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A B S T R A C T   

Maintaining the health and welfare of broilers, besides obtaining and optimizing good perfor
mance, are the main objectives of poultry production. In response, climate control remains the 
most guaranteed strategy for managing livestock successfully. Separate controlling temperature 
and humidity on the one hand; and contaminant gases on the other was a focus of several in
vestigations. Thus, the particularity of this work which involves the study, analysis, and control of 
broiler livestock building while taking into account, at the same time, all the system’s constituent 
variables (i.e., temperature, humidity, NH3 and CO2 concentration, air velocity, and differential 
pressure). In this paper, an Active Disturbance Rejection Control (ADRC) and Proportional In
tegral Derivative (PID) controllers were designed and combined with a multi-loop approach for a 
multi-inputs multi-outputs (MIMO) system. Then, Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and Grey Wolf Optimization (GWO) were used to obtain the optimal con
trollers’ parameters employing the reward function, the Integrated Time Absolute Error (ITAE), 
according to the poultry system requirements. Simulation experiments were carried out using the 
Matlab Simulink toolbox to verify the effectiveness of all the proposed control methods with the 
two optimization algorithms regarding stabilization and tracking setpoints. Despite the intro
duction of several disturbances in the plant model, the PSO-ADRC controller still exhibits notable 
benefits in terms of rise time, overshoot, settling time, and good disturbance rejection, proving 
the robustness of the suggested control method.   

1. Introduction 

With the impressive growth of the population and its consumption rate, global demand for poultry meat continues to rise. In 
response to this high demand, modern livestock breeding is mostly done in enclosed infrastructure with an automated control mode to 
increase productivity and animal’s protection from different perturbations. In fact, farmers and producers of these animals’ work on 
the suitability of these poultry buildings to provide animal welfare, growth, and profitability. The sufficiency of the housed livestock is 
determined by supplying fresh air, adequate temperature, humidity, lighting [1] and avoiding, particularly, thermal stress. Therefore, 
the process requires stringent and effective regulation during the rearing period. Firstly, it was essential to create a microclimate 
environment model to represent and simulate the real environment in the broiler livestock buildings; which reflects the environmental 
information of each point in the house, such as temperature, humidity, and air velocity; and understand the strong correlation and 
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coupling between all these variables. Regulating one of them will also affect the others [2]. Then, applying a suitable automatic 
controller to guarantee regulation, prediction, stability, safety, and accuracy regarding the setting parameters and rejecting any 
disturbance throughout the rearing period. 

Controlling heating, ventilation, and air conditioning is the principal key to guaranteeing this optimum micro-climate objective. 
Indeed, this regulation allows for achieving the desired environmental conditions and air quality that all poultry farms seek by 
lowering the concentrations of harmful gases, and excess heat and humidity produced inside the building. However, improper tuning 
of these controllable variables may result in a rise in the thermal energy through heating and/or electrical energy consumed by the fans 
or cooling pads, which their costs have currently climbed. Taking all of these factors into account is challenging, in general. 

Based on these foundations, we were successfully interested in modeling and command to analyze the studied system, develop 
novel control strategies, optimize the tuning parameters, and generate simulations that offer continuous control of temperature, 
relative humidity, pollutant gases, air velocity, and pressure inside the livestock building; and guarantee efficient risk handling of the 
poultry house environment. The climate control decision is not only based on the financial profitability of the production activity but 
also on the choice to increase the satisfaction of consumers who are becoming more and more concerned with product quality, respect 
animal health and welfare, and reduce energy consumed, greenhouse gases and ammonia emissions which is the cause of many pa
thologies and environmental problems. 

Numerous researchers and strategies have been explored in the literature to control poultry houses. For the purpose of controlling 
the temperature in broiler livestock buildings, Aborisade and Oladipo [3], Oladayo and Titus [4] developed PID and fuzzy-PID con
trollers. They discovered that the Fuzzy-PID strategy performed better than the PID controller concerning steady-state error and 
settling time. With the same objective, three different logic switches (ON-OFF, PID, fuzzy) were created by Refs. [2,5,6]. The fuzzy 
controller outperforms the other two controllers when comparing comfort performance regarding temperature and humidity, and 
energy consumption. While Soldatos et al. [7] used a successfully robust nonlinear feedback control with feedforward action to ensure 
minor deviations in the temperature and humidity, Daskalov et al. [8] confirmed the effectiveness of applying a nonlinear adaptive 
method for setting the same desired environmental parameters inside any air-conditioning animal building system. Xie et al. [9] 
established a multi-factor environmental control system based on the fuzzy control theory for swine buildings. The regulation strategy 
provided a comfortable environment for the growth of pigs regarding temperature, humidity, and NH3 concentration. 

In the field of greenhouse systems, Manonmani et al. [10] engaged in modeling and controlling the infrastructure using artificial 
neural networks to attain the desired growth conditions, such as humidity and temperature, for higher efficiency. Groener et al. [11], 
in his turn, designed an environmental open-source control system allowing the decreasing of the cost and size of sensors to automate 
processes, providing an excellent scientific proposal for further environmental regulation of poultry livestock buildings. 

The previously mentioned researches serve as a guide for the brooder buildings regulation. However, the poultry industry is 
particularly delicate and demands high levels of precision regarding the indoor environment automated control due to the sensitivity 
of the product. Therefore, the control strategy should be as appropriate as possible to the model despite the ignorance of all the po
tential perturbations. Due to the PID regulator’s limitations in this area and to better regulate the environment for poultry, a new, 
robust control strategy based on the active rejection of disturbances has been implemented. This control strategy’s approach is to 
predict and adjust all the actual plant’s unknown dynamics, disturbances, and parameter uncertainties while requiring the least 
amount of information [12]. The controller uses the extended state observer (ESO) to treat and reject the internal and external dis
turbances as total disturbance and a feedback controller to compensate for this existing disturbance and generate the desired signal. 
The ADRC control has been successfully used with a variety of systems, including control of DC motor [13], wind and power systems 
[14–16], mechanics [17] and robotics [18]. However, to the authors’ knowledge, no literature review work has employed ADRC 
control to regulate poultry environment building. 

Inspired by the numerous advantages of the ADRC controller, a comparative study of PID and ADRC controllers was carried out on 
the Multi-Input Multi-Output (MIMO) system for the climate control in the livestock building. It is important to note that, within the 
poultry house, there is a strong dependence and interaction between the microclimatic variables, which are impacted by themselves 
and the outside climate, necessitating system stabilization to prevent fluctuations and disturbances. To our knowledge, no research 
work in the literature has employed ADRC controller to regulate poultry environment building, and even at the classical PID level, 
there is no study dealing with the automation of a complete mathematical poultry house model with all the existing couplings and 
interactions of all the microclimatic variables (i.e., temperature, humidity, NH3 and CO2 concentrations, air velocity, and differential 
pressure). 

The strength of this research lies in the novelty of using a new innovative mathematical model that is complete and validated, 
which takes into consideration all the environmental variables of the poultry house and the strong interaction that connects them on 
the one hand and with the external climate on the other, for controlling, stabilizing, and supervising poultry house climate control. 
Furthermore, the improved method ensured the achievement of reference setpoints and avoidance of undesirable values with a quick 
rise time, small error, and optimal tuning of the controllable variables (i.e., ventilation rate, heating, and evaporative cooling), which 
lowers energy consumption and improves animal welfare. 

This study provides the literature with a reference for the climate control of the breeding system model for different species under 
varied climatic conditions and with diverse types of animal livestock structures. The developed approach can also be applied to other 
MIMO systems with interdependent variables and thus provides relevant and specific recommendations at the level of engineering 
applications, particularly in poultry farming and production. 

The main purpose of this work is to control the environmental factors inside the breeding building according to specific needs, using 
two control methods. This objective can be achieved through investigating, evaluating, developing adapted control laws (Multi-loop 
PID and ADRC) and then comparing the performance of each schema for the poultry environment breeding regarding all the multiple 
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microclimatic environment variables. A mathematical model of six outputs and three inputs is considered, and the original nonlinear 
system is linearized using the Jacobian linearization approach around the equilibrium point. In order to stabilize the system, reach the 
reference signals, and reject the disturbances during the breeding period employing these controllers, tunning methods must be 
applied to increase the performance of the process. Intelligent optimization algorithms are the most commonly studied parameter 
optimization methods, such as the Ant Colony algorithm, Particle Swarm Optimization (PSO), simulated annealing, and Genetic Al
gorithm. In this paper, the Genetic Algorithm (GA) heuristic method, PSO and Grey Wolf Optimization (GWO) will be used for tuning 
the value parameters of the PID and ADRC controllers, which have been tested in the MATLAB/Simulink environment. 

The rest of this paper is organized in three parts. The mathematical model used in poultry livestock building is presented in the first 
section. The theoretical analysis and modeling of the two multi-loop MIMO control strategies (PID and ADRC) are introduced in the 
second section, along with a description of the GA, PSO and GWO optimization algorithms employed in this work. Finally, these 
controllers were applied, and the final part displays the simulation results. 

2. Mathematical model 

The mathematical model for a closed poultry livestock building is expressed according to the previous works [19–21], and [22] as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dTin

dt
=

Qc − rEev

ρair.Vb.Cp
+

Nc.M0.75

100.ρair.Vb.Cp

(
854 − 12.2Tin − 0.228T2

in

)
−

(
Kg

ρair.Vb.Cp
+

DV

Vb

)

(Tin − Tout)

dHin

dt
=

Eev

ρair.Ve
+

10− 5.Nc. M0.75

ρair.Ve.hvi

(
546 − 7, 8Tin + 0.228T2

in

)
−

DV

Ve
(Hin − Hout)

dCNH3in

dt
=

31.A.Nc

24.3600.Vb
−

DV

Vb
(CNH3in − CNH3out )

dCCO2in

dt
=

ρCO2
.NC

Vb. 3600
(
340 − 40.7d + 5.59d2 − 0.0683d3) −

DV

Vb
(CCO2in − CCO2out )

Vair =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒
⃒

(
10RV

0.081(Tb − Tint)M− 0.08 − 10R ∗ mcoat
− 5.4

)

∗
M0.13

15.7

⃒
⃒
⃒
⃒
⃒

0.6

√
√
√
√

Δp =

[

0, 01 ∗ RHint.e
C1
Tint

+C2+C3Tint+C4T2
int+C5T3

int+C6 ln Tint

(

1 +
0, 62198

Hint

)]

− Pout

(1) 

In this regard, this work focuses on the dynamical model describing the state space form of the system through differential 
equations of the state vector; representing the indoor temperature (x1 = Tin), humidity (x2 = Hin), NH3 & CO2 concentrations (x3 =

CNH3in ,x4 = CCO2in ); and the system’s input related to the heating (u1 = Qc), evaporative cooling (u2 = Eev, ), and ventilation (u3 = Dv). 
Air velocity and differential pressure are considered the results of these state variables. The simplified model becomes: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
u1 − ru2

a
+ b
(
854 − 12.2x1 − 0.228x1

2) −

(
Kg

a
+

u3

Vb

)

(x1 − Tout)

ẋ2 =
u2

c
+ R

(
546 − 7.8x1 + 0.228x1

2) −
u3

Ve
(x2 − Hout)

ẋ3 = RNH3 −
u3

Vb
(x3 − CNH3out )

ẋ4 = RCO2 −
u3

Vb
(x4 − CCO2out )

(2)  

Where a = ρair.Vb.Cp, b = Nc .M0.75

100.ρair .Vb .Cp 
, c = ρair.Ve, R = 10− 5 .Nc .M0.75

ρair .Ve .hvi
. 

RCO2 =
ρCO2

.NC

3600.Vb

(
340 − 40.7d + 5.59d2 − 0.0683d3

)
, RNH3 = 31.A.Nc

24.3600.Vb
. 

2.1. Linearization of the model 

The Jacobian linearization of the nonlinear system yields the linearization of the dynamic systems (2) around the equilibrium point 
[23]. The simplified state space form of the linearized model can be computed as follows: 
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⎡

⎢
⎢
⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−

(

12.2b + 0.45bx1e +
Kg

a
+

u3e

Vb

)

0 0 0

R( − 7.8 + 0.45x1e) −
u3e

Ve
0 0

0

0

0

0
−
− u3e

Vb
0 0 −

u3e

Vb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
a

−
r
a

−
x1e

Vb

0
1
C

−
x2e

Ve

0

0

0

0

−
x3e

Vb

−
x4e

Vb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
u1
u2
u3

⎤

⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kg

a
+

u3e

Vb
0 0 0

0
u3e

Ve
0 0

0

0

0

0

u3e

Vb
0

0
u3e

Vb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

d1

d2

d3

d4

⎤

⎥
⎥
⎥
⎥
⎦

(3) 

Therefore, the state space of the model becomes approximately governed by: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥
⎥
⎥
⎥
⎦
= A

⎡

⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎦
+ B

⎡

⎢
⎣

u1

u2

u3

⎤

⎥
⎦+ Bd

⎡

⎢
⎢
⎢
⎢
⎣

d1

d2

d3

d4

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

y1

y2

y3

y4

⎤

⎥
⎥
⎥
⎥
⎦
= C

⎡

⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎦

(4) 

According to the new model (4), the system is characterized in the form of MIMO system (3 × 4), where A ϵ R4×4 represents the state 
matrix of the system, (B,Bd)ϵ (R3×4,R4×4) represent the input matrix, and the output matrix is C ϵ R4×4. The state vector is x ϵ R4. 

Where: 

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−

(

12.2b + 0.45bx1e +
Kg

a
+

u3e

Vb

)

0 0 0

R( − 7.8 + 0.45x1e) −
u3e

Ve
0 0

0

0

0

0
−

u3e

Vb
0 0 −

u3e

Vb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
a

−
r
a

−
x1e

Vb

0
1
C

−
x2e

Ve

0

0

0

0

−
x3e

Vb

−
x4e

Vb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,Bd =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kg

a
+

u3e

Vb
0 0 0

0
u3e

Ve
0 0

0

0

0

0

u3e

Vb
0

0
u3e

Vb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and C=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0

0

0

0

1 0

0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

2.2. State space to transfer function 

The deviation variable form of the linear state space (4) can be represented as: 
{

Ẋ = AX + BU + BdD
Y = CX

(5) 

By applying the Laplace transform, the general state space model (5) is developed to the corresponding transfer function: 
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{
sX(s) = AX(s) + BU(s) + BdD(s)

Y(s) = CX(s) (6)  

Where Y(s) and X(s) are the Laplace transformation vectors of y and x. equation (6) can also be written in function of the process 
transfer function matrix Gp and the disturbance transfer function matrix Gd (see Eqs. (7) and (8)): 

Y(s)=Gp(s)U(s) + GdD(s) (7)  

Where: 
{

Gp = C ∗ (sI − A)− 1
∗ B

Gd = C ∗ (sI − A)− 1
∗ Bd

(8)  

2.3. Equilibrium point 

We use the following equation (9) to determine the equilibrium point: 

f (x, u)= 0⟹

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1e − ru2e

a
+ b
(
854 − 12.2x1e − 0.228x1e

2) −

(
Kg

a
+

u3e

Vb

)

x1e

u2e

c
+ R

(
546 − 7.8x1e + 0.228x1e

2) −
u3e

Ve
x2e

RNH3 −
u3e

Vb
x3e

RCO2 −
u3e

Vb
x4e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0

0
0

0

⎤

⎥
⎥
⎥
⎥
⎦

(9)  

(x1e, x2e, x3e, x4e)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.19
b

⎛

⎝

(

12.2b +
Kg

a
+

u3e

Vb

)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

12.2b +
Kg

a
+

u3e

Vb

)2

+ 0.91b
(

854b +
u1e − ru2e

a

)
√ ⎞

⎠

Ve

u3e

(u2e

c
+ R

(
546 − 7.8x1e + 0.228x1e

2)
)

Vb.RNH3

u3e

Vb.RCO2

u3e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3. Control method 

Before developing a control strategy, it is essential to consider the stability, controllability and observability of the system. In this 
study, the system exhibits five real negative poles (− 0.00438, − 0.00438, − 0.00224, − 0.00224, − 0.00224), which implies that the 
system is stable. The system controllability and observability were investigating by determining the rank of their matrix as determined 
as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CTRB =
[
B AB A2B A3B

]

OBSV =

⎡

⎢
⎢
⎢
⎢
⎣

C

CA
CA2

CA3

⎤

⎥
⎥
⎥
⎥
⎦

The matrices have a full rank equal to 4, that is, the rank is exactly the number of states in the state-space model and hence, the 
system is controllable and observable. 

3.1. Relative gain array 

The Relative Gain Array (RGA) is a powerful tool for designing control structures and commonly used controllability criteria for 
determining the ideal pairings for multivariable process control systems and describing the interactions between the manipulated and 
controlled variables (inputs and outputs). The best RGA is one that is close to the unity matrix [24]. RGA of a nonsingular square 
complex matrix G is defined in equation (10) below, where ⨂ denotes the Schur product (i.e., element by element multiplication): 
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RGA(G)=Λ(G)≜ G⨂
(
G− 1 )T

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ11 λ12 ⋯ λ1n

λ21

⋮
⋱ ⋮

λn1 λn2 ⋯ λnn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10)  

Where λij is ijth the relative gain that connect the ith controlled variable with the jth manipulated variable: 

λij =

(

∂yi
/

∂uj

)

uk=0,k∕=j(

∂yi
/

∂uj

)

yk=0,k∕=i

(11)  

3.2. Multi-loop control strategy 

In contrast to the SISO system, where there is no interaction effect, the MIMO process control design is more difficult since each 
manipulated variable interacts with every other manipulated and controlled variable. As a result, the multiloop controller design is 
created taking into account all these interactions between the system’s variables, by integrating simplified loops that reflect all the 
existing connections, as shows in Fig. 1. In order to stabilize the industrial poultry house model in the setpoints, the MIMO process with 
three inputs (u1 = Qc, u2 = Eev, u3 = Dv) and four outputs (x1 = Tint , x2 = Hint,x3 = CNH3int , x4 = CCO2int ), disturbed by four parameters 
(d1 = Tout , d2 = Hout , d3 = CNH3out , d4 = CCO2out ), is used to integrate multi-controller configurations. According to Ref. [25], the 
following is the closed-loop response to the set-point: 

H(s)=
Y(s)

Yset(s)
= (I + GGc)

− 1GGc =
1
D

⎛

⎝
β11 ⋯ β14
⋮ ⋱ ⋮

β41 ⋯ β44

⎞

⎠ (12)  

Where H(s) is the closed-loop transfer function; 
G = [Gi,j; i, j= 1…4] is the process transfer function; 
Gc = diag [Gc,i; i= 1,…4] is the multi-loop controller with diagonal elements only; 
Y(s) and Yset(s) are the controlled variable and the set-point, respectively. 
D is the common denominator of the elements of the transfer function matrix H(s), and which is equivalent of the determinant of the 

matrix (I + GGc). 
By applying the Routh criterion, the stability of the closed-loop system depends on the characteristic equation (CE) of the de

nominator D. CE is regarded to specify the value range of the controllers for which the closed-loop system is stable. 
In this paper, two regulation strategies based on the combination of the multi-loop schemes with PID and ADRC controllers, were 

designed to considerably reduce the coupling effect and improve the system stability, as detailed below. 

3.3. PID controller 

The PID controller (Proportional-Integral-Derivative) is a control system for improving the performance of a closed-loop process. It 
remains the most widely used controller in industries, despite all the advancements in control over the past 50 years where its 
correction qualities apply to multiple physical quantities [26]. In order to maintain the process output Y by quickly reaching the system 
setpoint Yset, the PID reduces the error ε(t) observed between this setpoint and the direct measurement by three actions: the pro
portional gain Kp, the integral gain Ki, and the derivative gain Kd, that guarantee the elimination of control deviation errors and the 
management of rapid process movements, as illustrated in Fig. 2, which encapsulates the parallel type’s most often used architecture. 

The expression, in the time domain, of the control law is the following: 

Fig. 1. Block diagram of multi-loop controller for n*n MIMO process.  
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U(t)=Kp.ε(t) + Ki

∫ t

0
ε(τ).dτ + Kd

dε(t)
dt

(13)  

Where U(t) is the control variable and ε(t) is the difference between the setpoint and the measured output ε(t) = Yset − Y. In the 
complex domain of the Laplace variable s, where Gc(s) is the PID controller transfer function, equation (13) becomes: 

Gc(s)=Kp +
Ki

s
+ sKd (14)  

In order to obtain the best overshoot percentage, settling time, and rise time, the PID parameters have to be adjusted. In this case study, 
the tunning methods used to adjust Kp, Ki, Kd, are the Genetic Algorithm, PSO, and GWO algorithm. 

3.4. ADRC controller 

Active disturbance rejection control is a robust control method developed by Han [27], which is based on the principle of esti
mating and treating both internal (related to modelling uncertainties and measurement noise) and external disturbances (such as the 
outdoor environment parameters) as a total disturbance of the system in real-time by an extended state observer (ESO) and 
compensating its effects by a feedback controller [28]. 

We consider a first order system model of the controlled plant [14]: 

ẏ= f (y, d, t) + b0u (15)  

where y, u and d are respectively the output, input, and external disturbance of the system. f(y, d, t) represent the total disturbance and 
assumed to be unknow, and b0 is the gain parameter of the controller. The state space representation of the system is therefore 
described as [29,30]: 

⎧
⎨

⎩

ẋ1 = x2 + b0u
ẋ2 = ḟ
y = x1

(16) 

To provide an estimation of the states x = [x1,x2], an ESO can be developed with the following form [17,18,31]: 
{
̂̇x1 = x̂2 + β1(y − x̂1) + b0u

̂̇x2 = β2(y − x̂1)
(17)  

Where x̂1, x̂2 provide the estimated values of x1, x2, respectively, and β1 = 2ω0, β2 = ω0
2 are the observer gains values. ω0 represents 

the observer bandwidth which can be determined using pole placement technique [32]. 
The perturbation is eliminated through the control input defined by: 

u=
u0 − f̂

b0
(18)  

In this case, a simple proportional controller (Eq. (19)) with gain value Kp is used to operate the system into the reference signal yset . 

u0 =Kp(yset − ŷ) (19)  

where Kp = ωc, the desired feedback control gain [33]. 

Fig. 2. Block diagram of PID controller.  
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The structure diagram of linear ADRC is illustrated in Fig. 3. The parameters that need to be adjusted in ADRC are ω0, ωc and b0. The 
Genetic Algorithm Optimization, PSO and GWO algorithm are employed in this paper as the tuning strategies to regulate these setting 
parameters. 

4. Algorithm’s optimization 

4.1. Genetic algorithm 

Genetic algorithm is one of the most often used evolutionary optimization methods, which is suitable for many different optimi
zation issues, particularly those involving approximations and modeling uncertainty [34]. Based on a heuristic approach, the GA was 
developed by John Holland in 1975, which is a method of resolving optimization problems by examining adaptation in both natural 
and artificial systems [35]. At each stage, the genetic algorithm chooses individuals of the present population to serve as parents and to 
bear the future generation’s offspring. The selection process is based on the individual’s adaptability and scores to produce “the most 
suitable” individual who will pass on their traits and enable the population to evolve into a successful generation [36,37]. Two main 
rules are applied to produce the next generation from the current one.  

- Crossover rules combine two parents to create the next generation’s children;  
- Mutation rules subject each parent to random modifications to produce children. 

The implemented Genetic Algorithm of the poultry house is presented in Fig. 4 flowchart. In our optimization design method, the 
GA considers the PID and ADRC controllers’ parameters adjust (Kp, Ki, Kd,ω0, ωc and b0) as individuals, which are coded, reproduced, 
and assessed while taking into account the fitness function of each parameter. While creating a new generation, only the selected 
individuals are combined and the evaluation cycle is repeated until the algorithm delivers the optimal solution to the system with the 
best fitness function. 

4.2. Particle swarm optimization 

Particle Swarm Optimization is a population-based stochastic optimization technique developed by Eberhart and Kennedy in 1995, 
inspired by the social behavior of birds or schools of fish [38]. Since the approach is straightforward and highly effective at searching, 
the algorithm has been applied in various domains that call for parameter optimization in a high-dimensional space [39]. 

In the PSO algorithm, a flock of bird is randomly initialized, where each potential solution (bird) is called a particle, which rep
resents one of the parameters to be optimized [40]. At each iteration k, to find the global solution, the individual keeps moving with a 
velocity that enables them to update their positions. Each particle’s speed and position are stochastically adjusted during the repeats to 
reach the best individual position Pb for each particle and the best global solution Gb for the entire group (swarm). The updated velocity 
vi and position xi of the ith particle are given by Ref. [41]: 

{
xi(k + 1) = xi(k) + vi(k + 1)

vi(k + 1) = ω.vi(k) + c1r1
(
Pb,i − xi(k)

)
+ c2r2(Gb − xi(k) )

(20)  

Where ω represents the inertia weight of particles. The parameters c1 and c2 are known as the cognitive and social coefficients. r1 and r2 
are two random numbers obtained from a uniform distribution in the range [0, 1]. This process of updating is repeated until a stop 

Fig. 3. Structure of ADRC controller.  
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defined condition is satisfied. The flowchart of the designed PSO algorithm applied to the poultry house is shown in Fig. 5. In our case 
study, the PSO considers the PID and ADRC controller’s parameters as the particles to optimize until to find the best personal and 
global solution according to the fitness function. 

4.3. Grey wolf optimization 

Grey Wolf Optimization is a new metaheuristic algorithm based principally on the predatory behavior of wild grey wolf groups. 
Mirjalili et al. [42] introduced this algorithm in 2014, borrowing inspiration from the communal hunting and prey-seeking qualities of 
grey wolves, in which the group works collectively to optimize their search. The wolf population is classified into four major groups 
representing the social hierarchical levels (Fig. 6), where each wolf has specific tasks and responsibilities to accomplish through 
collaboration in the hunting process, which is divided into tracking, chasing, and attacking the prey [43]. 

The alpha wolves are in the first rank and symbolize the dominant, leading the pack and making decisions such as hunting. Second, 
beta wolves are regarded as prospective candidates for wolf alpha, helping to make decisions. The third rank is wolf delta, also known 
as subordinate explorers, responsible for tasks such as scouting and hunting. The omega wolves are the lowest-ranking wolves who 
keep the wolf pack together and follow the other’s orders [44]. 

During chasing phase, the prey position is defined and the search agents (wolves) adjust continuously their position based on the 
best solution according to equation (21) below: 

Fig. 4. The proposed functional Genetic Algorithm on the controlled system.  
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Fig. 5. The designed PSO Algorithm on the controlled system.  

Fig. 6. Hierarchy of grey wolf.  
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{
D =

⃒
⃒C • Xp(t) − X(t)

⃒
⃒ • ω

X(t + 1) = Xp(t) − A • D (21)  

Where D represents the distance between the grey wolf and the prey in the current iteration t, and Xp(t) and X(t) are the prey and wolf’s 
location, respectively. A and C are coefficient vector, computed as: 

{
A = 2a • r1 − a

C = 2 • r2
(22)  

Where a is the convergence factor, linearly decreased from 2 to 0 in each iteration, and [r1, r2] are random vector between [0,1]. 
According to the ranks, α, β, δ represent the optimum prey position selected as a guide for other wolves towards prey, and updated 
several times to adjust the position of omega, according to equation (23): 

Fig. 7. The designed GWO Algorithm on the controlled system.  
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⎧
⎨

⎩

Dα = |C1 • Xα − X|
Dβ =

⃒
⃒C2 • Xβ − X

⃒
⃒

Dδ = |C3 • Xδ − X|
(23)  

Where Dα, Dβ, and Dδ are the adjusted distance between α, β, and δ position to the other wolves, and C1, C2, and C3 are three coefficient 
vectors obtained using eq. (22). X is the position of other wolf (ω) updated using α, β, δ position (Xα, Xβ, Xδ) and coefficient vectors (A1, 
A2, A3) computed using eq. (22): 

X(t+ 1)=
1
3
(
|Xα − A1 • Dα| +

⃒
⃒Xβ − A2 • Dβ

⃒
⃒+ |Xδ − A3 • Dδ|

)
(24) 

The flowchart of the designed GWO algorithm applied to the poultry house is shown in Fig. 7. In our case study, the GWO considers 
the PID and ADRC controller’s parameters as the wolves’ positions to optimize until to find the best solution according to the fitness 
function. 

4.4. Performance evaluation criteria 

Tuning the PID and ADRC parameters by GA, PSO and GWO algorithms, requires choosing the best fitness function for optimal 
results. The specific performance criteria most used in the industry is the Integral Time multiplied by Absolute Error (ITAE). This 
criterion is applied to the optimization system to determine which values are the most adapted to GA, PSO, and GWO, and will produce 
the best results for the model poultry house. 

The objective function is determined as: 

ITAE=
∑T

0
t|e(t)| (25)  

Where e(t) is the error signal in time domain. 

5. Simulation results and discussion 

5.1. State space model 

The actual plant data utilized in the poultry house model was gathered, in the summer season, from a commercial broiler livestock 
building in the Mediterranean region (Northwest Morocco) with a capacity of 25000 broilers and house dimensions of 120 m in length, 
12.4 m in width, and 3,85 m in height (see Fig. 8). The different parameters that were used to simulate and test the suggested con
trollers are mentioned in Table 1 below. 

After calculation, the transfer functions of the poultry house model are determined as: 

Fig. 8. The poultry house system.  
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Y(s) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.731 ∗ 10− 3

s + 0.004384
− 0.0001857
s + 0.004384

− 0.007583
s + 0.004384

0

− 1.4∗10− 13

s2 + 6.62 ∗ 10− 3 s + 9.83∗10− 6

2.748 ∗ 10− 4 s + 1.205 ∗ 10− 6

s2 + 6.62 ∗ 10− 3 s + 9.83∗10− 6
− 3.956∗10− 6 s − 1.779 ∗ 10− 8

s2 + 6.62 ∗ 10− 3 s + 9.83∗10− 6 0

0

0

0

0

− 0.002246
s + 0.002242

0

− 0.002967
s + 0.002242

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U(s)

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0031
s + 0.0044

0 0 0

− 1.29 ∗ 10− 9

s2 + 0.0066s + 9.8298 ∗ 10− 6
0.0022

s + 0.0022
0 0

0

0

0

0

0.0022
s + 0.0022

0

0
0.0022

s + 0.0022

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D(s)

The relative gain array for the poultry house model is obtained as: 

RGA =

⎡

⎢
⎢
⎣

1.000001246 − 1.245 ∗ 10− 6
− 3.76 ∗ 10− 7 0

− 1.245 ∗ 10− 6 1.000001245 − 2.76 ∗ 10− 8 0

0

0

0

0

0.3642

0.6357

0

0

⎤

⎥
⎥
⎦

According on the findings, we can infer that the system’s variables are coupled and interacting. The recommended controller 
pairing is 1-1/2-2/3-3/4-3, which means using u1 to control y1, u2 to control y2, and u3 to control y3 and y4. 

5.2. Multi-loop control stabilization 

The characteristic equation of the poultry house is: 

CE=(1 + Gc3G33)[(1+Gc1G11)(1+Gc2G22) − Gc1Gc2G12G21] = 0 

After calculation, the equation becomes: 

CE= a3s3 + a2s2 + a1s + a0 = 0  

With: 

a3 = 2.65 ∗ 104  

a2 = 2.4 ∗ 106 + 7.2 ∗ 10− 2Gc1 + 0.72Gc2 − 1.21 ∗ 102Gc3  

a1 = 2.99+Gc1
(
3.22 ∗ 10− 5 − 1.33 ∗ 10− 7Gc3 + 1.98∗10− 5Gc2

)
+ Gc2

(
4.78 ∗ 10− 2– 3.36 ∗ 10− 2Gc3

)
– 0.805Gc3  

a0 = 5.8 ∗ 10− 4 − Gc3
(
1.2 ∗ 10− 3 + 7.4 ∗ 10− 8Gc1 + 1.47 ∗ 10− 4Gc2 + 9.2 ∗ 10− 9Gc1Gc2

)
+Gc2

(
7.14 ∗ 10− 5 + 4.46 ∗ 10− 9Gc1

)
+ 3.36

∗ 10− 8Gc1 

To satisfy the stability criterion, the parameters of the characteristic equation CE, which is a third-order system, must respect the 
Routh stability conditions: 

Table 1 
Input parameters used in the mathematical model.  

Parameters Values Parameters Values 

ρair 1,2 kg/m3 Kg 3127 W/◦C 
ρCO2 

1,87 kg/m3 r 0,680 Wh/g 
Cp 1006 J/kg K Nc 25000 (birds) 
Vb 3033m3 Ve 3033m3 

hvi 2,5 0.103 kJ/kg M 0,935 Kg 
d 25 (day’s number) A d − 6  
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ai > 0, i = {0, 1, 2, 3} and a2a1 > a3a0 

These conditions will be verified through the optimization algorithms employed in the study. 

5.3. Multi-loop PID and ADRC controller schemes responses 

Based on the performance indices, the effectiveness of the closed-loop poultry house employing the GA, PSO and GWO algorithms 
with multi-loop PID and ADRC controllers is examined using MATLAB/Simulink simulations. Table 2 contains a list of the initial 
parameters that were applied to simulate the GA, PSO, and GWO algorithm, and Fig. 9 represents the Simulink control design of the 
application of the algorithms to the Multi-loop PID and ADRC controllers. 

To verify the effectiveness of the proposed method, we conduct some tests to assess the closed-loop system’s tracking performance 
and disturbance rejection. For the starting simulation, the desired indoor set points and external disturbances were set according to the 
guidelines based on the birds’ age and weight, as shown in Table 3. 

The simulation results of the closed-loop response of the indoor temperature, humidity, NH3 and CO2 concentrations setting points 
tuned by the PID and ADRC controllers are illustrated in Figs. 10–13. At t = 100s, the set point for temperature is adjusted from 24 to 
27 ◦C, from 0.0125 to 0.013 kgH2O/kg dry-air for humidity, from 10 to 7 mg/m3 for NH3 concentration, and from 1500 to 1200 mg/m3 

for CO2 concentration. A step load disturbance was applied at t = 160s of d1 = 5 ◦C, d2 = 0.002 kgH2O/kg dry-air, d3 = 5 mg/m3, and d4 
= 400 mg/m3 for the same variables, respectively, to confirm, in addition, the ability of the proposed method to suppress different load 
disturbances. The time domain specifications, namely the rise time, settling time, and overshoot are employed to evaluate the 
controller performance for PID and ADRC control using GA, PSO and GWO algorithm. Additionally, the Integral Time multiplied by 
Absolute Error (ITAE) and the average runtime are used as another set of performance indices to evaluate the most adopted algorithm. 
The numerical performance measures are listed in Table 4, while the optimal controllers’ parameters found are summarized in Table 5. 

The dynamic responses for the poultry house applying the three distinct optimization algorithms (GA, PSO, and GWO) are shown in 
Figs. 10–13. The multiple set points tracking is achieved for the four controlled variables converging as their references. As can be 
observed, despite the presence of various disturbances (at t = 0s and t = 160s), the proposed methods can still overcome the influence 
of load disturbances so that the controlled variables quickly stabilize around their setpoints. It can be seen from the partially enlarged 
view that the PSO-ADRC controller provides a better response for temperature, humidity, and gas concentrations response with a very 
smooth deviation in tracking the desired set points, and the best disturbance rejection. In fact, the ADRC control strategy performs 
dynamically better than PID control, the PSO and GWO produced agreeable results when compared to the solutions provided by the GA 
approach. 

As indicated in Table 4, the statistical analysis inferred that the quicker rise time was noticed with the PSO-ADRC at the level of 
temperature and CO2 concentration (0.4336s and 0.3036s, respectively), and with the GWO-ADRC at the level of humidity and NH3 
Concentration (2.978s and 0.3046s, correspondingly), and the minimum settling time was recorded with the PSO-ADRC for all the 
variables (1.4931s for temperature, 4.4130s for humidity, 1.6920s and 1.5026s for NH3 and CO2 concentration, respectively) 
compared to the GA/GWO-ADRC and PID controller system. The minimum overshoot was observed in GA-PID with 0.0042 % for 
temperature, in PSO-ADRC with 0.0337 % for humidity, and in PSO-PID with 2.7059 % and 1.9432 % for NH3 and CO2 concentration, 
respectively. The ITAE generated by the PSO-ADRC controller has the lower value for temperature with 6.393 (◦C) s2, humidity with 
0.458 (kgH2O/kg dry-air).s2, and CO2 concentration with 10.28 (mg/m3).s2. However, the lower ITAE for NH3 concentration was noted 
with GWO-ADRC with a value of 3.75 (mg/m3).s2. In addition, the GWO algorithm completed the simulation in less time than the GA 

Table 2 
Input parameters of GA, PSO, and GWO algorithm.   

Parameters Values 

Genetic Algorithm Generation 250 
Population size 50 
Lower bound [0 10] 
Upper bound [100 1000] 
Initial range [-10 10] 
Selection function Tournament 
Elite count 0.05* Population size 
Crossover fraction 0.8 
Mutation function Adaptive feasible 

PSO Algorithm Number of particles for initialization 15 
Maximum Iteration 200 
Lower bound [0 10] 
Upper bound [100 1000] 
cognitive and social coefficients (c1, c2) 2 
Inertia weight ω 0.5 

GWO Algorithm Population size 50 
Maximum Iteration 200 
Lower search space [0 10] 
Upper search space [100 1000] 
convergence factor a 2  
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and PSO algorithms, with an average running time of 4 h and 28 min, compared to 5 h and 34 min for the PSO algorithm and 7 h and 26 
min for the GA algorithm. Depending upon all these results, it can be remarked that the PSO-ADRC controller has the least ITAE and the 
shortest settling time, however, the GWO provides, in general, the faster rise time for both PID and ADRC controllers. 

These results are in line with earlier studies that, when a state PID-feedback controller is applied to a temperature-humidity model 
of broiler house, the settling times for temperature and humidity are 1,49 and 4,37 s, respectively, and the rise times are 1,21 and 3,76 
s, for the same variables [45]. Whereas, Daskalov et al. [8] developed a modern control theory based on nonlinear adaptive tem
perature and humidity control in animal buildings. The method provided fast tracking of different settling values, and guaranteed good 

Fig. 9. Simulink presentation of PID and ADRC controllers for poultry house system.  

Table 3 
Input parameters of set points and disturbances.  

Parameters Set point Disturbance 

Temperature (◦C) 24 28 
Humidity ratio (kgH2O/kg dry-air) 0.0125 0.014 
NH3Concentration (mg/m3) 10 1 
CO2 Concentration (mg/m3) 1500 720  

Fig. 10. Dynamic response of temperature with different disturbances.  
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disturbance rejection with a maximum error less than 0.5 ◦C for temperature and 0.5 g/kg for humidity. 
Using a fuzzy decoupling PID control strategy, an enclosed laying brooder house’s temperature and humidity environmental model 

was controlled, and the findings demonstrate the effectiveness of the fuzzy PID control model over the manual control, with a 
maximum deviation of 0.5 ◦C for temperature and 4.93 % for relative humidity between the variable and setpoint [2]. Lahlouh et al. 
[46], in their turn, carried out a comparative study between a MIMO PID-fuzzy logic, fuzzy logic, and On/Off controllers on a broiler 
house prototype. The results showed that the PID-fuzzy logic controller is more efficient with a root mean square error of 0.8 ◦C for 
temperature and 1.34 % for relative humidity, and a mean value of 2461 ppm and less than 5 ppm for CO2 and NH3 concentration. With 
the same approach, Xie et al. applied a multi-factor fuzzy control in swine building and discovered good results for the indoor tem
perature and relative humidity, with a maximum relative error of 5 % and 6.3 %, respectively, between the variables and their 

Fig. 11. Dynamic response of NH3 Concentration with different disturbances.  

Fig. 12. Dynamic response of humidity with different disturbances.  
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setpoints. However, the NH3 concentration was less than the setpoint (9.1 mg/m3) and ranged from 2 to 3.7 mg/m3 [9]. The selection 
of fuzzy logic stems mainly from its simplicity of implementation, as it relies just on plant information sources and does not necessitate 
a mathematical model of the system. 

No application has been found for a comparative results overview at the level of the entirety of the six mathematical model var
iables (i.e., temperature, humidity, gas concentrations, air velocity, and differential pressure) or even at the level of the ADRC 
controller approach in the field of breeding systems. However, the parameters of the ADRC controller confirm the results of the studies 
carried out on the ADRC tunning in other areas, which consist of choosing the parameters according to the desired settling time Ts 

(ωc ≈ 4
/Ts 

and ω0 ≈ 3 − 10 ωc) [47,48]. Although, the GA algorithm was the closest and the most accurate regarding these two criteria. 

In general, PSO and GWO produced similar outcomes in terms of performance; however, the PSO was praised for its convergence 
speed and precision in reference tracking. The GWO, on the other hand, was distinguished by its speed in terms of global execution 
procedure and rise time, with the capacity to converge swiftly in comparison to the other algorithms, and the ease of configuration 

Fig. 13. Dynamic response of CO2 concentration with different disturbances.  

Table 4 
Comparison of performance indicators of different control methods.  

Loop Controller Optimization’s Method Rise time Settling time Overshoot ITAE 

Temperature PID GA 6.6114 11.7839 0.0042 17.55 
PSO 1.1377 20.1745 10.8761 12.08 
GWO 1.0356 20.5672 11.234 15.78 

ADRC GA 0.7208 5.5433 20.2029 8.24 
PSO 0.4336 1.4931 16.6426 6.393 
GWO 0.7945 7.2365 21.0346 8.567 

Humidity PID GA 4.7801 30.8756 17.0448 0.611 
PSO 3.4248 27.0652 15.456 0.478 
GWO 3.014 28.685 15.158 0.608 

ADRC GA 3.2168 5.6404 1.6448 0.573 
PSO 3.0160 4.4130 0.0337 0.458 
GWO 2.978 4.785 1.9678 0.489 

NH3 PID GA 0.8125 9.5194 3.6380 48.4 
PSO 0.7397 7.4809 2.7059 33.95 
GWO 0.6967 8.245 3.857 44.47 

ADRC GA 0.5032 2.3625 15.3942 21.58 
PSO 0.3795 1.6920 9.9058 11.86 
GWO 0.3046 1.857 20.576 3.75 

CO2 PID GA 0.8118 8.9192 3.6697 84.85 
PSO 0.8596 6.3842 1.9432 60.05 
GWO 0.7201 6.0176 5.756 43.745 

ADRC GA 0.6414 4.6743 28.7542 35.67 
PSO 0.3036 1.5026 31.7637 10.28 
GWO 0.610 7.195 33.56 11.67  
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since it required fewer configuration parameters for the optimization process compared to GA and PSO algorithms. Although the GA 
algorithm takes a longer running time to tune the parameters’ controllers and requires more iterations to approximate the optimal 
solution, its results could be comparable to those of PSO and GWO. Both PSO and GWO deserve consideration in future applications. At 
the control level, the PID also provides satisfactory results in reference tracking, regulating, and stabilizing. However, the ADRC 
controller remained more advantageous, especially in disturbance rejection. 

The variations in the control signals, namely heating u1, evaporative cooling u2, and ventilation rate u3, are shown in Fig. 14, 
respectively, indicating the evolution of the manipulated variables throughout the regulation of the controlled outputs. It is observed 
that both PID and ADRC controllers meet the requirements, although the PSO-ADRC once again outperforms the other schemes. The 
increased values of evaporative cooling and ventilation rate and nearly no use of the heating meet the recommended measures during 
the summer season. 

The air velocity and differential pressure are the parameters related directly to the environmental variables; they also must be taken 
under consideration to achieve maximum bird performance and the highest maintenance of the microclimatic conditions below un
desirable limit values. Thus, they are considered to be one of the system outputs. The recommended average air speed at this bird age is 
between 0.4 and 0.7 m/s, while the mean recommended differential pressure inside the poultry house is between 10 and 40 Pa. The 
response of these variables is obtained from the temperature and humidity model and presented in Fig. 15. The simulation outcomes 
support the PID and ADRC control model’s efficiency again and better satisfy the brood house’s requirements for controlling tem
perature and humidity. Indeed, the airspeed and differential pressure will decrease if we attempt to raise the temperature and humidity 
inside the building as in the simulation. However, the ADRC controller consistently delivers better performance while maintaining 
recommended thresholds and converging to the references. 

6. Conclusion 

In this paper, an analytical study was carried out on the mathematical model relating to a mechanical ventilation broiler house and 
its micro-environmental variables in the Mediterranean area. Two controller strategies, PID and ADRC, have been developed and 
tested to control and regulate the indoor climate of the poultry house system based on a multi-loop control configuration since the 
poultry house is considered as a MIMO system where all the variables are coupled and interacting. Afterward, the metaheuristic 
approaches Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) were used to tune and 
identify the optimal gain parameters of each PID and ADRC controller implemented in each loop of the poultry house system. The 
different parameters used to simulate and test the proposed controllers are related to the Mediterranean broiler livestock building 
mentioned under the summer season. 

In general, the two control modes with the three optimization approaches were successful in stabilizing, regulating, and controlling 
the various controlled variables. However, the PSO-ADRC control method dramatically improved dynamic performance with the 
shortest settling time (1.4931s for temperature, 4.4130s for humidity, 1.6920s and 1.5026s for NH3 and CO2 concentration, respec
tively), and the minimum ITAE for temperature (6.393 (◦C) s2), humidity (0.458 (kgH2O/kg dry-air).s2), and CO2 concentration (with 
10.28 (mg/m3).s2). Whereas, The GWO-ADRC recorder great results in term of rise time, running time of the optimization and small 
error deviation. In summary, the response curves of the PSO/GWO-ADRC controller, obtained by the simulations performed under 
different setpoints and step load disturbances, offer the stronger reference tracking and disturbance rejection abilities, improving fast 
stabilization time, minimal error, and strong robustness. 

Consequently, these suggested control strategies can serve as a valuable guide for controlling, adjusting, and stabilizing actual 
indoor climate poultry house systems. This is especially true given the advantage that the ADRC control approach offers despite all the 
real plant’s unknown dynamics, disturbances, and parameter uncertainties while requiring the least amount of data. This methodology 
was intended to be applied to other mechanically ventilated animal buildings, including all seasons, and may be expanded to other 

Table 5 
Optimized controllers’ parameters.    

Loop 1 Loop 2   

GA PSO GWO GA PSO GWO 

PID Kp 834.76 947.02 968 1000 964.67 896 
Ki 83.758 95.87 92.78 73.447 76.332 95.56 
Kd 0.1785 0.0957 0.124 0.9675 0.1786 0.1056 

ADRC b0 0.00037 0.000274 0.00027 0.00028 0.0002 0.0002746 
ωc 0.5002 0.09 0.08 0.90121 0.01 0.013 
ω0 0.6690 0.9 0.8 0.0014191 0.9 1.012   

Loop 3 Loop 4   
GA PSO GWO GA PSO GWO 

PID Kp 1012.712 984.783 1255.1 1002.01 938.76 1267 
Ki 102.46 74.678 156 95.352 86.823 265 
Kd 0.0657 0.0235 0.0134 0.267 0.1678 0.0965 

ADRC b0 0.00039 0.00032 0.0003 0.0001648 0.00339 0.00033 
ωc 0.0012 0.011 0.02 0.0011 0.32603 0.22603 
ω0 0.8 0.93 1.0023 0.9 0.57518 0.47518  
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applications in various fields. 

Data availability statement 

All data generated or analyzed during this study are included in this published article. 

Funding statement 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. 

CRediT authorship contribution statement 

Narjice Elghardouf: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Supervision, 
Validation, Visualization, Writing – original draft, Writing – review & editing. Yassine Ennaciri: Formal analysis, Investigation, 

Fig. 14. Manipulated variables’ responses.  

N. Elghardouf et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e29579

20

Software, Supervision, Validation, Visualization. Ahmed Elakkary: Project administration, Supervision, Validation, Visualization. 
Nacer Sefiani: Project administration, Supervision, Validation, Visualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

References 

[1] A. Jahedi, , et al.A. Zarei, Evaluation of thermal energy consumption in broiler farms and saving strategies, Arq. Bras. Med. Vet. Zootec. 72 (6) (déc. 2020) 
2355–2364, https://doi.org/10.1590/1678-4162-12051. 

[2] L. Gao, M. Er, L. Li, P. Wen, Y. Jia, , et al.L. Huo, Microclimate environment model construction and control strategy of enclosed laying brooder house, Poultry 
Sci. 101 (6) (2022) 101843, https://doi.org/10.1016/j.psj.2022.101843 juin. 

[3] D.O. Aborisade, , et al.S. Oladipo, Poultry house temperature control using fuzzy-PID controller, Int. J. Eng. Trends Technol. 11 (6) (mai 2014) 310–314, 
https://doi.org/10.14445/22315381/IJETT-V11P259. 

[4] B.O. Oladayo, A.O. Titus, Pid temperature controller system for poultry house system using fuzzy logic, American Journal of Engineering Research (AJER) 5 (n◦

6) (2016) 183–188. 
[5] M. Azaza, K. Echaieb, F. Tadeo, E. Fabrizio, A. Iqbal, et A. Mami, Fuzzy decoupling control of greenhouse climate, Arab. J. Sci. Eng. 40 (9) (2015) 2805–2812, 

https://doi.org/10.1007/s13369-015-1719-5. 
[6] G. Ulpiani, M. Borgognoni, A. Romagnoli, , et al.C. Di Perna, Comparing the performance of on/off, PID and fuzzy controllers applied to the heating system of an 

energy-efficient building, Energy Build. 116 (mars 2016) 1–17, https://doi.org/10.1016/j.enbuild.2015.12.027. 
[7] A.G. Soldatos, K.G. Arvanitis, P.I. Daskalov, G.D. Pasgianos, , et al.N.A. Sigrimis, Nonlinear robust temperature–humidity control in livestock buildings, Comput. 

Electron. Agric. 49 (3) (déc. 2005) 357–376, https://doi.org/10.1016/j.compag.2005.08.008. 

Fig. 15. Air velocity and differential pressure responses.  

N. Elghardouf et al.                                                                                                                                                                                                   

https://doi.org/10.1590/1678-4162-12051
https://doi.org/10.1016/j.psj.2022.101843
https://doi.org/10.14445/22315381/IJETT-V11P259
http://refhub.elsevier.com/S2405-8440(24)05610-X/sref4
http://refhub.elsevier.com/S2405-8440(24)05610-X/sref4
https://doi.org/10.1007/s13369-015-1719-5
https://doi.org/10.1016/j.enbuild.2015.12.027
https://doi.org/10.1016/j.compag.2005.08.008


Heliyon 10 (2024) e29579

21

[8] P.I. Daskalov, K.G. Arvanitis, G.D. Pasgianos, , et al.N.A. Sigrimis, Non-linear adaptive temperature and humidity control in animal buildings, Biosyst. Eng. 93 
(1) (janv. 2006) 1–24, https://doi.org/10.1016/j.biosystemseng.2005.09.006. 

[9] Xie Qiuju, Su Zhongbin, Ji-Qin Ni, Zheng Ping, Control system design and control strategy of multiple environmental factors in confined swine building, Trans. 
Chin. Soc. Agric. Eng. 33 (6) (2017) 163–170. 

[10] A. Manonmani, T. Thyagarajan, M. Elango, , et al.S. Sutha, Modelling and control of greenhouse system using neural networks, Trans. Inst. Meas. Control 40 (3) 
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rejection control for robot manipulator, J. Robot. Control JRC 3 (5) (sept. 2022) 622–632, https://doi.org/10.18196/jrc.v3i5.14791. 

[19] I. Lahlouh, A. El Akkary, , et al.N. Sefiani, Mathematical modelling of the hygro-thermal regimeof a poultry livestock building: simulation for spring climate, Int. 
Rev. Civ. Eng. IRECE 9 (2) (2018) 79–85, https://doi.org/10.15866/irece.v9i2.15132, mars. 

[20] A. Costantino, E. Fabrizio, Building design for energy efficient livestock, in: N.M. Holden, M.L. Wolfe, J.A. Ogejo, E.J. Cummins (Eds.), Introduction to 
Biosystems Engineering, 2020, https://doi.org/10.21061/IntroBiosystemsEngineering/Livestock_Housing_Energy. Housing. 

[21] N. Elghardouf, I. Lahlouh, A. Elakkary, , et al.N. Sefiani, Towards modelling, and analysis of differential pressure and air velocity in a mechanical ventilation 
poultry house: application for hot climates, Heliyon 9 (1) (2023) e12936, https://doi.org/10.1016/j.heliyon.2023.e12936 janv. 

[22] N. Elghardouf, I. Lahlouh, A. Elakkary, , et al.N. Sefiani, Mathematical modelling of gas concentrations in commercial broiler houses: simulations and validation 
in summer season, Int. Rev. Civ. Eng. IRECE 14 (3) (2023) 230, https://doi.org/10.15866/irece.v14i3.21766, mai. 

[23] U.C. Berkeley, A. Packard, Jacobian Linearizations, equilibrium points. ME 132, Spring, 2005, pp. 156–177. 
[24] M. Ghadrdan, « toward a systematic control design for solid oxide fuel cells, in: Design and Operation of Solid Oxide Fuel Cells, Elsevier, 2020, pp. 217–253, 

https://doi.org/10.1016/B978-0-12-815253-9.00007-0. 
[25] N. Vu Truong, M. Lee, Optimal design of multi-loop PI controllers for enhanced disturbance rejection in multivariable processes, in: Proc. 3rd WSEASIASME Int. 

Conf. Dyn. Syst. Control, School of Chemical Engineering and Technology Yeungnam University: Gyeoungbuk, Korea, 2007. Available online: http://psdc.yu.ac. 
kr. (Accessed 15 January 2023). 
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