, several approaches have been proposed for analyzing the association of rare variants with disease. These
approaches include collapsing rare variants, summing rare variant test statistics within a particular locus to improve power,
and selecting a subset of rare variants for association testing, e.g., the step-up approach. We found that (a) if the variants
being pooled are in linkage disequilibrium, the standard step-up method of selecting the best subset of variants results in
loss of power compared to a model that pools all rare variants and (b) if the variants are in linkage equilibrium, performing a
subset selection using step-based selection methods results in a gain of power of association compared to a model that
pools all rare variants. Therefore, we propose an approach to selecting the best subset of variants to include in the model
that is based on the linkage disequilibrium pattern among the rare variants. The proposed linkage disequilibrium–based
variant selection model is flexible and borrows strength from the model that pools all rare variants when the rare variants
are in linkage disequilibrium and from step-based selection methods when the variants are in linkage equilibrium. We
performed simulations under three different realistic scenarios based on: (1) the HapMap3 dataset of the DRD2 gene, and
CHRNA3/A5/B4 gene cluster (2) the block structure of linkage disequilibrium, and (3) linkage equilibrium. We proposed a
permutation-based approach to control the type 1 error rate. The power comparisons after controlling the type 1 error
show that the proposed linkage disequilibrium–based subset selection approach is an attractive alternative method for
subset selection of rare variants.

Citation: Talluri R, Shete S (2013) A Linkage Disequilibrium-Based Approach to Selecting Disease-Associated Rare Variants. PLoS ONE 8(7): e69226. doi:10.1371/
journal.pone.0069226

Editor: Zhaoxia Yu, University of California, Irvine, United States of America

Received January 24, 2013; Accepted June 6, 2013; Published July 11, 2013

Copyright: � 2013 Talluri, Shete. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health grants R01CA131324 (SS), R01DE022891 (SS), and R25DA026120 (SS). This research was
supported in part by a cancer prevention fellowship for Rajesh Talluri supported by an NIH R25 DA026120 grant from the National Institute of Drug Abuse. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sshete@mdanderson.org

Introduction

Rare variants have increasingly been cited as major contributors

to the disease etiology of several complex disorders. A variety of

approaches for analyzing rare variants have been proposed [1–4].

Morris and Zeggini [4] have shown that tests based on single

variants have limited power compared with tests based on

summing or collapsing rare variants. Several tests based on

collapsing rare variants have been proposed. Originally, Mor-

genthaler and Thilly [3] proposed the Cohort Allelic Sum Test

(CAST) based on the difference in the number of mutant alleles in

cases and controls. The Combined Multivariate and Collapsing

(CMC) test extends CAST by collapsing all variants below a minor

allele frequency threshold but variants above this minor allele

frequency threshold are not collapsed and incorporated into

multiple regression model [1]. Furthermore, the CMC uses the

Hotelling T2 test statistic, which is more robust than the

proportion-based test used in the CAST. In both the CMC and

CAST, all variants are assumed to have an equal effect on the

phenotype. Therefore, Madsen and Browning [2] proposed a

Weighted Sum Statistic (WSS), which weighs the variants based on

the inverse of the estimated standard deviation of the total number

of rare variants in the sample. This strategy assumes that rarer

variants have a greater impact on the phenotype. Price et al. [5]

proposed a variable allele-frequency threshold method (VT) for

selecting rare variants based on the assumption that variants with

minor allele frequency below an unknown allele frequency

threshold are more likely to be functional. Han and Pan [6]

proposed the Sum of Squared Score (SSU) test and its weighted

version, which is robust to the direction of the effect of rare

variants. Hoffmann et al. [7] used the general regression

framework and model the weights as the product of three

variables. The multiplicative model allows for weighting, direction

of effect, and variant selection to be incorporated into the

framework. They also proposed selecting variants based on

functional significance and a data-driven method of variable

selection called ‘‘step-up,’’ which is based on the standard forward

selection algorithm. Recently, Wu et al. [8] proposed a regression

approach, sequence kernel association test (SKAT), based on the

score-based variance components test.

However, none of these approaches consider information about

linkage disequilibrium (LD) among rare variants. In this article, we

propose a new approach, based on the LD among rare variants,

for selecting a subset of variants to include in the analysis. Using

simulations, we compared our subset selection approach to the

step-up method of Hoffmann et al. [7], three related variations:
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the step-down, step-up-down, and step-down-up methods, the VT

method, and SKAT. The variants selected using VT approach

were analyzed using the logistic regression framework. We

considered three different simulation scenarios: (1) a simulation

based on the LD structure of the DRD2 gene, and CHRNA3/A5/

B4 gene cluster from the HapMap3 dataset [9], (2) a simulation

scenario involving LD block simulation, and (3) a scenario which

involved simulating the rare variants without any LD structure,

that is, all the variants were independent of each other. The power

comparisons of the methods in the three scenarios showed that our

approach to selecting rare variants based on their LD is an

attractive alternative method for selecting rare variants for

association studies.

Methods

We assumed that the data were case-control data from N

individuals with a binary phenotype that indicates whether the

individuals are affected. Let N1 be the number of affected

individuals (cases) and N0 be the number of unaffected individuals

(controls). A locus is a contiguous sequence of common and rare

variants in the genome. Our goal was to detect the association of a

particular binary phenotype Y with rare variants at a particular

locus X.

Let us assume that there are p rare variants in the locus of

interest. Let Xi1, . . . ,Xip

� �
denote the genotype for individual i.

We choose the collapsing model as detailed in [7]:

logit Yið Þ~azb
Xp
k~1

wkXik

" #
,

where a is the intercept, b is the regression coefficient of

association of the locus with the disease, and wk can be modeled

as a multiplicative weight, as in

wk~akskvk,

where ak is a continuous weight used to up-weigh the effect of rare

alleles based on the minor allele frequency (MAF), sk is a binary

weight with a value of 1 or 21, depending on the direction of the

effect of the variant on the disease (i.e., protective or deleterious),

and vk is the binary variable selection weight (0 or 1), which

represents whether or not the particular variant k is included in the

model. Many approaches have been proposed to model ak and sk
[2,7]. We concentrated our efforts on selecting the subset of

variants that best explain the phenotype based on the available

data. Therefore, without loss of generality, we assume ak~1 and

sk~1, as we are not focusing on optimizing these weights in our

model and instead they can be modeled in the most optimal way

suggested in the literature [2,7,8].

Step-based Subset Selection Methods
The step-up method [4] is a data-driven method that tries to

find the best possible set of rare variants by minimizing the p-value

or maximizing a particular test statistic using the standard forward

selection algorithm. The forward selection algorithm starts with no

variants in the model and, at each iteration, adds variants to the

model to maximize the Wald test statistic. The process stops when

adding a variant to the model no longer increases the value of the

test statistic. Such data-driven greedy algorithms generally do not

capture the best model because they optimize the test statistics

locally [10]. Typically, the space of all possible models is too large

to explore in a reasonable amount of time.

We also tested an alternative version of the step-up method, the

backward elimination (step-down) algorithm, which starts with all

the variants in the model and removes them until the test statistic is

maximized. While the forward selection and backward elimination

algorithms are efficient, an even better searching algorithm is step-

based selection, which combines both of these steps. Step-based

selection alternates between forward selection and backward

elimination, allowing the model space to be searched more

effectively. Two situations arise in this scenario, one that starts

with all the variants in the model and one that starts with no

variants in the model (step-down-up and step-up-down, respec-

tively). We explored how these variations fare with the step-up

algorithm. The algorithmic details of the implementations for

these methods are presented in Text S1.

Linkage Disequilibrium–based Selection
We performed preliminary simulations to identify rare variants

using these step-based approaches and found that (a) when rare

variants were in LD, the standard variable selection procedures

resulted in a loss of power compared with the model that simply

collapses all rare variants (named hereafter the full model) and (b)

when rare variants were independent of each other (i.e., no LD

among rare variants), step-based variable selection had higher

power than the full model. Therefore, we proposed a modification

to the variable selection approaches that will account for LD

among rare variants. The idea for this approach comes from the

fact that including all the rare variants that are in LD with their

associated variants enhances the power of the rare variant

association.

The proposed algorithm that accounts for LD, called LDSEL, is

as follows:

1. Use the step-down-up selection method to select associated

variants in the model.

2. For each selected variant in step 1, identify all other variants

that are in LD with the selected variants in the cases.

3. The union of variants identified in step 1 and step 2 forms the

final selected subset of rare variants.

This model collapses to the regular step-based methods when

the rare variants are not in LD. It also collapses to the full model

on the other extreme when all the rare variants are in LD with

each other. In step 2 of our approach, we used an LD threshold of

r2~0:1 for identifying the variants that are in LD with the

associated variants. We performed power comparisons of all the

different variable selection approaches referred to above in three

simulation scenarios: the HapMap LD scenario, the block LD

scenario, and the independent rare variant scenario.

Simulations
We simulated 1000 replicate samples, each with 1000 cases and

1000 controls, for each of the three scenarios listed below and

performed type 1 error and power comparisons based on the

simulated data. For the type 1 error comparisons, we generated

data from a null model in which none of the variants were causal.

The LD structure between the variants was assumed to be from

the DRD2 gene of scenario 1. The permutation strategy involved

permuting the case-control status and performing the analysis on

the permuted data. The permutation-based p value can be

estimated by counting the proportion of p-values from the

permuted data sets that are less than or equal to the observed p-

value for the original dataset. For the type 1 error and power

Analyzing Rare Variants
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comparisons, 1000 permutations were used for each dataset to

obtain the permutation-based p-value.

Scenario 1: Simulation from HapMap3 LD structure for

the DRD2 gene. In this scenario, we simulated rare variants

using the LD structure of the DRD2 gene from the HapMap3 data

(HapMap3 Genome Browser, release #2 [Phase 3 - genotypes,

frequencies, & LD]). The DRD2 gene spans 112,785,528 bp to

112,851,091 bp on chromosome 11. In total, the HapMap3

database identified 49 variants located in the gene region.

However, two of the variants were not polymorphic and so we

removed them from further consideration. The pairwise LD

pattern (r2) and the MAF information were downloaded from the

database. HapSim [11] is a simulation tool for generating

haplotype data with pre-specified allele frequencies and LD

coefficients. We used HapSim to generate haplotypes for each of

the two strands of the DNA based on the LD pattern for the

DRD2 gene. The base pairs at each locus are combined without

reference to the strand to get the genotype data.

A total of 47 rare variants were simulated. The MAFs of the

rare variants were randomly generated from a uniform distribu-

tion between 0.25% and 0.5%. Of the 47 variants, 5 variants were

randomly designated to be causal variants. A logistic regression

model was used to simulate the case-control status.

logit P(Y~1ð Þ)~b0zb1
Xp
k~1

vkXk

" #
,

where vk~1, if the variant is causal, and zero otherwise, b0~{5
is the log odds of the population disease risk, and b1~ log 2ð Þ is the
log odds ratio for the causal variants.

Scenario 1: Simulation from HapMap3 LD Structure for

the CHRNA3/A5/B4 gene cluster. In order to further

evaluate the proposed methodology, we also considered

CHRNA3/A5/B4, a gene cluster encompassing multiple genes.

The CHRNA3/A5/B4 cluster spans 76,490,686 bp to

76,899,993 bp on chromosome 15. In total, the HapMap3

database identified 186 variants located in the gene region.

However, 22 of the variants were not polymorphic and so we

removed them from further consideration. The pairwise LD

pattern (r2) and the MAF information were downloaded from the

database. A total of 154 rare variants were simulated. The MAFs

of the rare variants were randomly generated from a uniform

distribution between 0.25% and 0.5%. Of the 154 variants, 7

variants were randomly designated to be causal variants. A logistic

regression model was used to simulate the case-control status as in

the previous case.

Scenario 2: Simulation from block LD structure. The

simulations for the block LD scenario involved modeling the LD

structure of the rare variants as blocks. As in the previous scenario,

the MAFs of the rare variants were randomly generated from a

uniform distribution between 0.25% and 0.5%. The LD structure

for rare variants was simulated from a three-block diagonal

structure, as shown in Figure 1. Each LD block had 10 variants

that were in LD. Within each block, two variants were randomly

designated to be causal. Because of LD, the other 8 variants within

each LD block were also associated with the disease. In addition to

the 30 associated variants within the three blocks, we simulated 20,

70, or 170 independent variants (i.e., not in LD with any other

variants) outside the three LD blocks. These three different

numbers (20, 70 and 170) of non-causal and non-associated

variants were simulated to assess the performances of the different

methods over a range of signal-to-noise ratios. The disease model

was the same as in the previous simulation scenario.

Scenario 3: Simulation from No LD structure. The no

LD scenario involved simulating 50 rare variants that were in

linkage equilibrium. Once again, the MAF of each rare variant

was randomly generated from a uniform distribution between

0.25% and 0.5%. Of the 50 rare variants, 5 were randomly

designated to be causal. The disease model was the same as in the

previous simulations.

Results

We analyzed the 1000 null replicates using the step-up, full

model, step-down, step-up-down, step-down-up, LDSEL, SKAT,

and VT methods. Table 1 shows the type 1 error values at the 5%

and 1% levels of significance for each of these methods. The

uncorrected type 1 errors were liberal for all methods except the

full model and SKAT. The step-based methods over-fit the data,

as they are driven by minimizing the p-value. Therefore, the type

1 error must be controlled using a permutation strategy. As we can

see from the second panel of Table 1, the permutation-based

corrected type 1 errors were well controlled at the 5% and 1%

significance levels for all the methods. For example, the step-up

approach had uncorrected type 1 errors of 0.996 and 0.946 at the

5% and 1% levels of significance, respectively, but after

permutation-based correction, the type 1 errors were well

controlled at 0.052 and 0.009, respectively. The proposed LDSEL

method had uncorrected type 1 errors of 0.353 and 0.183 at the

5% and 1% levels of significance, and the corrected type 1 errors

for LDSEL were 0.049 and 0.010 for the 5% and 1% levels of

significance, which are well controlled. This shows that the

permutation-based strategy accurately accounts for over-fitting of

the data that results from the subset selection procedure.

Power comparison for different approaches at the 5% and 1%

levels of significance for scenario 1 are presented in Table 2. The

first panel corresponds to simulation scenario 1 using the LD

structure of the DRD2 gene and the second panel corresponds to

simulation scenario 1 using the LD structure of the CHRNA3/

A5/B4 gene cluster. All the step-based methods had very similar

power. In the first panel, the full model had a power of 0.538 at

the 5% level of significance, which was slightly higher than the

Figure 1. LD structure for block LD simulated data in scenario
2. The orange blocks contain 10 variants each, which are in LD with one
another. Two red variants in each block were randomly designated as
the causal variants. The rest of the variants are independent of all the
other variants.
doi:10.1371/journal.pone.0069226.g001
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power for the step-based methods. This is due to the inability of

the step-based approaches to select variants in LD with the

associated variants which is also reflected in the second panel with

a larger cluster of genes. In the first panel, the LDSEL approach

had a power of 0.552 at the 5% level of significance, which was

higher than SKAT, VT, and the step-based methods. In the

second panel, which corresponds to a larger gene cluster, the

LDSEL approach had higher power than the step-based methods

and VT, but had similar power as the full model and SKAT. The

VT method had slightly lower power than the step-based methods

in the first panel whereas in the second panel it had higher power

than the step-based methods.

Table 3 reports the power comparisons for 3 types of datasets

simulated using the block LD structure as presented in scenario 2;

the three panels in Table 3 correspond to three datasets simulated

using 20 non-associated variants, 70 non-associated variants, and

170 non-associated variants. As in scenario 1, all of the step-based

methods had similar powers. In all three datasets, the power of the

full model was higher than that of the step-based methods. For

example, at 5% level of significance, the power for full model was

0.872 compared to power of 0.797 for the step-down-up method

when the number of non-associated variants was 20 (see panel 1).

In the first panel the proposed LDSEL method had higher power

than all the step-based methods, VT, SKAT and also slightly

better power than the full model. Once again, the step-based

methods had lower power because of their inability to select

variants in LD with their associated variants. The power for VT

method was lower than the full model but higher than the step-

based methods.

In panel 2 and 3 of Table 3, we provide power comparisons

when the number of non-associated variants (i.e. number of noisy

variants) is 70 and 170, respectively. Once again, all the step-based

methods had very similar power. In panel 2, the full model had a

power of 0.733 which was higher than all the step-based methods.

However, now the power of our proposed LDSEL method was

higher than the full model, SKAT, and VT. Similar results were

noted in panel 3.

Table 4 shows the power comparison results at the 5% and 1%

levels of significance for the third scenario, in which the variants

were simulated to be in linkage equilibrium with each other. The

step-based methods had maximum powers of 0.469 and 0.237 at

the 5% and 1% levels of significance, respectively. The full model

had powers of 0.331 and 0.128 at the 5% and 1% levels of

significance, respectively, which was considerably lower than that

of the step-based methods. The VT method had significantly lower

power than all the methods in this scenario. The LDSEL method

had powers of 0.442 and 0.216 at 5% and 1% levels of

significance, respectively, which was significantly higher than the

full model but marginally lower than the step-based methods and

SKAT.

Discussion

In this paper, we proposed a novel methodology for detecting

rare variants. Our motivation was to use the information about

linkage disequilibrium between variants to select the best subset of

rare variants to improve the power of association. The proposed

subset selection algorithm can be incorporated seamlessly into

existing methodologies that up-weigh the effect of rare alleles

based on MAFs and also use binary weights, 1 or 21, depending

Table 1. Uncorrected and permutation-based corrected type
1 errors for different methods at the 5% and 1% level of
significance.

Method Type 1 error

Uncorrected Corrected

5% 1% 5% 1%

Step-up 0.996 0.946 0.052 0.009

Full model 0.049 0.012 0.049 0.012

Step-down 1 0.966 0.051 0.010

Step-up-down 0.996 0.946 0.052 0.009

Step-down-up 1 0.966 0.051 0.010

LDSEL 0.353 0.183 0.049 0.010

SKAT 0.045 0.011 0.048 0.009

VT 0.071 0.016 0.053 0.012

doi:10.1371/journal.pone.0069226.t001

Table 2. Power comparison for different approaches at the
5% and 1% levels of significance.

Method Power

DRD2 CHRNA3/A5/B4

5% 1% 5% 1%

Step-up 0.526 0.297 0.352 0.148

Full model 0.538 0.302 0.565 0.32

Step-down 0.528 0.298 0.359 0.152

Step-up-down 0.526 0.297 0.352 0.148

Step-down-up 0.528 0.298 0.359 0.152

LDSEL 0.552 0.308 0.569 0.329

SKAT 0.468 0.228 0.579 0.323

VT 0.512 0.239 0.486 0.253

The first panel corresponds to simulation scenario 1 using the LD structure of
the DRD2 gene and the second panel corresponds to simulation scenario 1
using the LD structure of the CHRNA3/A5/B4 gene cluster.
doi:10.1371/journal.pone.0069226.t002

Table 3. Power comparison for different approaches at the
5% and 1% levels of significance.

Method Power

20 NAV 70 NAV 170 NAV

5% 1% 5% 1% 5% 1%

Step-up 0.794 0.560 0.508 0.290 0.319 0.134

Full model 0.872 0.710 0.733 0.502 0.575 0.313

Step-down 0.797 0.566 0.511 0.292 0.322 0.135

Step-up-down 0.794 0.560 0.508 0.290 0.319 0.134

Step-down-up 0.797 0.566 0.511 0.292 0.322 0.135

LDSEL 0.882 0.715 0.794 0.590 0.629 0.361

SKAT 0.838 0.604 0.734 0.528 0.608 0.338

VT 0.824 0.596 0.635 0.373 0.504 0.226

The three panels correspond to simulation scenario 2 having 20, 70, and 170
non-associated variants (NAV) respectively along with three LD blocks of 10
variants, with 2 causal variants in each block.
doi:10.1371/journal.pone.0069226.t003
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upon the direction of the effect of the variant on the disease (i.e.,

deleterious or protective)[1–3,6–8].

We simulated a range of scenarios for LD between the variants.

We found that in most of the scenarios, our proposed LDSEL

approach had powers higher than or comparable to those of the

existing variable selection approaches. LDSEL is a flexible method

and, depending on the structure of LD between the variants, it

converts to a full model when all of the rare variants are in LD or

to a step-based approach when all the variants are in linkage

equilibrium. Applying LDSEL when the variants were in LD led

to a gain in the power of association for the rare variants. The

step-based subset selection methods had the highest power when

the variants were not in LD.

The proposed method utilizes LD among variants to select the

best subset of variants. There are several measures to assess linkage

disequilibrium (e.g. D
0
, r2). We used the r2 measure because it is

commonly used in the context of genetic association studies [12]. It

is possible that, for rare variants, the true LD may be over or

under estimated using r2: In our LDSEL approach, overestimation

(underestimation) of LD would result in selecting more (less) rare

variants in the model. In general the effect of error in estimation of

LD on power depends on various factors, the true LD structure

between the variants, the number of causal variants, and the minor

allele frequencies of the variants.

The proposed LDSEL method utilized r2 threshold of 0.1 to

select the best subset. The threshold was selected based on

assessing its impact on power in our simulation study. We

performed power comparisons for different values of r2: Specif-
ically, we compared the results for three LD thresholds:

r2~0:05,r2~0:1 and r2~0:2. In general as the threshold

decreases the proposed method is closer to the full model and as

the threshold increases it is closer to the step-based methods. In the

LDSEL method, we proposed a threshold of r2~0:1 because it led
to increased power in most of the scenarios considered in this

manuscript.

As the number of non-associated variants being pooled

increased, substantial power was gained by the LDSEL method

compared with the full model or the step-based selection methods.

We also simulated a range of odds ratios from 1.4 to 2 for the

causal variants under scenario 2 with similar conclusions (data not

shown). In general, no single method is uniformly powerful over all

the scenarios and all the ranges of odds ratios. The computational

burden for LDSEL is heavy, as is the case with the step-based

selection methods and any permutation-based test. However, with

increasing computation power, the time it takes to complete

analyses using LDSEL is not prohibitive. Also, the computational

burden can be alleviated by use of adaptive permutation methods.

There is a need to leverage any possibility of gaining power for

association, and this is even more important with rare variants,

which are very hard to detect because of the limitations of sample

size.

There is the possibility that some biologically important variants

may be removed from methods that select rare variants because of

the small sample size or because they are in linkage equilibrium.

We recommend including all such important variants in our subset

selection approach. Some of these rare variations may result in

protein changes that negatively affect the protein function. Using

the SIFT (Sorting Intolerant from Tolerant) program [13], one

can predict whether a single-nucleotide polymorphism will affect

protein function. There is a lot of potential for improving the

methods of rare variant association analysis by using all the

available data for these variants from pathways and from the

variants that disrupt protein-coding functions.

In summary, our proposed method provides a flexible way to

select a subset of variants for rare variant association analysis to

improve the power of association, while using the information

contained in the linkage disequilibrium between the variants. Last

but not least, a better understanding of the linkage disequilibrium

patterns in rare variants will help us develop novel and efficient

ways to exploit the data.
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