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Abstract: Genome integrity is constantly threatened by internal and external stressors, in both
animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA.
In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”.
Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant
strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant
research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress
in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by
providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-
wide alterations in chromatin modifications, globally modulating gene expression required for DNA
damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication;
and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect
DNA. In this review, we highlight the chromatin-level control of genome stability and compare
the regulatory systems in plants and animals to find out unique mechanisms maintaining genome
integrity under genotoxic stress.

Keywords: DNA damage; DNA double-strand break; DNA repair; genome integrity; chromatin;
epigenetics; histone methylation; histone acetylation

1. Introduction

Plants are sessile organisms that are constantly threatened by a variety of stressors
that damage their genomic DNA. To cope with such life-threatening challenges, plants
have evolved a distinct system of DNA damage response (DDR), which triggers a cell-
cycle checkpoint and enables DNA repair. DNA repair machinery that has been studied
extensively in other eukaryotes, such as yeasts and mammals, are highly conserved in
plants [1]. For instance, pyrimidine dimers produced on ultraviolet (UV)-irradiated DNA
are repaired by photoreactivation [2]. Two types of excision repair mechanisms, base exci-
sion repair and nucleotide excision repair, have been shown to repair various types of DNA
lesions [3]. Incorrectly paired nucleotides and UV-induced photolesions are removed via
mismatch repair [4,5]. DNA single- and double-strand breaks (SSBs and DSBs, respectively)
are resolved through homologous recombination (HR) and nonhomologous end joining
(NHEJ) [6,7]. Nevertheless, plants also possess unique cell-cycle checkpoint mechanisms.
In animals, ATAXIA-TELANGIECTASIA MUTATED (ATM) kinase is activated on sensing
DSBs to arrest the cell cycle at the G1/S or G2/M phase [8,9]. ATAXIA-TELANGIECTASIA-
AND-RAD3-RELATED (ATR) kinase acts as another checkpoint kinase at G2/M or intra-S
after the recognition of single-stranded DNA (ssDNA) and stalled replication forks [10,11].
Plants also have functional ATM and ATR, whereas downstream regulators orthologous to
mammalian counterparts are all missing. Instead, the plant-specific transcription factor
SUPPRESSOR OF GAMMA RADIATION 1 (SOG1), which is phosphorylated and activated
by ATM and ATR, has been shown to play an essential role in DDR [12,13]. Recent studies
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have uncovered SOG1-dependent pathways causing G2 arrest in response to DSBs in
Arabidopsis thaliana [14–18].

In response to DSBs, plants induce G2 arrest in transit-amplifying cells, but also
promote an early onset of endoreplication, which repeats DNA replication without mitosis
or cytokinesis, thereby enhancing cell growth and differentiation [16,18–22]. To prevent
mutated cells from dividing and ensure organ growth by increasing cell volume, plants
have deployed an active mechanism to evoke endoreplication in response to DSBs. In
mammals, severe DNA damage generally causes cell death, whereas DSBs specifically
trigger stem cell death in plant meristems through the ATM-SOG1 pathway [19,23,24]. As
plant cells cannot migrate within tissues, cell death usually injures tissue structure and
inhibits organ growth. Therefore, stem-cell-specific death is probably beneficial for the
continuous development of plants, while decreasing the risk of descendant cells inheriting
incorrect genetic information.

The risk of DNA being exposed to external or internal genotoxic stresses and the
feasibility of DNA repair highly depend on whether DNA is exposed at the surface of
chromatin or is buried deep inside the chromatin jungle, which is composed of four core hi-
stones (H2A, H2B, H3, and H4) and one linker histone (H1) [25]. The chromatin structure is
dynamically and reversibly reorganized in response to developmental and environmental
cues. The conversion of the chromatin structure from an open euchromatic state to a closed
heterochromatic state, and vice versa, is regulated by two types of chromatin modifications:
DNA methylation and histone modifications. DNA methylation is a process by which
methyl groups are attached to DNA in a reversible manner [26]. DNA methylation-specific
binding proteins are known to locally alter the state of histone modifications, thereby
affecting the chromatin structure [26]. Histone modifications are classified into at least
eight types: acetylation, methylation, phosphorylation, ubiquitylation, GlcNAcylation,
citrullination, krotonilation, and isomerization [27,28]. The chromatin structure is con-
trolled by histone modifications through at least two mechanisms: (1) the net charge of
histones is altered by histone modifications, thereby changing their DNA-binding activity,
and (2) modified histones serve as docking sites for proteins determining the chromatin
architecture [27,28]. In plants, the acetylation and methylation of H3 and H4 have been well
characterized. For example, typical euchromatic modifications comprise the acetylation of
histone H3 lysine 9 (H3K9ac) and histone H4 lysine 5 or 14 (H4K5ac or H4K14ac); mono-,
di-, or tri-methylation of histone H3 lysine 4 (H3K4me1, H3K4me2, or H3K4me3); and
di- or tri-methylation of histone H3 lysine 36 (H3K36me2 or H3K36me3) [29,30]. The
di-methylation of histone H3 lysine 9 (H3K9me2) and mono- or tri-methylation of his-
tone H3 lysine 27 (H3K27me1 or H3K27me3) also play crucial roles in heterochromatin
formation [29,30].

This review summarizes the current understanding of plant strategies to cope with
DNA damage at the chromatin level, focusing on three facets: (1) the control of chromatin
modifications at damaged sites for efficient DNA repair, (2) the epigenetic regulation of
gene expression required for DDR, and (3) possible roles of the chromatin structure as a
physical barrier to protect DNA from genotoxic stressors. For the first two topics, the basic
information has been covered in other review articles (see [31,32]); in this review, we will
mainly focus on the latest findings that will be important milestones for this field in the
future. The last topic sheds light on a concept that has recently been gaining attention
in plants. Since this idea is still in the beginning stages of being established, we will
summarize the findings obtained thus far and discuss issues that need to be resolved in
the future. Compared to animals, the information available on plants is limited; therefore,
in each section, we first introduce basic knowledge in animals and then provide recent
findings in the plant field. We do not cover chromatin remodelers or histone chaperones,
instead illuminating the chromatin modifications that regulate DDR.
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2. Control of Chromatin Modifications at Damaged Sites

Chromatin modifications around damaged sites have a significant impact on DNA
repair; namely, specific chromatin modifications can function as a scaffold for DNA repair
machineries. It is also known that alterations in particular chromatin modifications decrease
chromatin compaction, thereby enabling DNA repair proteins to have easy access to the
damaged sites.

2.1. In Animals

The best-studied histone modification in DDR is phosphorylation of the histone H2A
variant H2AX; hereafter, phosphorylated H2AX is referred to as γH2AX. H2AX is phos-
phorylated at the sites flanking DSBs in an ATM- or ATR-dependent manner, thereby
attracting DNA repair proteins [33–35] (Figure 1). While γH2AX is assumed to be a DSB-
specific histone modification, recent studies have revealed that other histone modifications,
which are already established prior to DNA damage, also change at the damaged sites.
For instance, the SET domain protein METNASE, which is phosphorylated by CHECK-
POINT KINASE 1 (CHK1), a protein kinase acting downstream of ATR, promotes the
conversion of tri-methylation to di-methylation of H3K36 around damaged sites after DSB
induction [36,37] (Figure 1). The newly formed H3K36me2 is initially masked through
physical interaction with LYSINE DEMETHYLASE 2A (KDM2A), a specific demethylase
of H3K36me2, but ATM-dependent phosphorylation of KDM2A causes its dissociation
from H3K36me2 and thereby exposes the histone mark to several proteins required for
NHEJ and HR [38] (Figure 1). Similarly, H3K4me3, H3K9me3, H3K27me3, H4K20me2,
and H4ac function in DNA repair, although their recruited proteins differ from those of
H3K36me2 [39].

Constitutive heterochromatin is tightly packed and, thus, forms a challenging envi-
ronment for DNA repair. To repair heterochromatic DSBs, a multistep reaction involving
chromatin remodeling is indispensable. Following the induction of DSBs by ionizing
radiation, ATM phosphorylates KRAB-ASSOCIATED PROTEIN 1 (KAP1), which induces
heterochromatin relaxation, leading to the release of CHROMODOMAIN HELICASE
DNA-BINDING PROTEIN 3 (CHD3) from chromatin [40–43]. Specifically, in the G2 phase,
the ATM-KAP1-dependent chromatin remodeling promotes 5′-end resection at a hete-
rochromatic DSB to generate ssDNA [40,41,43]. Following the remodeling and resection,
RAD51, which forms a nucleoprotein filament with ssDNA, promotes the DNA strand
exchange reaction and captures double-stranded DNA to find a homologous sequence [44],
thereby enhancing the rate of homologous recombination (HR) [44]. Thus, the ATM-KAP1-
dependent chromatin remodeling is a critical step in efficiently repairing heterochromatic
DSBs [40–42] (see further details in [45]).

Heterochromatin remodeling in response to DSBs also requires the alteration in chro-
matin modifications; H3K9me2/me3 and H3K56me2/me3 are subjected to demethylation
at heterochromatic DSBs, but not at euchromatic DSBs in Drosophila cells [46]. This results
in increased H3K9me1 and H3K56me1, as well as decompaction of damaged sites, thus
enhancing the accessibility of DNA repair proteins [46].

2.2. In Plants

As in animals, γH2AX has been well characterized in plants. Immunostaining experi-
ments with the antibody against Arabidopsis γH2AX showed that the number of γH2AX
foci increased after ionizing radiation in a dose-dependent manner; therefore, γH2AX foci
are good indicators of DNA damage in plant cells [47]. Arabidopsis possesses two genes en-
coding the H2AX isoforms, H2AXA and H2AXB, differing in amino acid sequences only at
two residues. However, the role of their phosphorylation in DDR has been a long-standing
question. Waterworth et al. [48] recently demonstrated that h2axa/b double mutants were
hypersensitive to mitomycin C, an inducer of DNA damage via DNA alkylation that gener-
ates interstrand cross-links. In this study, the wild type but not the non-phosphorylatable
form of H2AX could complement the mutant phenotype, suggesting an essential role of
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H2AX phosphorylation in plant DDR. DNA damage-dependent phosphorylation of H2AX
is abolished in the atm atr double mutant of Arabidopsis, indicating its requirement for ATM
and ATR, as reported in animals (Figure 1) [49]. However, there is no clear evidence that
ATM or ATR directly phosphorylates H2AX in plant cells.
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A recent study demonstrated that H3K4me2, representing one of the histone marks
involved in transcriptional activation, plays an important role in recruiting a key regulator
for HR in Arabidopsis [50]. RAD54, a member of the switch/sucrose non-fermentable
(SWI2/SNF2) family, interacts with the RAD51-ssDNA filament to stabilize its struc-
ture, thereby elevating the rate of HR [51] (Figure 1). Hirakawa et al. [50] revealed that
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RAD54 recognizes and binds directly to H3K4me2 at the damaged sites, implying that
H3K4me2 acts as a hallmark for RAD54-mediated HR repair (Figure 1). Moreover, co-
immunoprecipitation using γ-irradiated Arabidopsis seedlings carrying YFP-tagged RAD54
identified the H3K4me2 demethylase LYSINE-SPECIFIC DEMETHYLASE1-LIKE 1 (LDL1).
Interestingly, depletion of LDL1 led to overaccumulation of RAD54 at damaged sites and
delayed HR, suggesting that to perform efficient HR, dissociation of RAD54 from the nucle-
oprotein filament needs to occur at the right time through LDL1-mediated demethylation
of H3K4me2 [50] (Figure 1). To our knowledge, a direct interaction between RAD54 and
histone methylation has not been described thus far in animals; therefore, plants might
have developed a distinct system for HR by establishing the unique RAD54-H3K4me2
link. However, it remains elusive whether the H3K4me2 status is indeed altered around
the damaged sites. Developing technologies for the live-imaging of H3K4me2 will help
understand the initial event in HR.

The mono-methylation of H3K27, which is catalyzed by the plant-specific histone
methyltransferases ARABIDOPSIS TRITHORAXRELATED 5 (ATXR5) and ATXR6, is in-
volved in the formation of constitutive heterochromatin [52]. It has been reported that a
reduced H3K27me1 level in the atxr5/6 double mutant causes the overreplication of hete-
rochromatic regions and results in the accumulation of heterochromatic DNA breaks, even
without treatment with exogenous genotoxic agents [53,54]. Intriguingly, overreplication-
associated DNA damage induces a dynamic remodeling of centromeric heterochromatin
into the unique structure, named an “overreplication-associated center (RAC),” which is
composed of three ring-shaped layers, each with distinct components: (1) an outer layer of
condensed heterochromatin represented by 4′,6-diamidino-2-phenylindole (DAPI)-dense
foci, (2) a H2AX-rich inner layer, and (3) a low-density core containing foci of γH2AX
and RAD51 [54]. DAPI-dense foci are missing in RACs except for the outermost layer,
suggesting that the interior region of RACs is less compacted to provide a site for effi-
cient DNA repair. However, the interior region is not enriched for typical euchromatic
histone marks, implying that RACs are unique structures, harboring in their inner areas
relaxed chromatin without acquiring a euchromatic state [54]. However, in wild-type
plants, neither γ-irradiation nor hydroxyurea was sufficient to induce a higher density of
heterochromatic breaks required for the formation of RAC-like structures [54]. Therefore, it
remains controversial whether RACs are a bona fide plant-specific structure that facilitates
DNA repair in heterochromatic regions, or an aberrant structure formed as a consequence
of overreplication in the atxr5/6 mutant.

Here, we have summarized the findings using a widely used model plant,
Arabidopsis thaliana. However, importantly, recent studies have uncovered that DNA
repair genes are conserved in other plant species, such as Oryza sativa, Zea mays, and
Saccharum officinarum [55–57], suggesting that DNA repair machinery similar to those
described above are also preserved across the plant kingdom.

3. Epigenetic Regulation of DDR-Related Genes

DNA damage is known to trigger genome-wide epigenetic reprogramming through
histone methylation and acetylation, which alters the gene expression involved in DDR. In
plants, such changes in gene expression are required for various cellular events, including
cell death, cell-cycle arrest, and an early onset of endoreplication.

3.1. In Animals

p53 is a transcriptional factor that prevents cancer by promoting DNA repair, cell-cycle
arrest, and cell death in response to a variety of stressors, including genotoxic stress [58–61].
Previous studies have demonstrated that p53 exerts its function by controlling the histone
acetylation on target gene promoters. The most well-known target of p53 is the gene for
cyclin-dependent kinase (CDK) inhibitor p21, which binds to CDK and arrests the cell
cycle [62] (Figure 2). In the presence of the anticancer drug 5-fluorouracil (5-FU), p53
binding to the p21 promoter enhances the acetylation of both H3 and H4 by increasing
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the DNA-binding ability of two subunits of the histone acetyltransferase (HAT) complex,
p300/CBP histone acetyltransferase and Transformation/Transcription Domain Associated
Protein (TRRAP), in human cultured cells [62] (Figure 2). On 5-FU treatment, the acetylation
levels of H3 and H4 on the promoter of p53 UPREGULATED MODULATOR OF APOPTOSIS
(PUMA), which encodes a member of the B-CELL CLL/LYMPHOMA 2 (BCL-2) protein
family, were also found to be elevated, thereby inducing its expression and consequently
promoting apoptosis in human cells [63] (Figure 2). Thereafter, the genome-wide analysis
of the p53-binding sites revealed that no prominent enrichment of H3K4me2 or H3K4me3
(14% or 3%, respectively) was identified, while acetylated histone H3 (H3K9/14ac) and
H4 (H4K5/8/12/16ac) occupied 38% and 89% of the p53-binding sites, respectively [64].
Considering that frequencies of appearance of H3/H4ac and H3K4me2/3 were comparable
in randomly selected genes, it is likely that p53-binding sites are highly enriched for histone
acetylation [64]. Taken together, p53 seems to induce target genes by increasing histone
acetylation on their promoters.
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the acetylation of histone H3 and H4 at the p21 and PUMA loci, thereby inducing cell-cycle arrest and apoptosis. In plants,
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(UV)-B upregulates HAM1 and HAM2, thereby elevating the expression of UV-B-induced genes (e.g., UVR2 and UVR7)
probably by increasing the H4K5ac level.
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3.2. In Plants

SOG1, a member of the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS
TRANSCRIPTION ACTIVATION FACTOR (ATAF), and CUP-SHAPED COTYLEDON
(CUC)] transcription factors, plays a crucial role in transmitting DNA damage signals
in plants [12,13,65,66]. Previous studies demonstrated that SOG1 is required for DNA
repair, cell-cycle arrest, an early onset of endoreplication, and stem cell death in response
to DSBs [12,16,20,67,68]. To perform these cellular processes, SOG1 directly regulates more
than 100 genes in Arabidopsis, e.g., SIAMESE-RELATED 5 (SMR5) and SMR7 for cell-cycle
arrest, as well as RAD51 and RAD54 for DNA repair [17,69].

Both SOG1 and p53 are phosphorylated by ATM and ATR, and are involved in
DDR, suggesting their functional similarity [65]. Although it remains unknown whether
SOG1 regulates target genes by influencing chromatin modifications on their promoters, a
previous study showed that the epigenetic status of some SOG1-direct target genes is altered
after γ-irradiation [70]. In particular, the H3K4me2 levels at the loci of CBL-INTERACTING
PROTEIN KINASE 11 (CIPK11), REPLICATION PROTEIN A 1E (RPA1E), ARGONAUTE 2
(AGO2), and RAD51, all of which are direct targets of SOG1, were elevated significantly
after γ-irradiation in Arabidopsis (Figure 2) [70]. Another histone mark, H3K9ac, was
also enriched on the AGO2 promoter in response to γ-irradiation [70]. As many plant
transcription factors are known to interact directly with chromatin modifiers to regulate
the expression of target genes [71], it is likely that SOG1 also recruits chromatin modifiers
of target gene promoters to elevate the level of active histone marks.

The Arabidopsis genome encodes 12 HATs and 18 histone deacetylases (HDACs),
the former being classified into four types based on amino acid sequence similarities:
GNAT (Gcn5-related N-acetyltransferase), p300/CBP, TAFII250, and MYST (MOZ, YbF2,
Sas2, Tip60-like) families [72]. Among them, two MYST family members, HISTONE
ACETYLTRANSFERASE OF THE MYST FAMILY 1 (HAM1) and HAM2, and one GNAT
family member, HISTONE ACETYLTRANSFERASE OF THE GNAT FAMILY 3 (HAG3),
participate in the response to UV-B that causes the formation of cyclobutane pyrimidine
dimers (CPDs) [73]. Campi et al. [74] reported that HAM1 and HAM2 are upregulated upon
UV-B irradiation, and that the UV-B-dependent induction of DNA repair genes, such as UV
RESISTANCE 2 (UVR2) and UVR7, is compromised in the ham1 or ham2 mutants, compared
to wild types, leading to the overaccumulation of CPDs. HAM1 and HAM2 are known
to function in globally maintaining H4K5ac [75]; therefore, they may also locally increase
the H4K5ac level to upregulate UVR2/7 in UV-B irradiation (Figure 2). However, it is also
probable that HAM1 and HAM2 enhance other types of histone acetylation in response to
UV-B. On the other hand, transcripts of UV-B-regulated genes, such as UVR2 and UVR7,
accumulate in the hag3 knock-down lines even in the absence of UV-B irradiation [76],
suggesting that HAG3 is involved in the repression of UV-B-regulated genes, presumably
through the induction of unknown negative factor(s) (Figure 2). These observations,
showing the opposite roles of HAM1/2 and HAG3 in UV-B response, together suggest
distinct roles of plant HATs in fine-tuning DDR.

4. Possible Roles of Chromatin Structure as a Physical Barrier to Genotoxic Stress

As described above, a decrease in chromatin compaction facilitates the access of
DNA repair proteins to damaged DNA. However, recent studies have indicated that the
conversion of chromatin to a highly assembled structure contributes to the maintenance of
genome integrity by providing a physical barrier against genotoxic stressors.

4.1. In Animals

Spermidine influences the folding of DNA molecules into a compact state in vitro.
Based on this property, Yoshikawa et al. [77] developed a system to artificially manipulate
the conformation of giant DNA molecules larger than 100 kbp. They reported that the
frequency of γ-irradiation-induced DSBs in the presence versus absence of spermidine was
approximately 4%, indicating that the compaction of DNA molecules greatly decreases
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the sensitivity to γ-irradiation. At the chromatin level, Mg2+ is known to have a positive
effect on chromatin condensation. Thus, Takata et al. tested the Mg2+ treatment of isolated
nuclei from HeLa cells attached on a glass slide to provoke a change in chromatin conden-
sation [78]. Intriguingly, Mg2+-treated nuclei with condensed chromatin suffered from less
DSBs after γ-irradiation compared to the control without Mg2+, suggesting that chromatin
compaction can be a physical barrier to genotoxic stressors [78]. Given that γ-irradiation
produces reactive radicals through the radiolysis of water molecules caught by chromatin,
it is possible that condensed chromatin harbors fewer water molecules, thus reducing the
likelihood of being exposed to reactive radicals [78]. However, a possibility still remains
that chromatin condensation protects the genome from genotoxic agents that act directly
on DNA molecules.

Findings from a recent study using mouse mesothelioma cells support the idea that
chromatin condensation is involved in shielding DNA from damage. Brambilla et al. [79]
investigated chromatin openness using two sequence-based methods: (1) transposase-
accessible chromatin with high-throughput sequencing (ATAC-seq), identifying nucleosome-
free regions, and (2) breaks labelling in situ and sequencing (BLISS), labeling DSB ends with
double-stranded oligonucleotide adaptors [80,81]. Their data showed that γ-irradiation-
induced DSBs accumulated in nucleosome-free regions of the genome [79].

It should be noted, however, that the conventional view that heterochromatin is just a
physically packed, membraneless structure is not sufficient to account for the shielding role
of heterochromatin, since water and oxygen molecules that are sources of reactive radicals
would continuously flow from outside the heterochromatic domains. Nevertheless, impor-
tantly, heterochromatic domains were shown to form via liquid–liquid phase separation,
which is a phenomenon giving rise to non-membrane-bound cellular compartments [82,83].
Furthermore, liquid droplets undergoing phase separation exhibited a limited permeability
of exogenous molecules, shedding light on a critical role of phase separation in determining
the composition and/or concentrations of substances inside the compartment [84]. Indeed,
Strom et al. showed that small molecules, such as fluorescent dextrans, are excluded from
phase-separated heterochromatic domains [83]. To further understand the functional role
of chromatin as a physical barrier, it will be important to examine whether phase separation
has an impact on the permeability of molecules that can damage DNA (e.g., water and
oxygen) into heterochromatin.

4.2. In Plants

Boron (B) is an essential micronutrient for plant growth and development [85], but a
previous study demonstrated that excess B is the primary cause of DSBs in soil [86], but it
remains poorly understood how high-B stress causes DNA breaks. Sakamoto et al. [87] dis-
covered that the acetylation level of histone H3 was globally increased in Arabidopsis grown
under high-B conditions, whereas the heterochromatic mark H3K9me1 was decreased,
suggesting that high B impacts on relaxing chromatin by altering histone modifications.
This study also showed that the occurrence of DSBs was positively correlated with the
H3K9/14ac level in Arabidopsis roots, implying that high B opens chromatin at least through
histone hyperacetylation, thereby elevating the susceptibility to genotoxic factors (Figure 3).
Indeed, the mutants of HISTONE DEACETYLASE 6 (HDA6) and HDA19, in which histone
acetylation is increased at the genome-wide level, exhibited a reduced sensitivity to high-B
stress [87] (Figure 3). However, HDA6 and HDA19 are known to interact with transcription
factors to carry out locus-specific histone deacetylation [88–90]; therefore, their mutations
might open specific loci encoding DNA repair-related genes, leading to lower susceptibility
to high B.

A possible role of the phytohormone auxin in controlling the chromatin structure
was described in suspension cultured cells. Hasegawa et al. [91] examined the chromatin
accessibility in tobacco BY-2 cells using micrococcal nuclease (MNase), which preferentially
digests DNA in regions where proteins are not stably bound [92]. When cells were cultured
in the presence of a large amount of auxin, the genomic DNA became tolerant to MNase,
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indicating reduced chromatin accessibility. Conversely, when Arabidopsis cultured cells
treated with PEO-IAA, an auxin antagonist blocking auxin signaling, were subjected to
ATAC-seq analysis, nucleosome-free regions were found to be increased in the genome,
especially in the gene body [91]. Interestingly, DSB accumulation after treatment with the
DSB inducer zeocin was also alleviated by the simultaneous application of auxin, suggest-
ing the role of auxin in maintaining genome integrity through chromatin condensation
(Figure 3) [91]. This view is supported by transcriptomic data showing that, in addition
to chromatin remodelers and histone chaperones, several chromatin modifiers involved
in heterochromatin formation were repressed by PEO-IAA treatment [91]. However, it
is noteworthy that plant cultured cells have experienced a variety of chromosomal re-
arrangements, such as translocation, deletion, and duplication, and display an aberrant
epigenetic landscape compared to proliferating cells in tissues [93,94], making it difficult
to conclude that auxin is generally involved in controlling the chromatin structure and
susceptibility to genotoxic stress. Moreover, as auxin is essential for driving the cell cycle,
during which the epigenetic status varies greatly [95–97], exogenous auxin or PEO-IAA
application might have altered cell-cycle progression, consequently affecting the extent of
chromatin condensation. Therefore, further careful experiments are definitely needed to
assess the requirement of auxin in regulating the chromatin structure and genome stability.
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Excess boron opens up chromatin by enhancing histone acetylation, which may require the inhibition
of HDACs, HDA6, and HDA19, thereby increasing the susceptibility to DNA damage. On the
other hand, auxin promotes chromatin condensation and provides tolerance to genotoxic stress. The
chromatin modifier(s) that function downstream of auxin signaling remain unknown.

Recently, Takahashi et al. [98] reported that in the Arabidopsis root tip, DSBs elevate the
cytokinin level and repress the expression of some PIN-FORMED genes encoding auxin
efflux carriers, thereby inhibiting downward auxin flow. The resultant reduction of auxin
signaling causes cell-cycle arrest in the meristem and stem cell death, which contribute
to maintaining genome integrity by providing time for DNA repair and removing DNA-
damaged stem cells, respectively [98]. These data are consistent with a previous report
showing that chilling stress-triggered DSBs induced columella stem cell death, which was
suppressed by exogenous auxin treatment [99]. In the absence of genotoxic or chilling
stress, auxin highly accumulates in the quiescent center (QC) and stem cells in the root
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tip of Arabidopsis [100,101]. These findings indicate that under stressful conditions, plants
probably sacrifice the auxin-mediated control of genome integrity to prioritize cell-cycle
checkpoints and stem cell renewal, which occurs after killing stem cells through activating
cell division in the QC where DNA repair machinery is highly expressed to maintain
genome integrity [102].

5. Concluding Remarks and Perspectives

Plants are much more tolerant to genotoxic stress than animals. For instance,
10-Gy irradiation reduces the survival rate of rats to about 20% of those in non-irradiated
conditions [103], whereas Arabidopsis seedlings can survive 150-Gy γ-irradiation without
showing any obvious defects in leaf production [12]. As plants are sessile organisms
exposed to various external stresses causing DNA damage, it is conceivable that they
might deploy a distinct regulatory system to protect their genomes from DNA damage.
Considering that exogenously applied auxin, which has a promotive effect on chromatin
condensation, further strengthens DNA damage tolerance in tobacco and Arabidopsis, as
described above, chromatin organization might be one of the crucial factors that determine
DNA damage tolerance in plants. Interestingly, a recent study reported that genome size is
associated with the sensitivity to DNA damage in plants; plants with a larger genome size
are more sensitive to DNA damage than those with smaller genomes [104]. This finding is
counterintuitive because larger genomes are usually abundant with transposable elements
that are major constituents of heterochromatin. Therefore, it is unlikely that the ratio of
heterochromatin by itself can account for DNA damage tolerance. Furthermore, recent
studies demonstrated that chromatin of animals and large-genome plants shapes topologi-
cally associating domains (TADs) and TAD-like structures, self-interacting genomic regions
where DNA sequences physically interact with each other frequently [105–107]. Contrarily,
Arabidopsis, which has a smaller genome, does not organize its chromatin into apparent
TADs, suggesting that chromosomes can be partitioned into gene-rich euchromatic arms
and constitutive heterochromatin [108]. Therefore, the structural complexity of chromatin,
caused by inter- and intrachromosomal interactions identified as TADs, may increase
the sensitivity to genotoxic stress, thereby acting as one of the factors determining DNA
damage tolerance.

Individual chromosomes occupy their own space within the cell nucleus, shaping
“chromosome territories”, which are larger in the scale of chromatin compartmentalization
than TADs [109]. “Chromatin compartment boundaries”, which arise due to the territory
formation, may be another structural element of chromatin influencing DNA damage
sensitivity. In animals, chromosomal rearrangements, including dicentrics, translocations,
and large deletions, are considered to be lethal after DNA damage. The incidence of these
rearrangements is associated with chromosomal territories; for instance, translocation
frequently occurs when two DSB ends are merged at chromatin compartment boundaries
between chromosomes [110]. This prompts us to speculate that a smaller number of bound-
aries are formed in Arabidopsis, which lacks obvious TAD formation, thereby lowering its
risk of suffering fatal translocations. This could be one explanation why Arabidopsis can
survive higher doses of irradiation than animals. Future studies will precisely estimate the
3D chromatin architecture in plants and animals and identify the cause of DNA damage
resistance of plant cells. Additionally, it will be important to explore plant-specific mecha-
nisms to organize higher-order chromosomal architecture, which hormonal signals may
control, to illuminate unique strategies of coping with genotoxic stress [111–113].

Originally, “epigenetics” was a notion proposed from plant research, and various
plant-specific epigenetic regulators have been identified so far [30,114]. Nevertheless, it
remains largely unknown how and to what extent plants differ from animals in terms
of epigenetic regulation of DDRs. The major obstacle has been technical difficulties in
determining the chromatin state in plant cells. However, recent advanced techniques, such
as high-throughput chromosome conformation method (Hi-C) and modification-specific
intracellular antibodies (mintbodies), allow for the high-resolution detection of the chro-
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matin structure and chromatin modifications in plants as well as in animals [108,115,116].
Further studies will identify the epigenetic factors involved in genome maintenance and
local DNA repair/recombination processes through their interaction with repair machinery
and cell-cycle regulators, thereby providing a new perspective on DDR mechanisms.
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