

OPEN access

Crystal structure of 3,4-dimethyl 2-(tertbutylamino)-5-[2-oxo-4-(thiomorpholin-4-vl)-2H-chromen-3-vl]furan-3,4-dicarboxylate ethyl acetate hemisolvate

Tetsuji Moriguchi,^a* Venkataprasad Jalli,^a Suvratha Krishnamurthy,^a Akihiko Tsuge^a and Kenji Yoza^b

^aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan, and ^bJapan Bruker AXS K.K.3-9, Moriya-cho Kanagawaku Yokohama 221-0022, Japan. *Correspondence e-mail: moriguch@che.kyutech.ac.jp

Received 26 October 2015; accepted 18 November 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title hemisolvate, C₂₅H₂₈N₂O₇S·0.5C₄H₈O₂, the thiomorpholine ring adopts a chair conformation, with the exocyclic N-C bond in an equatorial orientation. The dihedral angle between the coumarin ring system (r.m.s. deviation = 0.044 Å) and the furan ring is $64.84 (6)^{\circ}$. An intramolecular N-H···O hydrogen bond closes an S(6) ring. The ethyl acetate solvent molecule is disordered about a crystallographic inversion centre. In the crystal, the components are linked by $C-H \cdots O$ and $C-H \cdots S$ hydrogen bonds, generating a three-dimensional network.

Keywords: crystal structure; coumarins; thiomorpholine ring; hydrogen bonding.

CCDC reference: 1432824

1. Related literature

For the syntheses and properties of coumarins, see: Arango et al. (2010); Chodankar & Seshadri (1985); Khan & Kulkarni (1999); Kitamura et al. (2005); Luo et al. (2012); Sawa et al. (2006); Schiedel et al. (2001); Udaya Kumari et al. (2000); Zen et al. (2014).

V = 2700.3 (6) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.40 \times 0.25 \text{ mm}$

25410 measured reflections

4757 independent reflections

4316 reflections with $I > 2\sigma(I)$

 $\mu = 0.17 \text{ mm}^{-1}$

T = 90 K

 $R_{\rm int} = 0.022$

Z = 4

2. Experimental

2.1. Crystal data

 $C_{25}H_{28}N_2O_7S \cdot 0.5C_4H_8O_2$ $M_r = 544.61$ Monoclinic, $P2_1/c$ a = 14.3733 (17) Å b = 16.1159 (19) Å c = 11.7019 (14) Å $\beta = 95.007 \ (1)^{\circ}$

2.2. Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.853, T_{\max} = 0.958$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	30 restraints
$wR(F^2) = 0.086$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
4757 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
375 parameters	

lable I			
Hydrogen-	bond geome	try (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
N2-H13····O4	0.86	2.25	2.8255 (17)	125
$C3-H2 \cdot \cdot \cdot O6^{i}$	0.93	2.41	3.325 (2)	167
C12−H9···O4 ⁱⁱ	0.97	2.44	3.1531 (18)	130
$C12-H10\cdots O1S^{iii}$	0.97	2.48	3.208 (5)	132
C19-H15···O3	0.96	2.42	3.0090 (19)	119
C23−H23···S1 ^{iv}	0.96	2.78	3.5639 (17)	139
$C25-H26\cdots S1^{v}$	0.96	2.83	3.7406 (18)	159

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z; (iii) x, y, z - 1; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2};$ (v) $x, -y - \frac{1}{2}, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA) for the X-ray analysis. This research was supported financially by JSPS KAKENH grant No. 15 K05611.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7531).

References

- Arango, V., Robledo, S., Séon-Méniel, B., Figadère, B., Cardona, W., Sáez, J. & Otálvaro, F. (2010). J. Nat. Prod. 73, 1012–1014.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chodankar, N. K. (1985). Dyes Pigm. 6, 331-340.
- Khan, I. A. & Kulkarni, M. V. (1999). Indian. J. Chem. Sect. B, 38, 491-494.
- Kitamura, N., Kohtani, S. & Nakagaki, R. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 168–185.

- Luo, X., He, W., Yin, H., Li, Q., Liu, Q., Huang, Y. & Zhang, S. (2012). Molecules, 17, 6944–6952.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sawa, M., Hsu, T. L., Itoh, T., Sugiyama, M., Hanson, S. R., Vogt, P. K. & Wong, C. H. (2006). Proc. Natl Acad. Sci. USA, 103, 12371–12376.
- Schiedel, M. S., Briehn, C. A. & Bäuerle, P. (2001). Angew. Chem. Int. Ed. 40, 4677–4680.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Udaya Kumari, T., David Krupadanam, G. L. & Srimannarayana, G. (2000). Indian. J. Chem. Sect. B, 39, 62-64.
- Zen, A. Z., Aylott, J. W. & Chan, W. C. (2014). Tetrahedron Lett. 55, 5521– 5524.

supporting information

Acta Cryst. (2015). E71, o1003–o1004 [doi:10.1107/S2056989015021970]

Crystal structure of 3,4-dimethyl 2-(*tert*-butylamino)-5-[2-oxo-4-(thiomorpholin-4-yl)-2*H*-chromen-3-yl]furan-3,4-dicarboxylate ethyl acetate hemisolvate

Tetsuji Moriguchi, Venkataprasad Jalli, Suvratha Krishnamurthy, Akihiko Tsuge and Kenji Yoza

S1. Structural commentary

Coumarins analogs having furan heterocycle have gained significant importance because of their properties as antileishmania panamensis, dyes and fluorescent sensors. For the activity related reports of furyl coumarins, see: Arango *et al.* (2010); Zen *et al.* (2014); Schiedel *et al.* (2001); Kitamura *et al.* (2005). Natural furyl coumarin derivatives extracted from plants such as microminutin, micromelin, psoralen, 8-methoxypsoralen have important properties in medicinal chemistry and bio photochemistry. For the activity related reports of natural furyl coumarins, see: Luo *et al.* (2012). It was well documented that by introducing a heteroaromatic substituent at 3-position the absorption and emission maxima of coumarin scaffold can be improved because of extended π conjugation and consequently their optoelectronic properties can be improved. Due to their versatile properties. For the optoelectronic properties of coumarin derivatives, see: Sawa *et al.* (2006). For the synthesis related reports of 3-furyl coumarin derivatives, see: Chodankar *et al.* (1985); Khan & Kulkarni (1999); Udaya Kumari *et al.* (2000). Thus, the elucidation of the crystal structures of coumarin derivatives has attracted much attention. Here, we report the crystal structure of the title compound, (I).

S2. Synthesis and crystallization,

A solution of 4-thiomorpholino-3-formyl coumarin (1 mmol), dmethyl acetylenedicarboxylate (1 mmol), t-butyl isocyanide (1 mmol) were refluxed at 80°C for 3h. The volatiles were removed under reduced pressure. The crude reaction mixture was subjected to column chromatography using EtOAc/Hexane mobile phase. The title compound was isolated as yellow color solid with 80% yield. Yellow prisms were obtained by vapour diffusion method at room temperature, i.e., hexane vapour was allowed to diffuse into an EtOAc solution of 4-thiomorpholino-3-(2-N-t-butyl-amino-3,4-dimethylcarboxylate-5-furyl) 2H-1-benzopyran-2-one at room temperature.

mp 107-109 °C; IR; v_{max} (KBr) 3288, 1732, 1728, 1667, 1658, 1618, 1418, 1240, 1041 cm⁻¹; $\delta_{\rm H}$ (500 MHz CDCl₃) 7.69 (1 H, d), 7.52 (1 H, t), 7.28-7.33 (2 H, dd), 7.05 (1 H, s), 3.78 (3 H, s), 3.75 (3 H, s), 3.39-3.48 (4 H, m), 2.77-2.81 (4 H, m), 1.44 (9 H, s); $\delta_{\rm C}$ (125 MHz, CDCl₃) 165.6, 163.9, 163.0, 161.2, 160.6, 153.4, 138.2, 132.4, 125.1, 123.7, 118.7, 118.1, 117.7, 103.6, 87.8, 53.2, 52.7, 51.8, 51.3, 28.0; LCMS: MH⁺, 501.

Figure 1

Molecular configuration and atom-numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 3

Chemical scheme of title compound with solvent molecule. In the cystal system the main molecule and solvent molecule was found in 1:0.5 ratio.

Synthesis of title compound (I).

3,4-Dimethyl 2-(*tert*-butylamino)-5-[2-oxo-4-(thiomorpholin-4-yl)-2*H*-chromen-3-yl]furan-3,4-dicarboxylate ethyl acetate hemisolvate

Crystal data

$C_{25}H_{28}N_2O_7S \cdot 0.5C_4H_8O_2$	F(000) = 1152
$M_r = 544.61$	$D_{\rm x} = 1.340 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25410 reflections
a = 14.3733 (17) Å	$\theta = 1.4 - 25.0^{\circ}$
b = 16.1159 (19) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 11.7019 (14) Å	T = 90 K
$\beta = 95.007 (1)^{\circ}$	Prism, yellow
V = 2700.3 (6) Å ³	$0.50 \times 0.40 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII	25410 measured reflections
diffractometer	4757 independent reflections

diffractometer	4757 independent reflections
Radiation source: fine-focus sealed tube	4316 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.4^\circ$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan	$k = -19 \rightarrow 19$
(SADABS; Bruker, 2009)	$l = -13 \rightarrow 13$
$T_{\min} = 0.853, \ T_{\max} = 0.958$	

Refinement

-	
Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.02	H-atom parameters constrained
4757 reflections	$w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 1.5222P]$
375 parameters	where $P = (F_o^2 + 2F_c^2)/3$
30 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.99995 (10)	0.03172 (9)	0.34623 (12)	0.0231 (3)	
C2	1.08898 (11)	0.03216 (10)	0.40315 (13)	0.0282 (3)	
H1	1.1151	0.0815	0.4321	0.034*	
C3	1.13819 (11)	-0.04082 (11)	0.41634 (14)	0.0316 (4)	
H2	1.197	-0.0413	0.4563	0.038*	
C4	1.09998 (11)	-0.11405 (11)	0.36986 (14)	0.0310 (4)	
Н3	1.1343	-0.163	0.3759	0.037*	
C5	1.01118 (10)	-0.11389 (10)	0.31490 (13)	0.0257 (3)	
H4	0.9864	-0.1631	0.2837	0.031*	
C6	0.95710 (10)	-0.04105 (9)	0.30487 (12)	0.0208 (3)	
C7	0.86234 (9)	-0.03596 (9)	0.24765 (11)	0.0190 (3)	
C8	0.82094 (10)	0.04097 (9)	0.23612 (12)	0.0199 (3)	
С9	0.87117 (10)	0.11639 (9)	0.27233 (13)	0.0239 (3)	
C10	0.81001 (10)	-0.18053 (9)	0.27629 (12)	0.0215 (3)	
Н5	0.7459	-0.1825	0.2962	0.026*	
Н6	0.8502	-0.1745	0.3468	0.026*	
C11	0.83315 (11)	-0.26140 (9)	0.21796 (12)	0.0242 (3)	
H7	0.8264	-0.3073	0.2703	0.029*	
H8	0.8976	-0.2601	0.1993	0.029*	
C12	0.77517 (10)	-0.17887 (9)	0.02143 (12)	0.0238 (3)	
H10	0.8391	-0.1757	0.0011	0.029*	
Н9	0.7342	-0.1748	-0.0488	0.029*	
C13	0.75641 (10)	-0.10617 (9)	0.09892 (12)	0.0217 (3)	
H11	0.7635	-0.0545	0.0581	0.026*	
H12	0.6928	-0.1092	0.1205	0.026*	

C14	0.72271 (10)	0.05441 (8)	0.19528 (12)	0.0201 (3)	
C15	0.64058 (9)	0.03168 (8)	0.23338 (12)	0.0185 (3)	
C16	0.56676 (10)	0.06269 (9)	0.15304 (12)	0.0194 (3)	
C17	0.61162 (10)	0.10511 (9)	0.07106 (12)	0.0214 (3)	
C18	0.62518 (11)	0.20817 (9)	-0.09030 (12)	0.0243 (3)	
C19	0.68655 (12)	0.26826 (10)	-0.01648 (14)	0.0323 (4)	
H14	0.6495	0.296	0.0363	0.048*	
H16	0.7128	0.3086	-0.0648	0.048*	
H15	0.736	0.2381	0.0255	0.048*	
C20	0.54811 (12)	0.25574(10)	-0.16032(14)	0.0320 (4)	
H17	0.5063	0.2172	-0.2007	0.048*	
H18	0.5754	0.2911	-0.2144	0.048*	
H19	0 5142	0.2889	-0.1099	0.048*	
C21	0.68273(12)	0.15921(10)	-0.17061(14)	0.0323(4)	
H20	0.727	0 1249	-0.1262	0.048*	
H22	0.7154	0.1219	-0.2163	0.048*	
H21	0.642	0.1249	-0.2109	0.048*	
C22	0.012 0.46747 (10)	0.06935 (9)	0.2190 0.16008 (12)	0.0704(3)	
C23	0.34095(10)	0.00955(5)	0.27252(14)	0.0207(3) 0.0297(4)	
H23	0.3276	0.1089	0.27232 (11)	0.045*	
H24	0.3263	0.0253	0.343	0.045*	
H25	0.3039	0.0255	0.2095	0.045*	
C24	0.62849 (9)	-0.01445(9)	0.2095 0.34073 (12)	0.019	
C25	0.55129(12)	-0.12568(10)	0.31079(12) 0.42109(13)	0.0200(3) 0.0298(4)	
H26	0.605	-0.1357	0.4739	0.045*	
H27	0.522	-0.1775	0 3994	0.045*	
H28	0.5078	-0.0912	0.457	0.045*	
C1S	1.0683 (9)	-0.1031(8)	1.0236 (11)	0.059(3)	0.5
HISA	1 1073	-0.0784	1.0250 (11)	0.088*	0.5
HISB	1 1057	-0.1181	0.9628	0.088*	0.5
HISC	1 0388	-0.1517	1.0511	0.088*	0.5
C2S	0.994(2)	-0.041(2)	0.979(2)	0.0624 (17)	0.5
C3S	0.9917(9)	0.0898(7)	0.9635(11)	0.0506(17)	0.5
H3SA	0.8679	0.0739	1 0031	0.061*	0.5
H3SB	0.9073	0.0815	0.8817	0.061*	0.5
C4S	0.9519(2)	0.1897(2)	0.9924(3)	0.0399(9)	0.5
H4SA	0.9024	0.2257	0.9921 (3)	0.06*	0.5
H4SB	1.0079	0.2028	0.9569	0.06*	0.5
H4SC	0.9627	0.1971	1 0738	0.06*	0.5
N1	0.82204 (8)	-0.10814(7)	0 20229 (10)	0.0197(3)	0.00
N2	0 57584 (9)	0 15043 (8)	-0.01773(11)	0.0286(3)	
H13	0.5167	0.1455	-0.0349	0.034*	
01	0.95818(7)	0.10811 (6)	0 32980 (9)	0.0263(2)	
$\frac{01}{02}$	0.84156 (8)	0.18618(7)	0.32900(9) 0.25827(10)	0.0205(2) 0.0324(3)	
03	0 70539 (7)	0.09935(6)	0.09266 (8)	0.0223(2)	
04	0.41429(7)	0.10217(7)	0.08665 (9)	0.0229(2)	
05	0.43880(7)	0.03856 (6)	0.25799 (8)	0.0226(2)	
06	0 65724 (8)	0.00853 (8)	0 43480 (9)	0.0220(2)	
00	0.00/24(0)	0.000000 (0)		0.00,0(0)	

supporting information

07	0.57991 (7)	-0.08439 (6)	0.32009 (8)	0.0235 (2)	
O1S	0.9264 (3)	-0.0628 (3)	0.9137 (4)	0.1025 (13)	0.5
O2S	1.0034 (13)	0.0428 (14)	1.0052 (12)	0.0550 (15)	0.5
S1	0.75716 (3)	-0.27772 (2)	0.08816 (3)	0.02791 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0205 (7)	0.0277 (8)	0.0213 (7)	-0.0025 (6)	0.0037 (6)	0.0008 (6)
C2	0.0218 (8)	0.0373 (9)	0.0252 (8)	-0.0098 (7)	-0.0001 (6)	-0.0009 (7)
C3	0.0166 (7)	0.0500 (10)	0.0272 (8)	-0.0029 (7)	-0.0034 (6)	0.0055 (7)
C4	0.0216 (8)	0.0390 (9)	0.0317 (9)	0.0058 (7)	-0.0020 (6)	0.0040 (7)
C5	0.0219 (7)	0.0290 (8)	0.0256 (8)	0.0008 (6)	-0.0010 (6)	0.0000 (6)
C6	0.0177 (7)	0.0277 (8)	0.0171 (7)	-0.0014 (6)	0.0015 (5)	0.0016 (6)
C7	0.0177 (7)	0.0236 (7)	0.0159 (7)	-0.0013 (6)	0.0026 (5)	0.0023 (5)
C8	0.0178 (7)	0.0231 (7)	0.0191 (7)	-0.0012 (6)	0.0031 (5)	0.0015 (6)
C9	0.0219 (7)	0.0257 (8)	0.0245 (8)	-0.0017 (6)	0.0043 (6)	0.0002 (6)
C10	0.0219 (7)	0.0227 (7)	0.0194 (7)	-0.0020 (6)	-0.0001 (6)	0.0041 (6)
C11	0.0270 (8)	0.0221 (7)	0.0229 (7)	-0.0015 (6)	-0.0020 (6)	0.0043 (6)
C12	0.0228 (7)	0.0283 (8)	0.0194 (7)	0.0022 (6)	-0.0035 (6)	0.0008 (6)
C13	0.0210(7)	0.0228 (7)	0.0202 (7)	0.0006 (6)	-0.0046 (6)	0.0018 (6)
C14	0.0224 (7)	0.0175 (7)	0.0200 (7)	0.0018 (6)	0.0002 (6)	0.0034 (5)
C15	0.0191 (7)	0.0168 (7)	0.0194 (7)	0.0016 (5)	0.0004 (5)	-0.0004 (5)
C16	0.0189 (7)	0.0200 (7)	0.0187 (7)	0.0018 (5)	-0.0008 (5)	0.0010 (5)
C17	0.0195 (7)	0.0226 (7)	0.0218 (7)	0.0028 (6)	-0.0004 (6)	0.0019 (6)
C18	0.0309 (8)	0.0213 (7)	0.0209 (7)	0.0007 (6)	0.0030 (6)	0.0039 (6)
C19	0.0402 (9)	0.0246 (8)	0.0314 (9)	-0.0006 (7)	-0.0010 (7)	0.0005 (7)
C20	0.0425 (10)	0.0277 (8)	0.0251 (8)	0.0061 (7)	-0.0007(7)	0.0049 (6)
C21	0.0378 (9)	0.0299 (8)	0.0300 (8)	0.0010 (7)	0.0075 (7)	-0.0007 (7)
C22	0.0203 (7)	0.0194 (7)	0.0209 (7)	0.0005 (6)	-0.0003 (6)	-0.0014 (6)
C23	0.0207 (8)	0.0340 (9)	0.0353 (9)	0.0037 (6)	0.0082 (6)	0.0009(7)
C24	0.0148 (6)	0.0229 (7)	0.0219 (7)	0.0010 (5)	-0.0006(5)	0.0021 (6)
C25	0.0328 (9)	0.0313 (8)	0.0249 (8)	-0.0065 (7)	0.0008 (6)	0.0099 (7)
C1S	0.036 (4)	0.090 (5)	0.055 (4)	-0.004(3)	0.028 (3)	-0.002(3)
C2S	0.049 (3)	0.082 (3)	0.060 (4)	-0.003(2)	0.026 (3)	0.013 (3)
C3S	0.036 (3)	0.070 (3)	0.047 (3)	0.013 (3)	0.007 (2)	0.020 (3)
C4S	0.0258 (17)	0.052 (2)	0.044 (2)	0.0120 (15)	0.0153 (15)	0.0192 (17)
N1	0.0199 (6)	0.0199 (6)	0.0185 (6)	-0.0012 (5)	-0.0039 (5)	0.0028 (5)
N2	0.0200 (6)	0.0372 (8)	0.0280 (7)	0.0004 (5)	-0.0007 (5)	0.0136 (6)
01	0.0223 (5)	0.0244 (5)	0.0319 (6)	-0.0049 (4)	0.0000 (4)	-0.0021 (4)
O2	0.0326 (6)	0.0207 (6)	0.0437 (7)	0.0006 (5)	0.0019 (5)	-0.0024 (5)
03	0.0185 (5)	0.0251 (5)	0.0232 (5)	0.0016 (4)	0.0023 (4)	0.0073 (4)
O4	0.0204 (5)	0.0408 (7)	0.0277 (6)	0.0047 (5)	-0.0027 (4)	0.0086 (5)
05	0.0175 (5)	0.0271 (5)	0.0236 (5)	0.0021 (4)	0.0035 (4)	0.0028 (4)
O6	0.0417 (7)	0.0463 (7)	0.0214 (6)	-0.0190 (6)	-0.0069 (5)	0.0048 (5)
O7	0.0284 (5)	0.0218 (5)	0.0202 (5)	-0.0045 (4)	0.0014 (4)	0.0039 (4)
O1S	0.104 (3)	0.113 (3)	0.094 (3)	-0.019 (3)	0.029 (2)	0.021 (3)
O2S	0.0419 (18)	0.0739 (19)	0.052 (4)	0.0088 (17)	0.017 (3)	0.014 (3)

supporting information

<u>S1</u>	0.0304 (2)	0.0225 (2)	0.0294 (2)	-0.00151 (15)	-0.00565 (16)	-0.00288 (15)			
Geom	Geometric parameters (Å, °)								
C1-0	01	1.375	9 (18)	C18—N2		1.4817 (19)			
C1	C2	1.390	(2)	C18—C21		1.525 (2)			
C1	C6	1.392	(2)	C18—C20		1.526 (2)			
C2—(C3	1.374	(2)	C18—C19		1.526 (2)			
C2—I	1 1	0.93	()	C19—H14		0.96			
C3—(24	1.392	(2)	C19—H16		0.96			
С3—Н	-12	0.93		C19—H15		0.96			
C4—0	25	1.378	(2)	C20—H17		0.96			
C4—H	-13	0.93	()	C20—H18		0.96			
С5—(C6	1.407	(2)	С20—Н19		0.96			
С5—Н	1 4	0.93		C21—H20		0.96			
С6—С	C 7	1.466	7 (19)	C21—H22		0.96			
С7—С	C8	1.377	(2)	C21—H21		0.96			
C7—N	V 1	1.384	4 (18)	C22—O4		1.2197 (17)			
C8—C	C9	1.458	(2)	C22—O5		1.3457 (17)			
C8—C	C14	1.467	(2)	C23—O5		1.4444 (17)			
С9—(02	1.208	8 (19)	С23—Н23		0.96			
С9—(01	1.373	7 (18)	C23—H24		0.96			
C10—	-N1	1.472	1 (18)	C23—H25		0.96			
C10-	-C11	1.521	(2)	C24—O6		1.2001 (18)			
C10-	-H5	0.97		C24—O7		1.3367 (17)			
C10-	-H6	0.97		C25—O7		1.4469 (18)			
C11-	-S1	1.811	0 (15)	C25—H26		0.96			
C11-	-H7	0.97		C25—H27		0.96			
C11-	-H8	0.97		C25—H28		0.96			
C12—	-C13	1.520	(2)	C1S—C2S		1.51 (3)			
C12—	-S1	1.802	7 (15)	C1S—H1SA		0.96			
C12—	-H10	0.97		C1S—H1SB		0.96			
C12—	-H9	0.97		C1S—H1SC		0.96			
C13—	-N1	1.468	0 (17)	C2S—O1S		1.23 (3)			
C13—	-H11	0.97		C2S—O2S		1.396 (16)			
C13—	-H12	0.97		C3S—O2S		1.446 (19)			
C14—	-C15	1.348	(2)	C3S—C4S		1.693 (13)			
C14—	-O3	1.405	8 (17)	C3S—H3SA		0.97			
C15—	-C16	1.444	0 (19)	C3S—H3SB		0.97			
C15—	-C24	1.483	0 (19)	C4S—H4SA		0.96			
C16—	-C17	1.383	(2)	C4S—H4SB		0.96			
C16—	-C22	1.441	(2)	C4S—H4SC		0.96			
C17—	-N2	1.335	7 (19)	N2—H13		0.86			
C17—	-03	1.352	7 (17)						
01—0	С1—С2	115.7	5 (13)	C18—C19—H14	ŀ	109.5			
01-0	С1—С6	122.0	8 (13)	С18—С19—Н16	5	109.5			
C2—C	С1—С6	122.1	3 (14)	H14—C19—H16	5	109.5			

C3—C2—C1	119.52 (15)	C18—C19—H15	109.5
C3—C2—H1	120.2	H14—C19—H15	109.5
C1—C2—H1	120.2	H16—C19—H15	109.5
C2—C3—C4	120.00 (14)	C18—C20—H17	109.5
C2—C3—H2	120.0	C18—C20—H18	109.5
C4—C3—H2	120.0	H17—C20—H18	109.5
C5—C4—C3	119.90 (15)	C18—C20—H19	109.5
С5—С4—Н3	120.1	H17—C20—H19	109.5
С3—С4—Н3	120.1	H18—C20—H19	109.5
C4-C5-C6	121.52 (15)	C18—C21—H20	109.5
C4—C5—H4	119.2	C18—C21—H22	109.5
C6-C5-H4	119.2	H_{20} C_{21} H_{22}	109.5
C1 - C6 - C5	116 71 (13)	C18—C21—H21	109.5
C1 - C6 - C7	118 48 (13)	H_{20} C_{21} H_{21}	109.5
$C_{5} - C_{6} - C_{7}$	124 67 (13)	H22 - C21 - H21	109.5
C8 - C7 - N1	123.80(12)	$04-C^{22}-05$	109.5
C8 - C7 - C6	118 12 (13)	$04 - C^{22} - C^{16}$	122.09(13) 123.71(13)
N1 - C7 - C6	117.96(12)	05-022-010	123.71(13) 113.56(12)
C7 - C8 - C9	121 56 (13)	05-C22-C10 05-C23-H23	109.5
C7 C8 C14	121.50(13) 124.00(13)	05 - 023 - 1123	109.5
$C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	124.09(13) 114.21(12)	H23_C23_H24	109.5
$0^{2}-0^{9}-0^{1}$	116.85 (13)	$05-C^{23}-H^{25}$	109.5
02 - 09 - 01	125 21 (14)	H23_C23_H25	109.5
02 - 03 - 03	123.21(14) 117.91(12)	H_{24} C_{23} H_{25}	109.5
$N_1 = C_1 = C_1$	117.91(12) 111.94(11)	06 C24 07	109.5
N1 C10 H5	100.2	06 - C24 - 07	123.90(13) 124.46(13)
C_{11} C_{10} H5	109.2	00 - 024 - 015	124.40(13) 111.57(12)
N1_C10_H6	109.2	07 - 024 - 015 07 - 025 - H26	109.5
C_{11} C_{10} H6	109.2	07 - 025 - 1120	109.5
H5 C10 H6	107.0	$H_{26} C_{25} H_{27}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9 111 17 (10)	07 C25 H28	109.5
$C_{10} = C_{11} = H_7$	100 /	$H_{26} C_{25} H_{28}$	109.5
S1 C11 H7	109.4	H27 C25 H28	109.5
	109.4	$C_{2}^{-}C_{2}^{-}C_{2}^{-}H_{2}^{-}K_{2}^{-}$	109.5
S1 C11 H8	109.4	C_{2S} C_{1S} H_{1SR}	109.5
H7 C11 H8	109.4	HISA CIS HISB	109.5
117 - C11 - 118 C13 C12 S1	112 52 (10)	$C_{2}S C_{1}S H_{1}SC$	109.5
$C_{13} = C_{12} = B_{10}$	100 1	HISA CIS HISC	109.5
S1_C12_H10	109.1	HISR-CIS-HISC	109.5
C_{13} C_{12} H_{10}	109.1	015 - C25 - 025	109.3 117(2)
S1_C12_H9	109.1	015 - 025 - 025	117(2) 122(3)
H_{10} C_{12} H_{9}	107.8	015 - 025 - 015 025 - 025 - 015	122(3) 1208(16)
N1_C13_C12	109.89 (11)	025 - 025 - 015 028 - 038 - 048	104 1 (11)
N1-C13-H11	109.7	025 - 035 - 045 028 - 035 - 045	110.9
C12_C13_H11	109.7	C4S - C3S - H3SA	110.9
N1_C13_H12	109.7	028-C38-H38R	110.9
C12-C13-H12	109.7	C4S = C3S = H3SB	110.9
H11_C13_H12	108.2	H3SA_C3S_H3SB	100.0
1111 015 1114	100.2	113511 035 11350	107.0

C15—C14—O3	109.12 (12)	C3S—C4S—H4SA	109.5
C15—C14—C8	134.25 (13)	C3S—C4S—H4SB	109.5
O3—C14—C8	116.62 (12)	H4SA—C4S—H4SB	109.5
C14—C15—C16	107.78 (12)	C3S—C4S—H4SC	109.5
C14—C15—C24	125.94 (13)	H4SA—C4S—H4SC	109.5
C16—C15—C24	126.25 (12)	H4SB—C4S—H4SC	109.5
C17—C16—C22	121.81 (13)	C7—N1—C13	121.00 (11)
C17—C16—C15	105.20 (12)	C7—N1—C10	120.47 (11)
C22—C16—C15	131.59 (13)	C13—N1—C10	113.69 (11)
N2—C17—O3	119.51 (13)	C17—N2—C18	128.18 (13)
N2-C17-C16	129.71 (13)	C17—N2—H13	115.9
03-017-016	110.72 (12)	C18 - N2 - H13	115.9
N_{2} C18 C21	109.92(13)	C9-01-C1	121 51 (11)
$N_2 - C_{18} - C_{20}$	105.19(12)	C17 - 03 - C14	127.31(11) 107 11 (11)
C_{21} C_{18} C_{20}	109.66 (13)	$C_{22} = 05 = C_{23}$	107.11(11) 115.10(11)
$N_2 = C_{18} = C_{19}$	109.00(13) 110.86(12)	$C_{22} = 03 = C_{23}$	113.10(11) 114.02(11)
12 - 13 - 19	110.00(12) 111.06(12)	$C_{24} = 07 = C_{23}$	114.92(11)
$C_{21} = C_{10} = C_{19}$	111.00(13) 100.00(12)	$C_{25} = 0_{25} = 0_{25}$	112.1(10)
C20-C18-C19	109.99 (13)	C12—S1—C11	97.82(7)
01 01 02 02	175 (7 (12)		0 40 (1 ()
01 - 01 - 02 - 03	-1/5.6/(13)	C15 - C16 - C17 - O3	2.48 (16)
C_{6} C_{1} C_{2} C_{3}	2.1 (2)	C1/-C16-C22-O4	10.8 (2)
C1—C2—C3—C4	1.9 (2)	C15—C16—C22—O4	175.22 (15)
C2—C3—C4—C5	-2.8 (2)	C17—C16—C22—O5	-166.81 (13)
C3—C4—C5—C6	-0.4 (2)	C15—C16—C22—O5	-2.4 (2)
O1—C1—C6—C5	172.56 (13)	C14—C15—C24—O6	58.0 (2)
C2-C1-C6-C5	-5.1 (2)	C16—C15—C24—O6	-119.79 (17)
O1—C1—C6—C7	-3.4 (2)	C14—C15—C24—O7	-123.19 (15)
C2-C1-C6-C7	178.92 (13)	C16—C15—C24—O7	59.05 (18)
C4—C5—C6—C1	4.2 (2)	C8—C7—N1—C13	28.2 (2)
C4—C5—C6—C7	179.92 (14)	C6—C7—N1—C13	-147.75 (13)
C1—C6—C7—C8	0.98 (19)	C8—C7—N1—C10	-125.64 (15)
C5—C6—C7—C8	-174.66 (13)	C6-C7-N1-C10	58.43 (17)
C1-C6-C7-N1	177.15 (12)	C12—C13—N1—C7	139.30 (13)
C5—C6—C7—N1	1.5 (2)	C12-C13-N1-C10	-65.24 (15)
N1—C7—C8—C9	-171.86 (13)	C11—C10—N1—C7	-138.82 (13)
C6—C7—C8—C9	4.1 (2)	C11—C10—N1—C13	65.57 (15)
N1-C7-C8-C14	12.7 (2)	O3—C17—N2—C18	-10.2(2)
C6—C7—C8—C14	-171.36 (12)	C16—C17—N2—C18	166.87 (15)
C7—C8—C9—O2	175.03 (15)	C_{21} — C_{18} — N_{2} — C_{17}	73.7 (2)
C14 - C8 - C9 - O2	-91(2)	$C_{20} - C_{18} - N_{2} - C_{17}$	-16828(15)
C7 - C8 - C9 - 01	-68(2)	C19 - C18 - N2 - C17	-494(2)
$C_{14} = C_{8} = C_{9} = 01$	169.05(12)	$0^{2}-0^{2}-0^{1}-0^{1}$	-17730(13)
$N_1 = C_1 = C_2 = C_1$	-60.06(14)	C_{2}^{2} C_{3}^{2} C_{1}^{2} C_{1}^{2}	177.30 (13) 4 37 (10)
$S1_{12}_{12}_{13}$ S1_12	62.57(14)	C_{2}	178 / 2 (12)
C7 = C8 = C14 = C15	61.2(2)	$C_{2} = C_{1} = C_{1} = C_{2}$	1/0.73(13)
$C_{1} = C_{0} = C_{14} = C_{15}$	(1.3)(2) -114 41 (19)	1 - 01 - 03 - 014	0.0(2)
$C_{7} = C_{8} = C_{14} = C_{15}$	-114.41(18)	1N2 - U1 / - U3 - U14	1/3.00(13)
-14 - 03	-11/.28(13)	C10-C1/-O3-C14	-2.50 (16)
C9—C8—C14—O3	66.99 (16)	C15—C14—O3—C17	1.49 (15)

O3—C14—C15—C16	0.03 (16)	C8—C14—O3—C17	-179.57 (12)
C8-C14-C15-C16	-178.64 (15)	O4—C22—O5—C23	-2.8 (2)
O3—C14—C15—C24	-178.07 (12)	C16—C22—O5—C23	174.87 (12)
C8-C14-C15-C24	3.3 (3)	O6—C24—O7—C25	9.0 (2)
C14—C15—C16—C17	-1.50 (16)	C15—C24—O7—C25	-169.88 (12)
C24—C15—C16—C17	176.60 (13)	O1S—C2S—O2S—C3S	9.0 (14)
C14—C15—C16—C22	-167.79 (15)	C1S—C2S—O2S—C3S	-175 (2)
C24—C15—C16—C22	10.3 (2)	C4S—C3S—O2S—C2S	-174.6 (5)
C22—C16—C17—N2	-6.8 (2)	C13—C12—S1—C11	-53.91 (11)
C15—C16—C17—N2	-174.76 (15)	C10-C11-S1-C12	52.18 (11)
C22-C16-C17-O3	170.45 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H13…O4	0.86	2.25	2.8255 (17)	125
C3—H2…O6 ⁱ	0.93	2.41	3.325 (2)	167
С12—Н9…О4 ^{іі}	0.97	2.44	3.1531 (18)	130
C12—H10····O1 <i>S</i> ⁱⁱⁱ	0.97	2.48	3.208 (5)	132
C19—H15…O3	0.96	2.42	3.0090 (19)	119
C23—H23…S1 ^{iv}	0.96	2.78	3.5639 (17)	139
C25—H26…S1 ^v	0.96	2.83	3.7406 (18)	159

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z; (iii) x, y, z-1; (iv) -x+1, y+1/2, -z+1/2; (v) x, -y-1/2, z+1/2.