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Abstract: Tyrosine kinase inhibitors (TKIs) against human epidermal growth factor receptor 

(EGFR/HER) family have been introduced into the clinic to treat cancers, particularly non-

small-cell lung cancer (NSCLC). There have been three generations of the EGFR/HER-TKIs. 

First-generation EGFR/HER-TKIs, binding competitively and reversibly to the ATP-binding 

site of the EGFR TK domain, show a significant breakthrough treatment in selected NSCLC 

patients with activating EGFR mutations (actEGFRm) EGFRL858R and EGFRDel19, in terms of 

safety, efficacy, and quality of life. However, all those responders inevitably develop acquired 

resistance within 12 months, because of the EGFRT790M mutation, which prevents TKI binding 

to ATP-pocket of EGFR by steric hindrance. The second-generation EGFR/HER-TKIs were 

developed to prolong and maintain more potent response as well as overcome the resistance to the 

first-generation EGFR/HER-TKIs. They are different from the first-generation EGFR/HER-TKIs 

by covalently binding to the ATP-binding site, irreversibly blocking enzymatic activation, and 

targeting EGFR/HER family members, including EGFR, HER2, and HER4. Preclinically, these 

compounds inhibit the enzymatic activation for actEGFRm, EGFRT790M, and wtEGFR. The 

second-generation EGFR/HER-TKIs improve overall survival in cancer patients with actEGFRm 

in a modest way. However, they are not clinically active in overcoming EGFRT790M resistance, 

mainly because of dose-limiting toxicity due to simultaneous inhibition against wtEGFR. The 

third-generation EGFR/HER-TKIs selectively and irreversibly target EGFRT790M and actEGFRm 

while sparing wtEGFR. They yield promising efficacy in NSCLC patients with actEGFRm as 

well as EGFRT790M resistant to the first- and second-generation EGFR-TKIs. They also appear to 

have a lower incidence of toxicity due to the reduced inhibitory effect on wtEGFR. Currently, 

the first-generation EGFR/HER-TKIs gefitinib and erlotinib and second-generation EGFR/

HER-TKI afatinib have been approved for use as the first-line treatment of metastatic NSCLC 

with actEGFRm. This review will summarize and evaluate a broad range of evidence of recent 

development of EGFR/HER-TKIs, with a focus on the second- and third-generation EGFR/

HER-TKIs, in the treatment of patients with NSCLC harboring EGFR mutations.
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Introduction
Lung cancer is currently the leading cause of cancer-related mortality worldwide, 

causing more than one-quarter of all cancer deaths (28% in males and 26% in females).1 

As of 2016, it is estimated that 224,390 new cases of lung cancer will be diagnosed 

in the US and 158,080 deaths will be caused from lung cancer.2 Non-small-cell 
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lung cancer (NSCLC), accounting for a high proportion 

(85%–90%) in lung cancer,3 is subdivided histologically 

into adenocarcinoma, squamous-cell carcinoma, large-cell 

carcinoma, and other types.4,5 In the last decade, the diagnosis 

and treatment of NSCLC has evolved dramatically from the 

traditional “one-size-fits-all” chemotherapeutic approach to 

new anticancer compounds molecularly targeting oncogenic 

driver mutations, due to the advances in cancer biology 

and technology. Various driver genomic alterations have 

been identified in oncogene-dependent NSCLC, especially 

two genes: the human epidermal growth factor receptor 

(EGFR/HER) and the anaplastic lymphoma kinase (ALK).6

The EGFR/HER family of receptor tyrosine kinases 

(TKs) has four members including EGFR (HER1, erbB-1), 

HER2 (erbB-2), HER3 (erbB-3), and HER4 (erbB-4), and 

their signaling pathways regulate cell growth, survival, 

adhesion, migration, and differentiation through three 

downstream pathways: RAS/RAF/mitogen-activated 

protein kinase, phosphoinositide 3-kinase/AKT, and Janus 

kinase/signal transducer and activator of transcription 

(JAK/STAT).7,8 Dysregulated signaling of HER family has 

been associated with the development of several malignan-

cies including NSCLC.9 Many patients with NSCLC have 

somatic mutations of EGFR, first identified in 2004,10,11 

which lead to aberrant constitutive signaling via EGFR/HER 

family and their downstream protein markers. The EGFR 

mutations, including activating and resistant mutations, 

mostly occur in exons 18 to 21 of the EGFR gene encoding 

the ATP-binding pocket of the intracellular TK domain. 

The activating EGFR mutations (actEGFRm) have been 

reported in ~10%–15% of Caucasian patients but in up to 

60% of selected Asian populations with NSCLC (female, 

never/light smoker, and adenocarcinoma).12–14 The most 

frequent actEGFRm in NSCLC are in-frame deletions in 

exon 19 (EGFRDel19, ≈60%) and L858R point mutation in 

exon 21 (EGFRL858R, ≈30%).12,15,16 These oncogenic mutations 

interact and generate stabilization with ATP, intrinsically 

stimulate phosphorylation of tyrosine residues, and then 

result in the intracellular signal transduction activation in a 

ligand-independent manner.17,18 The NSCLC patients with 

actEGFRm become apparently dependent on EGFR activity 

to stimulate downstream signaling pathways to maintain the 

malignant phenotype (“oncogene addiction”).19,20 Therefore, 

blocking EGFR/HER family pathways with EGFR/HER TK 

inhibitors (TKIs) can suppress tumor cell proliferation and 

initiate apoptosis.

In the past decade, the EGFR/HER family has become 

a potential therapeutic target and has greatly changed 

the treatment paradigm for NSCLC patients, since the 

introduction of the first-generation EGFR/HER-TKIs gefi-

tinib and erlotinib. Currently, these two agents and a second-

generation EGFR/HER-TKI afatinib are approved for use in 

the first-line treatment of metastatic NSCLC with actEGFRm 

(EGFRDel19 and EGFRL858R), based on the outcomes of 

several clinical trials that demonstrate that these TKIs are 

superior to standard chemotherapy in terms of safety, effi-

cacy, and quality of life.21–23 However, despite a good initial 

response, the development of acquired resistance in most 

of the patients limits the long-term efficacy of TKI therapy. 

Therefore, extensive investigations on better understanding 

of the mechanisms of resistance are being undertaken in 

order to robust the benefit of EGFR/HER-TKIs in NSCLC. 

New generations of EGFR/HER-TKIs have been developed 

to improve cancer treatment efficacy, overcome resistance, 

and reduce side effects. These EGFR/HER-TKIs are listed 

in Table 1. In this review, we will provide a broad overview 

of recent development of EGFR/HER-TKIs, with a focus on 

second- and third-generation EGFR/HER-TKIs, in the treat-

ment of patients with NSCLC harboring EGFR mutations.

First-generation EGFR/HER-TKIs
Gefitinib (AstraZeneca plc, London, UK) and erlotinib 

(Astellas Pharma Inc., Tokyo, Japan) are the first-generation 

EGFR/HER-TKIs approved to use in the first-line setting for 

the treatment of advanced NSCLC patients with actEGFRm 

(EGFRDel19 and EGFRL858R).36,37 Both compounds (Figure 1) 

are orally active 4-anilino-quinzolines with antineoplastic 

activity and bind competitively and reversibly to the ATP-

binding site of the TK domain of EGFR. This conformation 

of EGFR in this scenario prevents the autophosphorylation 

of the TK, blocks the activation of the EGFR signal trans-

duction, inhibits tumor cell proliferation, and induces cell 

cycle arrest and apoptosis.38 Among the diverse (activating 

and resistant) mutations clustering around the catalytic cleft 

of EGFR TK domain, it has been demonstrated that the 

actEGFRm leads to increased affinity for EGFR/HER-TKIs, 

thus conferring more sensitivity to this treatment.13 Indeed, 

actEGFRm has been reported to bind 20-fold more tightly 

to TKIs than to the wild-type EGFR (wtEGFR).39

Clinically, lung cancer patients with EGFRDel19and 

EGFRL858R show a striking response to gefitinib and erlotinib 

treatment. Retrospective analysis of associations between 

EGFR gene mutations and EGFR/HER-TKIs sensitiv-

ity has shown that 70% of actEGFRm NSCLC patients 

are responsive to TKIs compared with 10% of wtEGFR 

patients.7,40 In the preselected subgroup of NSCLC patients 
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with EGFRDel19and EGFRL858R, the first-generation reversible 

EGFR/HER-TKIs gefitinib and erlotinib as a first-line treat-

ment can dramatically affect patient outcomes, showing 

superiority to traditional platinum-based chemotherapy in 

terms of objective response rate (ORR), progression-free 

survival (PFS), and quality of life, and an acceptable toxicity 

profile.41–44 These studies resulted in their approval and wide-

spread use for actEGFRm NSCLC patients.

On the other hand, resistant EGFR mutations (resEGFRm) 

either as primary or as secondary (acquired) events have 

also been reported, the most common being L747S and 

D761Y in exon 19, T790M and insertions in exon 20, and 

T854A in exon 21.17,45 The primary resistance (initially 

refractory to EGFR/HER-TKIs treatment) is seen in ~30% 

of NSCLC patients with actEGFRm, involving coexistent 

genetic alterations: resEGFRm, KRAS mutations, PTEN 

losses, PIK3CA mutations, BIM deletion, and 60% unknown 

factors.17,46–48 Additionally, although EGFR/HER-TKIs have 

great initial efficacy in 70% of patients with actEGFRm 

NSCLC, all those responders will inevitably develop 

acquired resistance (disease progression) within 1 year or 

2 years.47 Approximately 50%–60% of patients with acquired 

resistance develop a secondary mutation in EGFR, most com-

monly the substitution of threonine at the “gatekeeper” amino 

acid 790 to methionine (T790M) occurring within exon 20, 

causing a bulky methionine side chain in TK domain.49,50 

The EGFRT790M mutation results in the receptor becoming 

refractory to these reversible EGFR/HER-TKIs through a 

steric hindrance that prevents drugs binding to ATP-pocket 

and results in restored affinity to ATP.25,49,51,52 Preclini-

cal modeling and analysis of tumor tissues obtained from 

patients after disease progression has also identified other 

less frequent mechanisms of acquired resistance, including 

bypass or alternative pathways (HER2 amplification, MET 

amplification, PIK3CA mutation, BRAF mutation, NF1 loss, 

and potentially FGFR signaling), histological/phenotypic 

transformation (small-cell lung cancer transformation or 

epithelial-to-mesenchymal transition), and unknown in 

20%–30%.4,17,25,41,53–55 Understanding the biological basis 

responsible for the acquired resistance has therapeutic 

implications, and several strategies are currently under 

investigation. Based on the aforementioned mechanisms, 

several combinations with other therapies targeting bypass 

or alternative activating pathways have been explored in 

preclinical models or clinical trials. The potential candidate 

partners include MET-TKI tivanitinib,17 anti-MET antibody 

onartuzumab,56 MET/VEGFR-TKI TAS-115,57 anti-VEGF 

antibody bevacizumab,58,59 and STAT3 inhibitor S3I-201.60 T
ab
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Given the modest and nonoverlapping toxicities observed 

with EGFR/HER-TKIs compared with chemotherapy, a 

single Phase III trial demonstrated a significant improvement 

of intercalated chemotherapy and erlotinib in patients with 

advanced NSCLC harboring actEGFRm;61 however, four 

large Phase III studies failed to show superiority of combina-

tion treatment to standard platinum doublet chemotherapy in 

unselected chemotherapy-naive advanced NSCLC patients, 

making the value of this approach uncertain.62

Considering that EGFRT790M mutation represents the 

most frequent acquired resistance mechanism, targeting 

this mutation by irreversible next-generation (second and 

third generations) EGFR/HER-TKIs, therefore, represents 

an attractive strategy to overcome treatment resistance to 

first-generation EGFR/HER-TKIs.

Second-generation EGFR/HER-TKIs
The poor survival rate for NSCLC with coexpression of EGFR 

and HER263 suggests that HER family members should be 

simultaneously targeted for treatment. Aiming for a prolonged 

and more potent response and overcoming the resistance to 

first-generation EGFR/HER inhibitors, the second-generation 

EGFR/HER-TKIs,26 including afatinib (BIBW2992; Boeh-

ringer Ingelheim, Ingelheim am Rhein, Germany), dacomi-

tinib (PF299804; Pfizer, Inc., New York, NY, USA), and 

neratinib (HKI272; Puma Biotechnology, Los Angeles, CA, 

USA), are designed to covalently bind to the ATP-binding site 

and irreversibly block enzymatic activation of EGFR and other 

HER family members including HER2 and HER4 (Table 1  

and Figure 1). The second-generation irreversible EGFR/

HER-TKIs were developed in part to inhibit the EGFRT790M 

mutation, in addition to the common actEGFRm.

Afatinib
In addition to gefitinib and erlotinib, a second-generation 

EGFR/HER-TKI afatinib is approved as a first-line treatment 

for the advanced NSCLC harboring actEGFRm in the US, 

Europe, Taiwan, Japan, and other countries.23 Afatinib is an 

Figure 1 Structures and chemical names of EGFR/HER-TKIs.
Note: All structures are adapted from www.selleckchem.com.101

Abbreviation: EGFR/HER-TKIs, human epidermal growth factor receptor tyrosine kinase inhibitors.
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ATP-competitive aniline-quinazoline derivate containing 

a reactive acrylamide group, covalently binding to EGFR, 

HER2, and HER4 and irreversibly inhibiting HER-family 

phosphorylation and signal transduction.26 The theoretical 

advantages and promising preclinical data indicated that 

afatinib irreversibly inhibited the enzymatic activation 

of wtEGFR, EGFRL858R, EGFRL858R/T790M, EGFRL858R/T854A, 

wtHER2, HER2 amplification, and wtHER4, as well as 

showed antitumor activities in both EGFR/HER-TKI-naive 

and resistant tumor cells and xenograft models.7,20

As a first-line treatment for advanced EGFR-mutated 

NSCLC, the Lux-Lung 2 single-arm Phase II trial64 showed 

that patients with common activating mutations (EGFRDel19 

and EGFRL858R) were most sensitive to afatinib monotherapy 

with an ORR of 66%, median overall survival (OS) of 

24  months, and median PFS of 14  months (Table 2), as 

well as indicated 40  mg/d was preferable for subsequent 

studies. Two larger Phase III clinical trials (Lux-Lung 3 

and 6),65–67 comparing the second-generation TKI with the 

standard platinum-based chemotherapy, demonstrated that 

the first-line afatinib monotherapy for advanced actEGFRm 

lung adenocarcinoma had significantly prolonged median 

PFS and higher ORR as compared with up to six cycles of 

standard-of-care platinum-based (pemetrexed plus cisplatin 

or gemcitabine plus cisplatin) chemotherapy and improved 

quality of life (Table 2). The pooled analysis68,69 of both trials 

mentioned previously confirmed that afatinib used as the first-

line treatment improved OS compared with chemotherapy 

for patients with EGFRDel19 (regardless of race/ethnicity), 

but no difference in unselective EGFR mutations and even 

in EGFRL858R subgroup. The improved OS has never been 

observed in the first-generation EGFR-TKIs, probably due 

to methodology differences in trial design. In April 2016, 

Lux-Lung 7 head-to-head international study,70 comparing the 

first- versus second-generation EGFR/HER-TKIs, reported 

that irreversible afatinib is superior to reversible gefitinib in 

treatment-naive patients with actEGFRm NSCLC in terms of 

efficacy and safety (Table 2). The results showed that afatinib 

achieved significant but clinically minor improved outcomes 

but did so with an improved safety profile.

Similarly, as a second-line treatment in patients with 

advanced squamous NSCLC who progressed on platinum-

based chemotherapy, Lux-Lung 871 demonstrated that afa-

tinib improved the PFS and OS in a modest way compared 

with erlotinib, but again with an improved safety profile 

(Table  2). Exploring the efficacy of afatinib as salvage 

therapy for advanced NSCLC patients, who were pretreated 

with one or two chemotherapy regimens and acquired resis-

tance to first-generation EGFR/HER-TKIs, both single-arm 

Lux-lung 4 and two-arm Lux-lung 1 (Table 2) were carried 

out. The single-arm Lux-lung 4 showed an ORR of 8.2% and 

median PFS of 4.4 months in patients treated with afatinib 

at 50 mg/d, and the two-arm Lux-lung 1 observed a longer 

PFS and higher ORR along with improvements in lung 

cancer-related symptoms for patients treated with afatinib 

compared with placebo, despite failure to show the different 

median OS (primary endpoint).72,73 Both studies suggested 

that afatinib could overcome acquired resistance to gefitinib/

erlotinib in some cases.

Dacomitinib
Dacomitinib (Figure 1) is an irreversible EGFR/HER-TKI 

against EGFR, HER2, and HER4 homodimers and het-

erodimers with a higher kinase inhibition than gefitinib/

erlotinib, including actEGFRm (EGFRL858R and EGFRDel19), 

resEGFRm (EGFRT790M), wtHER2, HER2 amplification, and 

first-generation TKI-resistant HER2 mutations.27 Dacomi-

tinib demonstrated activity in both gefitinib-sensitive and 

gefitinib-resistant NSCLC preclinical models.74

In relapsed/refractory setting, a Phase II study 

(NCT00769067) compared dacomitinib versus erlotinib as 

second- or third-line treatment in the EGFR/HER-TKI-naive 

NSCLC patients pretreated with chemotherapy.75 Significant 

results favored a small superiority for dacomitinib over 

erlotinib in PFS (Table 2). However, two recent Phase III 

studies with dacomitinib in this setting failed to achieve 

their primary objectives (Table 2). This demonstrates the 

critical importance of well-powered randomized trials to 

establish the true impact of new therapies. The ARCHER 

1009 study, which compared dacomitinib with erlotinib as 

salvage therapy in patients with advanced NSCLC who had 

disease progression after one or two chemotherapy regi-

mens did not show superiority for dacomitinib to erlotinib 

in an unselected population or in patients with wtKRAS.76 

Another trial (BR.26), assessing dacomitinib versus placebo 

in patients pretreated with up to three-lines chemotherapy 

and a first-generation reversible EGFR/HER-TKI, showed 

similar OS regardless of EGFR mutation status, although 

improved OS was observed in wtKRAS and PFS that was 

significantly longer in dacomitinib group.77

In first-line setting, a Phase II study (NCT00818441) of 

dacomitinib in treatment-naive advanced NSCLC found an 

ORR of 73% and median PFS of 18.2 months in patients with 

actEGFRm (EGFRDel19 or EGFRL858R; Table 2).78 Based on 

these data, an ongoing randomized Phase III study (ARCHER 

1050) has been designed to evaluate the efficacy of first-line 

dacomitinib versus gefitinib in locally advanced or metastatic 

NSCLC with actEGFRm.74 The results (estimated study 
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completion in 2017) may demonstrate a more substantial role 

for dacomitinib in the earlier setting.

Neratinib
Neratinib (Figure 1) is an irreversible EGFR/HER-TKI tar-

geting EGFR, HER2, and HER4, which was found to be more 

effective at suppressing cell proliferation than gefitinib in 

lung cancer cells with both actEGFRm and EGFRT790M in pre-

clinical studies.28,79 However, due to the limitations of clinical 

dosing, neratinib had modest clinical efficacy in a Phase II 

study for TKI-resistant and TKI-naive patients, showing only 

3% ORR in mutated-EGFR arm and no response in patients 

with EGFRT790M or wtEGFR (Table 2).30

In summary for the second-generation EGFR/HER-TKIs, 

in addition to inhibiting the two most common actEGFRm 

(EGFRL858R and EGFRDel19), these irreversible EGFR/HER-TKIs 

(afatinib, dacomitinib, and neratinib) demonstrated inhibitory 

activities in cells/tumors harboring EGFRT790M in preclinical 

models.80 However, they were most sensitive in patients 

with actEGFRm and were not clinically active in overcom-

ing EGFRT790M resistance, perhaps because of dose-limiting 

toxicity (narrow therapeutic window, such as the crucial gas-

trointestinal [diarrhea and mucositis] and dermatologic toxic-

ity) due to simultaneous inhibition against wtEGFR.66,67,72,73 

Furthermore, the acquired resistance to these agents can 

develop due to EGFRT790M amplification.81,82

In view of the low probability of drug–drug interac-

tions, multiple treatment strategies have been clinically 

used, including the combination of EGFR/HER-TKI with 

chemotherapy or other targeted therapy.20 The Phase III 

Lux-lung 5 study,83 evaluating the efficacy and safety of con-

tinued irreversible HER-family blockade with afatinib plus 

paclitaxel versus investigator’s choice of chemotherapy alone 

in patients with relapsed/refractory NSCLC following che-

motherapy and acquired resistance to prior erlotinib/gefitinib 

and afatinib monotherapy, demonstrated that afatinib plus 

paclitaxel significantly improved PFS (5.6 months versus 

2.8 months) and ORR (32.1% versus 13.2%) compared with 

single-agent chemotherapy. Another regimen that showed 

interesting clinical activity and a manageable safety profile 

is the combination of afatinib and cetuximab (anti-EGFR 

monoclonal antibody), which induced a PFS of 4.7 months 

and an ORR of 29% with median duration of response of 

5.7 months in a small Phase IB trial for heavily pretreated 

patients with actEGFRm lung cancer and acquired resistance 

to erlotinib/gefitinib.84 This study indicated that the dual 

vertical blockade of EGFR (in the intracellular domain of 

the HER-family members with afatinib and the extracellular 

domain of EGFR with cetuximab) was effective regardless 

of the EGFRT790M status (ORR: 32% for EGFRT790M-positive 

and 25% for EGFRT790M-negative tumors, P=0.341). These 

combination studies on patients with acquired resis-

tance to TKIs supported a focus upon rechallenging with 

EGFR/HER-TKI beyond disease progression in oncogene-

addicted lung cancer, indicating that some tumor cells may 

remain dependent on HER signaling, due to either the type 

of acquired EGFR mutations, EGFR amplification, and/or 

HER2 amplification.84 However, current targeted therapeutic 

strategies for patients with EGFRT790M are limited, and no 

approved treatment options are available.

This has led to the development of third-generation 

EGFR-TKIs that are designed to more effectively and selec-

tively target EGFRT790M and actEGFRm, while sparing the 

activity to wtEGFR.

Third-generation EGFR/HER-TKIs
Considering that the EGFRT790M mutation represents the most 

dominant acquired resistance to first- and second-generation 

EGFR/HER-TKI therapy, specific drugs to target this muta-

tion are recently under clinical development and may bring 

a breakthrough for the treatment of NSCLC patients. The 

third-generation EGFR/HER-TKIs (Table 1 and Figure 1), 

such as osimertinib (AZD9291; AstraZeneca plc), rociletinib 

(CO-1686; Clovis Oncology Inc., Boulder, Colorado, USA), 

HM61713 (Hanmi Pharmaceutical, Songpa-gu, Seoul, Korea), 

EGF816 (Novartis International AG, Basel, Switzerland), and 

ASP8273 (Astellas Pharma Inc.), selectively and irreversibly 

target EGFRT790M and actEGFRm, and have the reduced affin-

ity to wtEGFR.52,85 Clinically, they have yielded promising 

results of favorable benefit for the actEGFRm patients who 

had disease progression (especially with EGFRT790M mutation) 

following first-/second-generation-TKIs treatment, as well as 

showed very low inhibitory effect on wtEGFR, thus over-

coming the toxicity limitation seen with earlier generation 

EGFR/HER-TKIs.86–89 Unlike previous generation inhibitors, 

most adverse effects, such as diarrhea, rash, and nausea, were 

mild (grades 1 and 2). There were no DLTs at any dose level, 

and maximal tolerated dose was not defined.

Osimertinib
Osimertinib, a mono-anillino-pyrimidine compound (Figure 1), 

is a double-mutant selective third-generation irreversible 

EGFR/HER-TKI.90 In cell culture and mouse models,25 it 

potently inhibited signaling pathways and cellular growth 

in cells/tumors with both actEGFRm (EGFRDel19 and 

EGFRL858R) and EGFRT790M, with 200-fold less activity in 
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inhibiting wtEGFR, thus having the increased selectivity 

margin against wtEGFR.

As a second-line (or later) treatment, a global Phase I 

study (AURA)31 demonstrated that osimertinib was highly 

active in lung cancer patients with the EGFRT790M mutation 

who had disease progression during prior therapy with 

EGFR/HER-TKIs, showing a higher ORR (EGFRT790M 

positive: 61%; EGFRT790M negative: 21%) and longer median 

PFS (9.6 months versus 2.8 months, respectively) with low 

incidence of toxicity. AURA2, a global Phase II single-arm 

study47 for patients with actEGFRm who had progressed after 

prior EGFR/HER-TKI therapy and had EGFRT790M mutation, 

also showed antitumor efficacy of osimertinib suggesting 

it can overcome EGFRT790M-mediated acquired resistance. 

The ORR was 64%, disease control rate (DCR) was 90%, 

and PFS was not reached (Table 2). In November 2015, 

osimertinib was granted accelerated approval by FDA for 

the treatment of metastatic EGFRT790M-positive NSCLC who 

have progressed on or after EGFR/HER-TKI therapy.91,92 In 

the same population, a Phase III AURA3 trial is ongoing 

to compare osimertinib monotherapy with pemetrexed plus 

platinum chemotherapy.

In a first-line expansion cohort of AURA trial for 

treatment-naive advanced NSCLC with actEGFRm, osimer-

tinib achieved promising anticancer activity with an ORR of 

70%, DCR of 97%, and PFS at 3 months and 6 months of 93% 

and 87%, respectively.93 The ongoing Phase III FLAURA 

trial will assess the efficacy and safety of osimertinib versus 

gefitinib/erlotinib as the first-line treatment in patients with 

advanced NSCLC actEGFRm.

Rociletinib
Rociletinib, an oral 2,4-disubstituted pyrimidine covalent 

EGFR/HER-TKI (Figure 1), is a highly selective and irrevers-

ible inhibitor of both actEGFRm- and EGFRT790M-resistance 

mutation. In a preclinical study, rociletinib demonstrated 

a significant growth inhibitory effect toward EGFRT790M 

and actEGFRm cells/tumors with significantly less activ-

ity on wtEGFR in cell lines, xenograft, and transgenic 

mouse models.33

In a Phase I/II trial (TIGER X)32 for 130 patients with 

actEGFRm and acquired resistance to EGFR/HER-TKIs, 

rociletinib showed promising activity for EGFRT790M-positive 

patients, and to a lesser extent, to EGFRT790M-negative 

populations (ORR was 59% versus 29% for patients with 

EGFRT790M positive versus EGFRT790M negative, respectively, 

DCR was 93% versus 59%, and PFS was 13.1  months 

versus 5.6 months; Table 2). The modes of action against 

EGFRT790M-negative patients may include tumor heterogeneity, 

sensitivity of genotyping platform used, and activity against 

other resistant mechanisms.47 Rociletinib had infrequent 

EGFR-related toxicity (due to the low affinity to wtEGFR) 

but had a tendency to other concerning safety issues such as 

hyperglycemia and long QT interval, because of a rociletinib 

metabolite (M502), which inhibited insulin-like growth 

factor receptor-1.32 In May 2014, rociletinib was granted 

breakthrough therapy designation for NSCLC patients 

with EGFRT790M after progression on a prior TKI. This has 

allowed investigation in several TIGER trials in various 

treatment lines, such as the randomized Phase II/III TIGER 1 

study, comparing rociletinib versus erlotinib as the first-line 

monotherapy for advanced actEGFRm NSCLC regardless 

of EGFRT790M status; the confirmatory Phase II single-arm 

TIGER 2 trial for advanced EGFR-mutated NSCLC pro-

gressed after previous EGFR/HER-TKI therapy and har-

boring EGFRT790M; the randomized Phase III TIGER 3 trial, 

evaluating rociletinib versus platinum doublet chemotherapy 

for second-line treatment for patients with actEGFRm and 

EGFRT790M after EGFR/HER-TKI failure.85,87,88,94

HM61713
HM61713 is another novel, oral mutant-selective inhibitor 

of actEGFRm and EGFRT790M, but not wtEGFR, which dem-

onstrated good efficacy in animal models, especially those 

with concurrent actEGFRm and EGFRT790M mutations.34 

An open-label Phase I/II trial (NCT01588145) in Korea 

with actEGFRm NSCLC patients who had progressed on 

prior EGFR/HER-TKI therapy demonstrated promising 

antitumor activity of HM61713 (especially with EGFRT790M 

mutation), showing an ORR of 21.7% and DCR of 67.5% 

in unselected population, an ORR of 29% and DCR of 

75% in EGFRT790M-positive patients, and an ORR of 12% 

in EGFRT790M-negative group.88,95 The Phase II cohort 

(Table 2) showed an ORR of 58.8% and DCR of 97.1% in 

patients with centrally confirmed EGFRT790M who received 

HM61713 at a dose .650 mg/day, which also indicated that 

HM61713 had an encouraging clinical efficacy to overcome 

the EGFR/HER-TKI resistance.35 HM61713 caused mild 

side effects and can be controlled easily. A Phase II trial 

is currently enrolling patients with actEGFRm treated with 

first-line HM61713.

Several other third-generation mutant-EGFR specific 

TKIs are currently being investigated in NSCLC patients 

with actEGFRm and EGFRT790M, such as EGF816, ASP8273, 

AP26113, and poziotinib.96–98 In addition, the activity of third-

generation EGFR/HER-TKIs has been further investigated 

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5470

Wang et al

in patients with central nervous system (CNS) metastases. 

The preliminary data99,100 indicated that the response rate 

of these TKIs (such as osimertinib and rociletinib) was not 

affected by the history of CNS disease, showing that the ORR 

among patients with versus without CNS metastases was 56% 

versus 64%, respectively, for the treatment with osimertinib, 

and 58% versus 45%, respectively, for the treatment with 

rociletinib. In summary, because of highly mutant-selective 

targeting, the third-generation EGFR/HER-TKIs are potent 

for the treatment of prior EGFR/HER-TKI-resistant patients 

harboring the EGFRT790M mutation, with probable lower 

EGFR treatment-related toxicity.

Although the efficacy of third-generation EGFR/HER-

TKIs seems improved, responses are not durable, and 

disease progression still occurs. Possible mechanisms of 

acquired resistance have been described, including tertiary 

EGFR mutations (C797S, L844V, and L718Q), alternative/

bypass signaling (increased RAS/RAF/ERK signaling 

by NRASE63K0 mutation, BRAFV600E mutation or increased 

MEK1 activity, HER2 amplification, MET amplification, 

and PIK3CAE545K mutation), and phenotypic alterations 

(epithelial–mesenchymal transition and small-cell lung 

cancer transformation).4,47 Due to the diversity of resis-

tance mechanisms, various therapeutic regimens are under 

investigation in preclinical and clinical settings. The medi-

cal model of combination therapy may be the main trend 

to enhance their effectiveness. Clinical trials of combina-

tion therapy using third-generation EGFR/HER-TKIs are 

in process, combining with selumetinib (MEK inhibitor), 

savolitinib (AZD6094 and MET-TKI), necitumumab (anti-

EGFR antibody), or navitoclax (inhibitor of Bcl-xl, Bcl-2, 

and Bcl-w).89

Conclusion
By virtue of the extensive investigation and better under-

standing of the EGFR/HER-family signaling pathway, 

NSCLC diagnosis and treatment has evolved dramatically 

from the traditional one-size-fits-all chemotherapeutic 

approach to the new personalized molecular target therapy. 

The application of the first-generation EGFR/HER-TKIs in 

selected NSCLC patients with actEGFRm (EGFRL858R and 

EGFRDel19) showed a significant superiority over the standard 

chemotherapy in terms of safety, efficacy, and quality of life. 

The second-generation EGFR/HER-TKIs similarly improved 

actEGFRm patients OS but failed to overcome the acquired 

EGFRT790M resistance. The third-generation EGFR/HER-TKIs 

selectively and irreversibly targeted EGFRT790M mutation and 

actEGFRm and were sparing to wtEGFR. They seem effica-

cious for TKI-resistant patients with EGFRT790M mutations. 

They have a lower incidence of toxicity due to the less 

inhibitory effect on wtEGFR. Currently, two first-generation 

EGFR/HER-TKIs gefitinib and erlotinib and one second-

generation EGFR/HER-TKI afatinib have been used as the 

first-line treatment of metastatic NSCLC with actEGFRm 

(EGFRDel19 or EGFRL858R). Recently, the third-generation 

EGFR/HER TKIs osimertinib and rociletinib have been 

granted accelerated approval and breakthrough therapy desig-

nation, respectively, by the FDA for patients with metastatic 

EGFRT790M mutation-positive NSCLC. Their true place awaits 

definitive randomized trials.

Correct selection and use of these EGFR/HER-TKIs are 

mainly dependent upon identification of EGFR primary and sec-

ondary mutations. The pretreatment detection of EGFR muta-

tions as predictive biomarkers maximizes the therapeutic index 

of personalized targeted therapy in lung cancer. Consequently, 

examining the genetic alterations is recommended for all new 

diagnosed NSCLC patients and when they experience disease 

progression, for better selection of the specific candidates for 

the targeted therapy. In addition, the rebiopsy will provide the 

genetic mechanisms for the development of acquired resistance 

and ultimately guide researchers to design the next generations 

of EGFR/HER-TKIs and strategies for cancer treatment.
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