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Lactic acid bacteria are industrially important microorganisms recognized for their
fermentative ability mostly in their probiotic benefits as well as lactic acid production for
various applications. Nevertheless, lactic acid fermentation often suffers end-product
inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to
the solubility of the undissociated lactic acid within the cytoplasmic membrane and
insolubility of dissociated lactate, which causes acidification of cytoplasm and failure
of proton motive forces. This phenomenon influences the transmembrane pH gradient
and decreases the amount of energy available for cell growth. In general, the restriction
imposed by lactic acid on its fermentation can be avoided by extractive fermentation
techniques, which can also be exploited for product recovery.
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INTRODUCTION

For decades, Lactic acid bacteria (LAB) fermentation is found to be applied in dairy industry, wine
and cider production, fermented vegetable products production and meat industry (Taskila and
Ojamo, 2013). Nowadays, people are aware that diet has an important role in promoting health
and preventing disease as a way of spending a healthy lifestyle (Soomro et al., 2002; Pessione, 2012;
Nuraida, 2015). Therefore, trend for foods containing probiotic cultures are increasing (Sreekumar
et al., 2010). High cell density in cultivations of LAB is crucial in order to get their valuable
biomass to be profitably applied as a probiotic ingredient in various products (Schiraldi et al.,
2003). Probiotic food products are recommended by the international dairy federation to contain at
least 106 to 107 CFU/mL of probiotics at the time of consumption to guarantee its beneficial effects
(Halim et al., 2017). Nevertheless, the major problem in the application of LAB culture as probiotics
is the reduced growth and biomass concentration owing to end product inhibition (Luedeking and
Piret, 2000; Aguirre-Ezkauriatza et al., 2010).

The fermentation of LAB through carbohydrate metabolization produces lactic acid as the major
metabolic end-product (Abdel-Rahman et al., 2013). Lactic acid accumulation inhibits LAB growth
due to pH alteration into acidic condition. The acidification of cytoplasm and failure of proton
motive forces are the reasons for the end product inhibition in LAB fermentation (Wee et al., 2006).
As the concentration of lactate increases or the pH of the medium decreases, the concentration of
undissociated lactic acid in the medium also increases (Broadbent et al., 2010). The undissociated
lactic acid is cytoplasmic membrane soluble and thus can pass through the bacterial membrane via
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simple diffusion and dissociates inside the cell, whilst the
dissociated lactate is insoluble. Eventually, this will affect the
transmembrane pH gradient where the transmembrane pH
gradient can no longer be maintained and disabled the cellular
functions. In addition, the amount of energy that may be used for
cell growth also reduces as it is being used for maintaining the
transmembrane pH gradient (Wee et al., 2006).

The development of fermentation strategies that can maintain
lactate concentration in the culture at below toxic level will be
beneficial to overcome the product inhibition (Schiraldi et al.,
2003). There are numerous reports on fed-batch fermentation
that were conducted to overcome the end product inhibition in
LAB fermentation which in turn enhanced biomass production
(Boon et al., 2007; Aguirre-Ezkauriatza et al., 2010; Ming
et al., 2016). However, the use of fed-batch and pH controlled
fermentations for overcoming end product inhibition in LAB
fermentations are often inefficient due to high osmotic pressure
and the presence of acid anions (Cui et al., 2016). Therefore, to
reduce the inhibitory effect of lactic acid during fermentation
process, lactic acid must be removed selectively in situ from the
culture.

LAB FERMENTATION SUBJECTED TO
PRODUCT AND BY-PRODUCT
INHIBITION

The presence of inhibitors known as substrate and product
inhibitions that inhibit the cell growth and reduce the product
formation activity is one of the main problems in fermentation
process (Hujanen et al., 2001; Yuwono et al., 2008; Serrazanetti
et al., 2013). Product inhibition in LAB culture is frequently the
key reason behind the limited production of biomass observed in
batch fermentation. In general, the inhibition by lactic acid can
either be competitive or non-competitive inhibition. The effect
of lactic acid inhibitory on the cell growth was shown to be
stronger than the effect on fermentation activity (Milcent and
Carrere, 2001; Madzingaidzo et al., 2002; Zacharof and Lovitt,
2013). The inhibitory effect of lactic acid on cell metabolism
and proliferation might be due to the increment in medium
osmotic pressure and also other fermentation by-products for
example acetic acid, formic acid, or sodium formate that causes
an individual inhibitory effect (Lin et al., 2008). Cui et al.
(2016) reported that the growth of Lactobacillus plantarum
in a fed-batch culture was completely inhibited when the
osmotic pressure reached 2416 mOsm kg−1 due to the continual
accumulation of various metabolites and feed medium. It has
been reported that there was an inhibition on bacterial growth
by lactic acid when the lactic acid was rapidly being produced
after the exponential phase of the growth (Monteagudo et al.,
1997).

The conventional approach used to overcome product
inhibition is by the addition of a base for example calcium
hydroxide to neutralize the acid formed and precipitate the
insoluble calcium salts (Patel et al., 2008). The insoluble calcium
salts will be filtered and treated with sulfuric acid to precipitate
calcium sulfate and regenerate the acid. This process, however,

consumes high amounts of sulfuric acid and lime and also
produces high amounts of liquid and solid wastes that require
a costly treatment before being dispose off to the environment.
Hetenyi et al. (2011) reported on the use of different compounds
which were ammonium hydroxide, sodium hydroxide, calcium
carbonate, trimethylamine, and dimethylamine to control the
pH of Lactobacillus sp. MKT-878 (NCAIM B02375) culture
for lactic acid production. Among these tested compounds,
trimethylamine was shown to be the best neutralizing agent
with the highest lactic acid productivity of 3.13 g L−1 h−1.
Nevertheless, from the technological aspect, it was advisable to
use ammonium hydroxide instead.

Another conventional approach for increasing the biomass
yield is through the application of fed-batch fermentation.
In general, fed-batch fermentation processes can be classified
according to the feeding mode such as constant feeding,
exponentially feeding, intermittent addition and optimized
feeding with or without feedback control (Öztürk et al., 2016;
Mears et al., 2017). The process of keeping nutrient concentration
below inhibition level by adjusting the feeding rate through
fed-batch fermentation may overcome the problem of product
inhibition in LAB batch fermentation (Table 1). Fed-batch
fermentation showed superior performance, in terms of higher
biomass and viable cell counts in the freeze-dried product
and also lower residual substrate concentrations (Aguirre-
Ezkauriatza et al., 2010). The inhibitory effects of glucose
on L-lactic acid production by Lactobacillus lactis has been
avoided and the efficiency of the process has greatly been
enhanced when a low level of initial glucose was used and
continuously been added during fermentation (Bai et al., 2003).
Lee et al. (2007) also demonstrated the feasibility of fed-
batch fermentation in overcoming substrate limitation and
inhibition and product inhibition while improving the yield
of biomass from LAB. Besides, in fed-batch fermentation,
the extended lag phase characteristic of low cell density
in batch fermentation can be reduced and hence time
saving.

EXTRACTIVE FERMENTATION
APPROACHES TO OVERCOME
END-PRODUCT INHIBITION

Solvent Extraction
Solvent extraction is one of the methods that are commonly
used for lactic acid removal (Chen et al., 2012). In solvent
extraction process, lactic acid will be first extracted from
the culture broth by an extractant followed by lactic acid
recovery from the solvent using back extraction into another
solvent (Wasewar, 2005). For example, lactic acid extraction
method has been developed to simultaneously extract lactic
acid using a two-zone fermentor–extractor system (Iyer and
Lee, 1999). The method was productively performed under a
fed-batch fermentation mode with in situ lactic acid removal
using a solvent extraction. In general, solvent extraction
methods are in fact can be quite difficult as it is not easy
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TABLE 1 | Comparative performances between batch and fed-batch cultures of LAB fermentation.

Microorganisms Substrates Biomass production Biomass production Reference

of batch culture of fed-batch culture

Biomass
production

(g/L)

Lactic
acid

production
(g/L)

Biomass
production

(g/L)

Lactic
acid

production
(g/L)

Sporolactobacillus nakayamae Sucrose 9 105 14 128 Beitel et al., 2017

Bacillus coagulans Glucose 18 − 25 − Pandey and Vakil, 2016

Lactobacillus rhamnosus B103 Lactose and corn steep liquor 4.79 57 5.5 106 Bernardo et al., 2016

Lactobacillus salivarius I 24 Glucose 2.35 29.50 7.114 58.18 Ming et al., 2016

Lactobacillus rhamnosus ATCC 10863 Molasses 3 16.5 5.2 22.0 Senedese et al., 2015

Lactobacillus plantarum LP02 Glucose 2.53 − 10.12 − Hwang et al., 2011

Lactococcus lactis WICC B-25 Glucose 5.64 4.34 21.34 24.1 Elmarzugi et al., 2010

Lactobacillus lactis Glucose 1.6 200 2.7 210 Bai et al., 2003

to extract lactic acid using common organic solvents due to
its hydrophilic nature (Gao et al., 2010). Although alternative
method such as reactive extraction has been proposed, the
method is however needs high amount of solvents and
the toxic effect by the extractants and diluents limits its
application. For example, Gao et al. (2009) examined the
feasibility of using tri-n-decylamine as an extractant in the
extractive fermentation of lactic acid by Saccharomyces cerevisiae
OC-2T T165R. They discovered that high concentration of
1-decylaldehyde in tri-n-decylamine was toxic and caused an
inhibition effect on the growth of S. cerevisiae. Nonetheless
the productivity of lactic acid was significantly improved when
1-decylaldehyde in tri-n-decylamine was reduced from 700 to
33 ppm.

Electrodialysis
Electrodialysis fermentation with an ion exchange membrane
is frequently used for in situ removal of lactic acid, where
under the driving force of electrical fields, ions from an aqueous
solution will be removed (Habova et al., 2004; Wasewar, 2005).
The main applications of this method are to concentrate ionic
substances and to remove salts from solutions. Electrodialysis
was found to be able to control culture broth in a short
time and effectively remove the salt or waste generated from
the processes (Datta et al., 1995). Habova et al. (2001)
reported on the application of two-stage electrodialysis for
in situ lactic acid recovery from Lactobacillus plantarum L10
fermentation. Lactate was concentrated to 2.5 times (equivalents
to 111 g/L) its initial concentration with desalting electrodialysis
using ion exchange membranes during the first stage. A final
concentration of 157 g/L lactic acid was achieved during the
second stage of electroconversion of sodium lactate to lactic
acid by water-splitting electrodialysis with bipolar membrane.
In the meantime, Kim and Moon (2001) investigated on
the direct recovery of lactic acid from fermentation broth
using one-stage electrodialysis with three-compartment water-
splitting electrodialysis. The system was reported to convert
sodium lactate available in the fermentation medium into 96%

of lactic acid and 93% of sodium hydroxide. A continuous
electrodialysis fermentation system for lactic acid production has
been developed and according to this study, the electrodialysis
fermentation system with a level meter was the most effective
system (Min-Tian et al., 2005). Even though electrodialysis
may increase the rate of fermentation, however this method
has a few disadvantages such as membrane fouling, high
operating cost and deionization of the culture broth (Datta et al.,
1995).

Aqueous Two-Phase Systems
Aqueous two-phase system (ATPS) has received increasing
attention in several areas of biotechnology for recovery
and purification. In general, the mechanism of ATPS is
based on partitioning of biomolecules between two liquid
phases commonly formed by mixing a polymer and a
salt or two polymers and water (Asenjo and Andrews,
2011; Iqbal et al., 2016). Recently, ATPS has also been
intensely applied for lactic acid removal. ATPS consists of
a polyelectrolyte, poly(ethyleneimine) (PEI), and a neutral
polymer, hydroxyethylcellulose (HEC), was shown to be suitable
for lactic acid extractive fermentation (Dissing and Mattiesson,
1994). According to the study, PEI has a positive charge and
hence an ion pair can be formed between PEI while lactate was
being produced during the fermentation. The lactate produced
will be accumulated into the PEI-rich bottom phase as it is
formed whereas cells will be accumulated into the HEC top
phase or at the interface. Planas et al. (1996) investigated
on the long term effect of an ATPS using ethylene oxide-
propylene oxide/hydroxypropyl starch polymer-100 on lactate
production by overcoming end-product inhibition in a repeated
extractive fermentation of L. lactis subsp. lactis 19435. From
the initial 27.8 mM lactate produced in the first batch, the
concentrations were increasing with each batch of fermentation
until a maximum of 48.1 mM lactate produced in the fifth
batch. The final yield recorded was much higher than both
the single batch ATPS (35.9 mM lactate) and normal growth
medium batch fermentation (38 mM lactate). Later, the use
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TABLE 2 | In situ removal of lactic acid using various solid adsorbents in LAB fermentation.

Adsorbents Microorganisms Lactic acid
adsorption on
adsorbent

Lactic acid
production

Biomass
production

Reference

WA 30 ion
exchange resin

Streptococcus
bovis

100 mg/g
adsorbent

− − Yuwono et al., 2017

Amberlite IRA-67 Lactococcus lactis
ATCC 11454

− 5.9-fold increase in
productivity
compared with
standard batch
fermentation
without resin)

− Boonmee et al., 2016

Anion exchange
D319

Lactobacillus
plantarum

− − 35 g/L (2.3-fold
enhancement
compared to
fermentation
without resin)

Cui et al., 2016

Hydrotalcite -type
anionic clay

Streptococcus
thermophilus and
Lactobacillus
bulgaricus

− 3.98 g/L 1.58 × 107 CFU/g Jinescu et al., 2014

Amberlite IRA-400 Lactobacillus casei − 37.4 g/L − Ataei and Vasheghani-Farahani, 2008

Zeolite molecular
sieves

Lactobacillus
rhamnosus

37 g/kg adsorbent − − Aljundi et al., 2005

of alcohol/salt ATPS for lactic acid removal was reported by
Aydogan et al. (2011). The lactic acid extraction was optimized
using a response surface methodology in order to determine
the potential of using ethanol/dipotassium hydrogen phosphate
for lactic acid recovery. The partition coefficient and extraction
yield of lactic acid was found to be up to 2.06 and 80%,
respectively. Despite the suitability of the ATPS method for
extractive fermentation of LAB, nonetheless the effectiveness
of this method is currently limited by the even lactic acid
distribution between two phases (Wasewar, 2005) and the high
cost of polymers (Aydogan et al., 2011) make it economically
unattractive.

Adsorption
Extractive fermentation using adsorbent can also be conducted
to improve LAB fermentation subjected to product and by-
product inhibition (Table 2). In general, the phenomena of
adsorption is described as an accumulation of a gas or
liquid solute on the surface of a solid or liquid which
form a molecular or atomic film (Okeola and Odebunmi,
2010). Sorption isotherms describe the equilibrium relationship
between adsorbent and adsorbate which provide the capacity
of an adsorbent for an adsorbate (Ho, 2006). Activated carbon,
molecular sieves, polymeric adsorbents and a few other low-
cost materials are the examples of common adsorbents used
for adsorption techniques (Qiu et al., 2009). Gao et al.
(2011) study an extractive fermentation of lactic acid using
activated carbon as an adsorbent. The use of activated carbon
in this pH-uncontrolled fermentation successfully diminished
the inhibitory effect of lactic acid whilst enhanced both
productivity and yield. Up to 37 g/kg of lactic acid was
recovered from fermentation broth using silicate (zeolite
molecular sieves) as an adsorbent (Aljundi et al., 2005). In

addition, the yield from this system was maintained with
repetitive use. Recently, an extractive fermentation of lactic acid
by Bacillus strains using AmberliteTM IRA-67 ion exchange
resin has been demonstrated under fed-batch fermentation
mode (Garret et al., 2015). According to the study, lactic
acid productivity for the fed-batch extractive fermentation
was found to be 1.31-fold higher than the fed-batch culture
without an extractive fermentation system. This observation
might be due to the fermentation was occurring below the
level of product inhibition. The application of ion exchange
resins with bioreactor system offer benefits of overcoming the
inhibitory effect of lactate as well as lowering the costs of
lactic acid recovery and purification (Monteagudo and Aldavero,
1999).

The in situ removal of lactic acid is an innovative process
as described by carrying out the fermentation of Lactobacillus
delbrueckii in a continuous stirred tank fermentor (CSTF) with
an ion exchange resins (Monteagudo and Aldavero, 1999). In
this method, lactic acid will be adsorbed on solid adsorbents or
lactate ion will be adsorbed on ion exchange resins (Wasewar,
2005). By using this method, the maintaining of an actively
growing culture in a culture medium of low lactate concentration
is made possible. Jianlong et al. (1994) reported on the utilization
of weak base D301 anion-exchange resin to reduce lactic acid
product inhibition in the extractive fermentation of Lactobacillus
casei. The lactic acid productivity was found to be improved by
1.47-fold. A method for the removal and recovery of lactic acid
from culture broth (i.e., Lactobacillus delbrueckii, L. bulgaricus,
or L. leichnanii) by using anion polymeric adsorbents was
patented by Kulprathipanja and Oroshar (1991). They used
strong, moderate, and weak basic anion exchange resins to adsorb
lactic acid below its pKa. The lone electron pair of the nitrogen
atom allows nitrogen atom to form hydrogen bond by sulfate
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ion. A strongly basic quaternary ammonium ion exchange resin,
for example IRA-400 has positive charge and it is able to form
ionic bond with sulfate ion. Anion exchange resin with a sulfate
form of quaternary ammonium functional group has a weakly
basic property and can be used to adsorb lactic acid via acid–base
interaction. Therefore, lactic acid adsorption will not affect the
inorganic salt in the culture broth (Wasewar, 2005). Nevertheless
different types of anion exchange resins often have different
affinity toward nutrients available in the fermentation medium
(Tan et al., 2011).

An important factor for the successful application of the lactic
acid removal system using resin is the selection of resin (Cui et al.,
2016). For instance, in order for IRA 67 resin to be effectively
applied as lactic acid adsorbent, the resin must have high capacity
and selectivity for lactic acid over water and substrates (Gao et al.,
2010). This is due to the capacity of IRA 67 resin in lactic acid
recovery is lower in fermentation media compared to in aqueous
solution of pure lactic acid (John et al., 2008).

Regenerability allows resin to be reused after regeneration or
desorption process according to the manufacturer’s instructions
(Gao et al., 2010; Cui et al., 2016). Once the resin is saturated with
lactic acid, the lactic acid adsorbed can be removed by caustic
elution (Garret et al., 2015). In general, the regeneration of weak
base ion exchange resin is easier compared to strong base ion
exchange resin due to their simple acid base interaction.

The biocompability of resin with microorganism is another
important characteristic for resin to possess in order to be used
as lactic acid adsorbent (Gao et al., 2010). Most of anion resins
show no toxic characteristic to microorganisms, therefore they
can be applied directly in bioreactor (Pradhan et al., 2017). In
addition, the affinity of cells toward ion exchange resins could
easily be understood due to the known chemical composition of

the microorganism’s cell wall which responsible for the necessary
charges to the cell surface such as diaminopimelic acid, amino
acids, or hexosamine (Rotman, 1960).

CONCLUSION

Due to the high benefits of LAB to be used as probiotics,
it is therefore necessary to improve the performance of LAB
fermentation in term of high final biomass concentration. The
opportunities can be explored by researchers to invent more
alternative methods for lactic acid removal from the culture
which can also be used as a part of the lactic acid purification
step in the integrated process of fermentation and separation.
The application of extractive fermentation techniques in LAB
fermentation is expected to produce high cell concentrations and
at the same time high in situ recovery of lactic acid within the
minimum cost.
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