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Background and Purpose: Cognition has been linked to rehabilitation outcomes

in stroke populations, but this remains unexplored in individuals with Parkinson’s

disease (PD). The purpose of this secondary data analysis from a recent clinical trial

(NCT02600858) was to determine if global cognition was related to skill performance

after motor training in individuals with PD.

Methods: Twenty-three participants with idiopathic PD completed 3 days of training

on an upper-extremity task. For the purposes of the original clinical trial, participants

trained either “on” or “off” their dopamine replacement medication. Baseline, training,

and 48-h retention data have been previously published. Global cognition was evaluated

using the Montreal Cognitive Assessment (MoCA). Linear regression examined whether

MoCA score predicted longer-term retention at nine-day follow-up; baseline motor task

performance, age, PD severity, depressive symptoms, and group (medication “on”/“off”)

were included as covariates. Baseline and follow-up motor task performance were

assessed for all participants while “on” their medication.

Results: MoCA score was positively related to follow-up motor task performance,

such that individuals with better cognition were faster than those with poorer cognition.

Baseline task performance, age, PD severity, depressive symptoms, and medication

status were unrelated to follow-up performance.

Discussion and Conclusions: Results of this secondary analysis align with previous

work that suggest cognitive impairment may interfere with motor learning in PD and

support the premise that cognitive training prior to or concurrent with motor training

may enhance rehabilitative outcomes for individuals with PD. Findings also suggest that

assessing cognition in individuals with PD could provide prognostic information about

their responsiveness to motor rehabilitation.
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INTRODUCTION

Despite clear evidence of deficits in upper extremity motor
control and dexterity in Parkinson’s disease (PD) (1, 2) that
meaningfully impact on one’s activities of daily living (3), most
rehabilitation research and clinical practice for PD focuses on
gait and balance problems. When prescribed, however, motor
rehabilitation can improve upper extremity movement patterns
and physical function (4, 5), depending on one’s ability to learn
and retain novel motor skills. While individuals with PD may
benefit from physical rehabilitation, they demonstrate slower
learning rates (6) and learn to a lesser extent (7) than individuals
without PD, yet longer-term skill retention remains unclear
(8). In light of this, some people with PD show marked gains
following therapeutic intervention, while others do not [e.g. (4),
see also (9)]. The ability to predict therapeutic responsiveness
could help therapists streamline and personalize treatments.
However, most predictive tools or models of post-intervention
motor outcomes are time- and cost-intensive [e.g., annual clinical
measures (10), neuroimaging (11), etc.].

In contrast, cognitive assessment may be a feasible, brief, and
relatively inexpensive tool for gaining insight to an individual’s
motor learning capacity [see (12)]. Global cognitive status has
been shown to predict gains in gait speed following standard-
of-care physical therapy independent of primary diagnosis
(13, 14). With respect to PD specifically, physical therapy
combined with cognitive training may be more efficacious
in improving reactive postural adjustments (i.e., responses to
perturbations) and motor symptoms than physical therapy alone
(15). Furthermore, lower-extremity physical therapy (i.e., aerobic
exercises, treadmill training) has been shown to improve global
cognition as well in people with PD (16), although combined
physical and cognitive therapy may be more beneficial (17).
However, the relationship between global cognitive measures and
upper-extremity improvements in PD has not been explored.
Empirically, visuospatial function has been linked with upper
limb motor learning in both younger (18–21) and older adults
(22–26) without PD, and since visuospatial deficits can occur with
PD (27–29), this may help explain why people with PD tend to
learn motor skills slower and to a lesser extent than those without
PD. However, the extent to which cognitive impairment (global
or specific) interferes with upper extremity motor learning in
individuals with PD remains unknown.

In a recent randomized clinical trial in individuals with
mild-to-moderate PD (clinicaltrial.gov registration number
NCT02600858) (30), motor practice while “on” dopamine
replacement medication (i.e., levodopa) improved 48-h retention
of a functional upper extremity motor task compared to
practice “off” dopamine replacement medication. The purpose
of the present study was to perform secondary analyses of
these data to evaluate whether cognition was related to skill
learning in the upper extremity. Based on previous findings,
it was hypothesized that cognitive functioning would be
related to longer-term retention of an upper extremity motor
task, where better cognition would be associated with more
skill retention.

METHODS

Participants
Twenty-three adults aged ≥50 years old with a confirmed
diagnosis of PD were included in this secondary analysis
of data from a previously published randomized clinical
trial (clinicaltrials.gov registration number NCT02600858) (30).
Inclusion criteria included idiopathic PD diagnosed by a
neurologist, age 50–80 years, in Hoehn and Yahr stages 1–3,
and had been on a stable antiparkinsonian medication regime
for 1 month prior to pretest assessment as well as throughout
the study. Exclusion criteria included prior surgical treatment of
PD (e.g., deep brain stimulation), dementia [Montreal Cognitive
Assessment (31) (MoCA) < 18] (32), and the presence of
concomitant neurological conditions. Included participants must
have been taking dopamine replacement medications. The
clinical trial protocol required half the participants (n = 12)
to complete upper extremity motor training while continuing
to take their prescribed dose of levodopa medication; the other
half (n = 11) skipped their first dose of medication each
day of motor training such that they were “off” medication
following overnight withdrawal. These participants took their
remaining daily doses after they completed the motor training
each morning. Details regarding dopamine medication and other
participant characteristics have been previously reported (30).

Global cognition was measured using the MoCA, a brief
cognitive screening tool in which scores range from zero to 30;
a score of 26 (or higher) is considered to be normal cognitive
functioning, as defined by the publisher (31). To evaluate upper
extremity dexterity, participants completed the Nine-hole peg
test (33) (a timed clinical measure of dexterity) and another
timed experimental upper extremity dexterity task that simulates
buttoning a shirt unimanually (24, 34, 35); for both these tasks
faster trial times indicate better performance. Participants were
also tested by a trained examiner with the motor subsection
of the Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) (total range of scores = 0–152)
(36). To evaluate depressive symptoms, participants completed
the Geriatric Depression Scale (GDS) Short Form (37), a self-
report rating tool consisting of 15 items and a score of four
or lower is considered normal. Participants self-reported hand
dominance. All participant characteristic data, including MoCA
score, were collected in an initial visit while the participants were
“on” their prescribed dose of dopamine replacement medication,
regardless of which group they were randomized to (“on” vs.
“off” medication).

Upper-Extremity Motor Training
As described previously (30), the motor training protocol
required participants to complete a familiarization trial, then 50
training trials each day for three consecutive days. More details
regarding the motor task are provided below. Participants were
then re-tested 2 and 9 days later. Two-day follow-up was the
stated primary outcome of this clinical trial and was therefore
reported previously; thus, only the longer-term nine-day follow-
up was included in this analysis.
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FIGURE 1 | Participants used their non-dominant hand to complete a reaching task that simulates feeding oneself; participants use a spoon to select only two beans

from the center “home” cup and deposit them into target cups. One trial consisted of 15 repetitions (i.e., five arcs to each of the three target cups). This figure was

adapted from “Dexterity and Reaching Motor Tasks” by MRL Laboratory is licensed under CC BY 2.0.

The motor task used in this study was designed to mimic
an activity of daily living [i.e., feeding (38)]. This task has
been validated against subjective and objective measures of
daily functioning in a cognitively impaired sample (39). The
experimental apparatus was comprised of three “target” cups
placed 16 cm from a center “home” cup at 45, 90, and 135
degrees (Figure 1). Participants were asked to use a plastic
spoon held in their non-dominant hand to collect two raw
kidney beans from the home cup and transport them to one
of the three target cups. The non-dominant hand was used
to ensure the task was not overlearned and to avoid potential
confounds of a ceiling effect (40). Participants were instructed
to move first to the target cup ipsilateral to the non-dominant
hand, then to the middle cup, then to the contralateral cup,
repeating this pattern four more times. Thus, each trial consisted
of 15 reaches. The primary measure of performance was trial
time, which began when the participant picked up the spoon
and ended when they completed all reaching movements and
placed the spoon back onto the table; thus, lower trial times
indicated better performance. Dropping beans, transporting an
incorrect amount, or moving to the wrong target were counted
as errors, and the participant could not continue until the
error was corrected, therefore errors contributed to longer
trial times. Participants were not provided with performance
feedback but could explore different movement strategies to
optimize performance [i.e., discovery learning (41)]. As noted
previously, each training session consisted of 50 trials (i.e.,
750 reaches per session), and participants completed three
training sessions over 3 days (1/day), totaling 2,250 reaches.
This dose of training was selected based on previous feasibility
and efficacy studies in other clinical and healthy populations
(42, 43).

Statistical Analysis
JMP Pro 14.0 (SAS Institute Inc., Cary NC) was used for all
statistical analyses. To examine whether global cognition was
related to the amount of learned motor skill, MoCA scores were
included in a multiple linear regression model as a predictor of
nine-day follow-up performance (α = 0.05), along with baseline
motor performance, age, MDS-UPDRS Motor subsection score,
and GDS as covariates. The MDS-UPDRS Motor subsection

score and GDS were included to control for severity of PD motor
signs and depressive symptoms, respectively. All continuous
variables (age, MoCA, baseline motor performance, and 9-day
follow-up) were normally distributed, as determined by Shapiro-
Wilk tests. Furthermore, a partial correlation matrix indicated
minimal collinearity between predictors, with only a moderate
correlation between age and MoCA (r = −0.21). In addition,
quantile range analysis indicated no outliers for any of the
continuous variables. Thus, assumptions for linear regression
were tested and met.

Baseline motor performance was measured as the first trial
of the first motor training session. Similarly, follow-up was
measured as a single trial performed 9 days after the last training
session. Although we did not have a specific hypothesis regarding
the effect of dopamine replacement medication on learning, we
also included the variable of group (“on” vs. “off” medication)
as a covariate to control for any confounds of dopamine
replacement medication status on the primary outcome.We note
that baseline motor performance was not different between the
medication groups (p = 0.28), consistent with results from the
primary analysis of this clinical trial (30). We also note that based
on results from the primary analysis of this clinical trial [see
Table 2 in original publication (30)], we were sufficiently powered
to detect significant differences between the two timepoints
(Cohen’s d = 0.58; effect-size r = 0.27).

RESULTS

Individual characteristics are provided in Table 1. Participants
demonstrated mild PD symptoms and disease severity (median
Hoehn and Yahr stage = 2, not shown in table). Using their
non-dominant hand, participants completed the Nine-hole peg
test and experimental dexterity task in 25.38 ± 4.31 and 102.81
± 54.37 s (mean ± SD), respectively. Results for the Nine-
hole peg test were consistent with previously reported values
in PD (33). In addition, participants were bradykinetic, taking
twice as long to complete the dexterity task as healthy older
adults from previously reported data (35). MoCA scores ranged
between 23 and 30, indicating that some participants were
within the normal range of cognition while others fell below
[based on (31)].
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TABLE 1 | Individual participant characteristics (n = 23).

Age (years) Education (years) GDSa MDS-UPDRS-3b Gender 9HPT (s)c UE dexterity (s)d MoCAe

66.5 18 10 36 M 30.38 193.66 24

71.2 18 0 34 F 22.5 109.36 30

75.8 12 1 25 F 20.75 42.83 25

68.8 14 3 33 M 22.37 103.11 28

66.5 16 1 32 F 22.85 47.02 27

67.7 17 1 40 M 23.03 70.42 30

50.5 16 1 21 F 19.31 45.86 30

74.4 16 1 39 F 24.19 69.24 25

79.2 18 1 28 M 26.91 103.99 26

71.7 16 0 34 M 28.88 80.89 27

70 18 1 35 M 24.85 107.29 24

62.4 12 1 32 M 25.66 93.27 26

79.6 16 0 22 M 27.31 121.90 25

78.7 16 9 24 F 23.35 63.21 28

77.9 16 0 27 F 25.93 117.21 27

70 16 0 39 F 24.59 100.00 27

80.3 20 10 20 M 27.88 92.90 27

76.2 12 1 37 F 22.52 100.33 24

66.2 20 9 13 F 19.44 61.37 27

73.9 20 0 24 M 28.53 96.05 29

70.8 14 2 27 F 24.44 153.98 28

63.4 20 5 25 F 27.63 94.89 23

72.9 14 3 55 M 39.69 296.02 25

aGDS, Geriatric Depression Scale.
bMDS-UPDRS-3, Movement Disorder Society—Unified Parkinson’s Disease Rating Scale Motor Portion (assessed “on” medication).
c9 HPT, Nine Hole Peg Test, tested on the non-dominant hand (prior to motor training); higher scores indicate worse performance, measured in seconds.
dUE Dexterity Task, Upper Extremity Dexterity task (non-dominant hand); higher scores indicate worse performance, measured in s.
eMoCA, Montreal Cognitive Assessment; lower scores indicate worse performance.

Overall, nine-day follow-up performance on the motor task
was significantly faster (better) than that of baseline [one-
sample t(43) = −3.13; p = 0.0016], as shown in Figure 2A.
This indicates an overall effect of motor learning in this
sample. Linear regression model results indicated that only
MoCA score predicted 9-day follow-up performance (β =

−2.76; 95% CI [−5.11, −0.39], p = 0.0248), such that higher
MoCA scores were associated with faster (better) trial times
9 days post-training. This is further illustrated in Figure 2B,
which shows baseline and follow-up data for each participant.
Line colors indicate each participant’s MoCA score (warmer
colors = lower MoCA scores), such that warmer colors tended
to cluster at slower trial times for 9-day follow-up, while
cooler colors tended to cluster at faster trial times. Participant
age (β = −0.18; 95% CI [−0.89, 0.52], p = 0.59), severity
of PD motor signs (β = 0.26; 95% CI [−0.34, 0.86], p =

0.37), GDS (β = 0.71; 95% CI [−0.73, 2.15], p = 0.31) and
medication status group (β = 2.83; 95% CI [−2.02, 7.68],
p = 0.23) were not significantly related to follow-up motor
performance. Since only MoCA score was a significant predictor
of follow-up performance, results from a bivariate regression
are provided in Figure 3 to further illustrate the negative
relationship between the two variables (color gradient consistent
with that of Figure 2B).

FIGURE 2 | (A) Mean motor task performance at baseline and 9-day

follow-up. On average, trial time (in seconds) was significantly faster at

nine-day follow-up compared to baseline. *Indicates p = 0.0016. (B) Motor

performance for each participant at baseline and 9-day follow-up. Line color

indicates each participant’s MoCA score, with warmer colors indicating lower

MoCA scores and cooler colors indicating higher MoCA scores (range 23–30).

DISCUSSION

The purpose of this secondary analysis was to determine whether
cognition was related to upper extremity motor skill learning
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FIGURE 3 | Scatterplot of motor performance at 9-day follow-up as a function

of MoCA score. Bivariate linear correlation results are shown in figure. Color

gradient corresponds to that in Figure 2.

in individuals with PD. Results indicated that MoCA score
predicted follow-up performance of a functional upper extremity
motor task 9 days after the last practice session, more so
than baseline performance and age (regardless of “on”/“off”
medication groups). These findings align with previous work that
suggest cognitive testing can be used to predict rehabilitative
outcomes (44, 45) and support that global cognition may be a
useful tool to predict motor learning in clinical populations (46–
48). Although the MoCA was used to evaluate global cognition
in this study, there is existing evidence that supports the value
of assessing specific cognitive domains as predictors of motor
learning (24, 44, 49).

Given the high prevalence of cognitive impairment among
people with PD (50, 51), global and specific cognitive measures
should be considered to identify which and to what extent
various cognitive impairments interfere with learning different
skills. In terms of global cognitive measures, the MoCA may be
particularly sensitive to screening cognitive deficits associated
with PD compared to other global cognitive measures of
cognition (i.e., the Mini Mental State Examination) (32). We
acknowledge, however, that the MoCA is a rapid cognitive
screen that does not thoroughly assess the function of each
cognitive domain nor is it validated to measure the function
of individual cognitive domains, which may be a limitation to
this study. Thus, a more comprehensive battery of cognitive
assessments would determine whether specific cognitive domains
(or specific cognitive deficits) more closely predict motor skill
retention in this population. For example, visuospatial deficits
may interfere with upper-extremity learning (23–25, 52, 53),
while fluid cognitive skills or executive function may interfere
with lower-extremity learning (54). While these previous studies
have not focused on motor learning in PD specifically, the
effects of particular cognitive deficits may not be PD-specific
but instead generalize to a number of older patient populations
who may be receiving motor rehabilitation for a number of
reasons (e.g., stroke, joint replacement). As such, the effect of

cognitive impairment on motor rehabilitation is gaining interest,
within and beyond PD (12, 55). Future studies in motor learning
should consider a more comprehensive battery of cognitive tests,
especially those that evaluate visuospatial and executive abilities,
in order to identify evidence-based targets for adjuvant cognitive
or non-invasive brain stimulation therapies [e.g. (15, 17, 56–
58)] that can be administered prior to or during upper- and
lower-extremity motor therapy for people with PD.

In addition to providing empirical evidence as the
groundwork for developing effective adjuvant therapies for
motor rehabilitation in PD, this study offers clinicians a low-cost,
easy-to-implement way to predict how responsive a person
with PD might be to motor therapy. It is well-established that
responsiveness to motor rehabilitation is often highly variable
between PD patients [see 95% CIs in Robinson et al. (9)]. As
such, the findings from the current study suggest that the MoCA
may be a quick (∼5–10min) and simple way to predict how
responsive a patient might be to upper-extremity training.
This would inform therapists in how to streamline and tailor
their treatments, and better allocate their time to activities
that they know their patients will benefit from. Predictors of
therapeutic responsiveness are already being explored outside
PD using neuroimaging (59–61), neurophysiology (61–63), or
genotyping (64–66), but these investigational methods are time-
and cost-intensive, making them unfeasible for an allied health
setting and out-of-pocket therapy.

In the published clinical trial (30), there was a modest
effect of medication status during training (i.e., “on”/“off”
medication while practicing the task) between baseline and 48-
h follow-up task performance, such that the “on” medication
group performed significantly better at this short-term retention
period than did the “off” medication group. These results were
interpreted to indicate that being “on” dopamine replacement
medications may facilitate short term retention of motor skill.
However, this secondary analysis indicates that the group
difference was no longer present by the ninth day of retention,
likely due to the modest effect of medication status on training
previously observed. Instead, global cognition (which was not
originally considered in the parent clinical trial) was a significant
predictor of motor task performance well after training had
been completed (9 days later), regardless of whether training
had occurred “on” or “off” dopamine replacement medication.
Indeed, dopamine replacement may be insufficient to offset the
breadth of cognitive deficits associated with PD (67), and the
short duration in which participants in the “off” group were
withdrawn from their medication for training (relative to the 9-
day duration of retention) may explain the lack of effect of group
in this secondary analysis.

There are several limitations to this study. First, there
was a limited range of MoCA scores in this sample, and
more participants were in the normal range than below. Even
though the MoCA is not a diagnostic tool (and is instead
a cognitive screening tool), scores suggest that the majority
of participants were cognitively intact, and more extensive
neuropsychological testing would be necessary to determine
whether participants with scores below the “normal” cut-off
were in fact cognitively-impaired. This does not, however,
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take away from the findings and implications of this study,
whereby rehabilitation-focused clinicians could still use the
MoCA as a quick screening tool to better predict how patients
might respond to upper-extremity skill training. Future studies
will investigate a larger cohort of more cognitively-impaired
individuals [such as people with PD who experience “freezing”
(68–71)] to further test the generalizability of these findings.
Second, a limitation of this study is that the participants in
the “off” medication group resumed their regularly prescribed
dopamine replacement therapy after training each day and
throughout the 9-day retention period; thus, we are unable to
discern potential effects of medication adherence or withdrawal
on motor skill consolidation and retention. It is well-established
that consolidation and retention are critical periods for motor
learning, as well as acquisition (72). Third, we acknowledge
that this study was not designed to directly test if global
cognition would be predictive of clinical rehabilitation motor
outcomes in individuals with PD, since it only evaluated the
amount of skill retained over a period of 9 days. Performance
of the functional upper extremity task used in this study has,
however, been associated with subjective and objective measures
of daily functioning in individuals diagnosed withMild Cognitive
Impairment (39), suggesting that the benefits of training may
generalize to activities of daily living.

CONCLUSIONS

Our study supports the premise that cognitive impairments
interfere with motor skill learning in PD, and provides the
proof-of-principle that (1) cognitive screening may be a viable
solution for personalizing motor rehabilitation for people with
PD and (2) cognitive therapy and/or brain stimulation prior to,
or concurrent with, motor training could enhance functional
outcomes. Future mechanistic work should systematically test
which specific cognitive domains are most relevant for different

types of motor learning in PD to help inform targeted adjuvant
cognitive or neurostimulation therapies that can enhance
motor rehabilitation. For example, fluid cognition training may
enhance gait adaptation, or non-invasive stimulation of parietal
cortex could enhance functional upper-extremity training via
visuospatial processes.
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