
Research Article
Reduced Representation Libraries from DNA Pools
Analysed with Next Generation Semiconductor
Based-Sequencing to Identify SNPs in Extreme and
Divergent Pigs for Back Fat Thickness

Samuele Bovo, Francesca Bertolini, Giuseppina Schiavo, Gianluca Mazzoni,
Stefania Dall’Olio, and Luca Fontanesi

Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna,
Viale Fanin 46, 40127 Bologna, Italy

Correspondence should be addressed to Luca Fontanesi; luca.fontanesi@unibo.it

Received 18 November 2014; Accepted 10 February 2015

Academic Editor: Mohamed Salem

Copyright © 2015 Samuele Bovo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this study was to identify single nucleotide polymorphisms (SNPs) that could be associated with back fat thickness
(BFT) in pigs. To achieve this goal, we evaluated the potential and limits of an experimental design that combined several
methodologies. DNA samples from two groups of Italian LargeWhite pigs with divergent estimating breeding value (EBV) for BFT
were separately pooled and sequenced, after preparation of reduced representation libraries (RRLs), on the Ion Torrent technology.
Taking advantage from SNAPE for SNPs calling in sequenced DNA pools, 39,165 SNPs were identified; 1/4 of them were novel
variants not reported in dbSNP. Combining sequencing data with Illumina PorcineSNP60 BeadChip genotyping results on the
same animals, 661 genomic positions overlapped with a good approximation of minor allele frequency estimation. A total of 54
SNPs showing enriched alleles in one or in the other RRLs might be potential markers associated with BFT. Some of these SNPs
were close to genes involved in obesity related phenotypes.

1. Introduction

The pig (Sus scrofa) is the most relevant agricultural meat
species as well as an important animalmodel for its numerous
physiological and morphological similarities to the human
[1]. A parameter that is important for both aspects (meat
production and animal model) is the level of fat deposition
[2]. This is a complex phenotype that can be evaluated
considering different traits. For example, back fat thickness
(BFT) is a trait that affects ham and carcass values and,
indirectly, correlates with production efficiency. For these
reasons, breeding programs in most pig breeds and lines are
designed to reduce BFT and increase lean meat content. In a
few pig lines, an excessive reduction of the level of BFT could
create problems to the meat processing industries as in the
case of heavy pigs whose legs are cured for the production

of dry-cured hams, and, for this reason, animals are selected
to maintain an optimized fat thickness [3]. This trait is also
an interesting phenotype to consider the pig as a model for
human obesity [4, 5] that is one of the major health problems
in both developed and developing countries.

To understand the biological mechanisms affecting BFT
in pigs, we recently carried out several studies to elucidate the
genetic factors involved in the definition of this trait and to
obtain a systems biology comparative picture of human and
pig obesity related traits [6]. In a whole genome candidate
gene approach, we reported that polymorphisms in genes
already shown to affect fat deposition in humans and mice
are associated with BFT or correlated traits in commercial
pigs and in the Italian Large White heavy pig breed [7–10].
In addition, a genome wide association (GWA) study which
we carried out in the same breed using a selective genotyping
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approach and the Illumina PorcineSNP60 BeadChip [11]
showed quite a large number of markers associated with BFT
(each with a small effect that could not explain the whole
genetic variability for this trait), with a limited overlap with
other GWA studies that investigated the same or similar traits
in other breeds and pig populations [12].This could be due to
different experimental designs and incomplete power in the
different studies as well as different linkage disequilibrium
structures of the investigated populations that could not
be captured completely by the genotyping tool (Illumina
PorcineSNP60 BeadChip).

Taking advantage from the sequenced genome of the
pig and its reference assembly (Sscrofa10.2) [13], it is now
possible to use next generation sequencing (NGS) platforms
to further investigate the level and extent of genetic variability
in different breeds andpopulations (i.e., [14]).The IonTorrent
technology is a cheap promising NGS platform that is based
on a semiconductor detection of pH variation during the
sequencing process that can be applied in different experi-
mental approaches in which a medium-high throughput is
needed [15]. We already evaluated the Ion Torrent platform
to analyse a mammalian genome by sequencing reduced
representation libraries (RRLs) obtained from rabbit genomic
DNA and identified thousands of new single nucleotide
polymorphisms (SNPs) in this species [16].

In this study, with the final aim to identify SNPs that could
be useful to evaluate the peculiarities of the Italian Large
White heavy pig breed and explain, at least in part, themissed
genetic variability for the BFT trait not completely captured
by our previous association works, we tested the potential
and limits of an experimental design in which we combined
the Ion Torrent sequencing technology to sequence RRLs.
Reduced representation libraries were obtained by enzymat-
ically digest DNA pools constructed from divergent Italian
Large White pigs with extreme estimated breeding value
(EBV) for BFT. In addition, we used Illumina PorcineSNP60
BeadChip genotyping data already generated from the same
animals to obtain a comparative analysis and validation of the
sequencing information.

2. Materials and Methods

2.1. Animals and Genomic DNA. A subset of the Italian Large
White pigs that were previously used in a GWA study, carried
out to identify markers associated with BFT EBV [12], were
used to constitute two genomic DNA pools. The selected
animals were from two groups, each of 50 pigs, of two-
generation unrelated gilts with extreme and divergent BFT
EBV (50 with the most negative BFT EBV and 50 with the
most positive BFT EBV), selected among about 12,000 pigs
individually performance-tested at the Central Test Station
of the National Pig Breeder Association (ANAS) for the sib-
testing evaluation of candidate boars within the national
selection program of the Italian Large White breed [7, 9, 12].
Average and standard deviation of BFT EBV of the pigs in the
negative and positive tails were –9.40 ± 1.60mm and +8.00
± 5.95mm, respectively. Estimated breeding values for this
trait were calculated by a BLUP-multiple trait animal model
including the fixed factors of batch, age at the beginning of

test, date of slaughtering, inbreeding coefficient, body weight
at slaughter, and age at slaughter, besides the random factors
of animal and litter.

Genomic DNA was extracted from blood using the
Wizard Genomic DNA Purification kit (Promega Corpora-
tion, Madison, WI, USA). Extracted DNA was quantified
using a NanoPhotometer P-330 instrument (Implen GmbH,
München, Germany) and pooled at equimolar concentration
to constitute two DNA pools, one including DNA from the
50 Italian Large White pigs with the lowest BFT EBV and a
second including DNA from the 50 Italian Large White pigs
with the highest BFT EBV.

2.2. Genotyping. The investigated animals were previously
genotyped with the Illumina PorcineSNP60 BeadChip (Illu-
mina Inc., San Diego, CA, USA), interrogating 62,163 SNPs
[11]. No filter was applied and all samples and genomic
positions were retained for subsequent evaluation and com-
parison with sequencing data (see below).

2.3. Reduced Representation Libraries. Tenmicrograms of
DNA from each of the two pools were digested overnight
with 50U of HaeIII restriction enzyme and the digested
products were loaded in a 0.8% agarose gel. HaeIII was
selected as it did not produce visible patterns that could be
ascribed to repetitive elements in the range of 500–700 bp
(data not shown). DNA fragments from this range obtained
fromHaeIII digestion were purified from the agarose gel with
the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany)
according to the manufacturer instructions. Obtained DNA
was used for library preparation and sequencing with the Ion
Torrent PGM (Life Technologies, Carlsbad, CA, USA).

2.4. Ion Torrent Sequencing. Sequencing of the two RRLs was
obtained using 200 ng of DNA that was purified by agarose
gel electrophoresis as described above, enzymatically sheared,
end-repaired, and adapter-ligated using the Ion Xpress Plus
Fragment Library Kit (Life Technologies). Obtained DNA
material was size-selected using the e-gel system (Invitrogen,
Carlsbad, CA, USA) and bands corresponding to 100 bp
of inserts were collected and quantified by qPCR using a
StepOnePlus Real-Time PCR System (Life Technologies).
Selected fragments were clonally amplified, purified, and
sequenced using the Ion One Touch 100 Template Kit and
the Ion PGM Sequencing Kit with two Ion 318 chips (Life
Technologies), for the two RRLs.

2.5. Sequence Data Analyses. Obtained sequencing reads
were filtered and trimmed using the Ion Torrent suite
v.2.2 (Life Technologies) which (i) eliminated polyclonal
sequences and sequences of low quality and (ii) trimmed
adapters and low quality 3-ends. Then data were inspected
with FastQC v.0.11.22 [17]. Sequenced reads were trimmed
and filtered using PRINSEQ Lite v.0.20.4 [18] as follows: (i)
trimming at the 3-end up to 140 bp, (ii) trimming of the 5-
end and 3-end for poly-A/T sequences > 5, (iii) trimming
the 5-end and 3-end up to reaching a base with a quality
score > 20, (iv) exclusion of reads having average quality
< 20, and (v) exclusion of reads shorter than 20 bp. PCR
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duplicates were removed from each library using Picard v.
1.107 [19]. After the PCR duplicates removing step, reads
were merged, processed, and aligned on the Sscrofa10.2
genome version using BWA v.0.7.7 [18]. Reads aligning in
only one place of the genome and with mapping quality
score (Qm) > 20 were retained. SNP calling was obtained
using SNAPE [20], setting divergence to 0.01, prior nucleotide
diversity (𝜃) of 0.001, folded spectrum, and filtering by a
posterior probability of segregation > 0.90. SNAPE input
files (PILEUP format) were obtained using Samtools v.0.1.4
[21, 22]. SNAPE filters were applied to consider only positions
with minimum depth of 3x, to avoid indels (as indel calling
algorithm is not specific for pools [23]). For each putative
SNP, we identified if it was already included in the dbSNP
or if it was new using the Ensembl BioMart data mining
tool [24], interrogating the Ensembl Variation 77 database
(October 2014) for Sscrofa10.2 short variations and indels
(based on dbSNP build 140). All the SNPs that did not match
with those reported on dbSNPs were also analyzed with the
Samtools mpileup function [21, 22]. Variant effect predictor
(VEP) tool (http://www.ensembl.org/Sus scrofa/Tools/VEP;
[25]) was used to map gene positions and to predict the
effect of each substitution. SIFT [26] was used to evaluate
if missense mutations could have deleterious effects on the
translated proteins.

In order to evaluate differences in allele frequency derived
by the number of alternative reads between the two RRLs,
Fisher’s exact test was computed for each alternative genomic
position covered by aminimum depth of 3x. All the positions
with 𝑃Fisher < 0.05 were also visually inspected with IGV
(Integrative Genomics Viewer) software [27].

3. Results

3.1. Sequencing Data and Identification of SNPs. A total of
3,390,796 and 3,731,776 sequenced reads were obtained from
the two RRLs produced using the positive and negative BFT
EBV DNA pools, respectively (Table 1). After cleaning the
datasets for duplicated reads, the number of unique reads
was 2,692,605 and 2,885,815, respectively (Table 1). A total of
1,449,838 (positive BFT EBV RRL) and 1,476,125 (negative
BFT EBV RRL) reads were mapped with high confidence
to the Sscrofa10.2 assembly of the pig genome. The merged
dataset had an average read depth (RD) of 1.28x (range from
1 to 426x). Table S1 (see Supplementary Material available
online at http://dx.doi.org/10.1155/2015/950737) reports the
number of reads and nucleotides mapped on the different pig
chromosomes. Sequence data obtained from the two RRLs
have been submitted to the European Nucleotide Archive
database (EMBL, http://www.ebi.ac.uk/ena/) and are indexed
with the accession number ERP009239.

Using sequencing data, a total of 39,165 putative SNPs
were called with high confidence by SNAPE [20]. Of these
SNPs 24,560 (62.5%) were polymorphic carrying two alle-
les within the sequenced reads and 14,605 (37.58%) were
monomorphic for an alternative form than that of the
reference genome. We detected 9,680 new putative SNPs
not yet reported in dbSNP (24.72% of the called SNPs)
while the major part of identified variations (29,485; 75.28%)

was already present in dbSNP. The transition/transversion
ratio considering all the detected SNPs is 2.08, comparable
to other mammalian genomes [28]. In addition, 6,324 of
the newly detected SNPs were also detected using Samtools
and 3,964 of these SNPs had score ≥20. Table 2 reports
the summary of the annotations of the identified SNPs.
Most of the SNPs were in intergenic (56.1%) or in intronic
(28.9%) regions. The list of SNPs included in transcribed
regions is reported in Table S2. Among the putative SNPs
predicted in coding regions, 217 were synonymous muta-
tions, 159 were missense mutations, two were stop-gained
mutations (in the novel gene ENSSSCG00000028324 and in
the NUT family member 2D gene, known as NUTM2D),
and one was a stop-lost variation (in the putative pleck-
strin and Sec7 domain containing 2 gene; PS2D). Among
the missense mutations, 37 were considered deleterious by
SIFT (Table S2). Several genes with deleterious missense
mutations (e.g., NADH dehydrogenase (ubiquinone) 1, sub-
complex unknown, 1, 6kDa (NDUFC1); parathyroid hormone
1 receptor (PTH1R); glycerol-3-phosphate acyltransferase 2,
mitochondrial (GPAT2); and several olfactory receptor like
genes) play important roles in different biochemical and
physiological cellular mechanisms.

3.2. Sequencing versus PorcineSNP60 BeadChip Genotyping
Data. To validate some of the called SNPs we took advantage
from the Illumina PorcineSNP60 BeadChip genotyping data
obtained on the same animals used to construct the two
RRLs. Considering SNP positions covered by a minimum of
three reads, 661 out of 62,163 SNPs of the chip (1.1%) were
identified from the 13,596,939 sequenced positions (0.45% of
the porcine genome). SNAPE analysis over these positions
reported that (i) 3 positions were discarded and 8 had read
depth < 3 (for further features of SNAPE in addition to the
general criteria adopted), (ii) 257 were identified as SNPs
(152 polymorphic SNPs carrying two alleles while 105 SNPs
were monomorphic for an alternative form from that of the
reference genome), and (iii) 375 positions showed only the
sequence of the reference genome.

Of the overlapping 653 positions (661 – 8 = 653), (i) for 28
of them the chip genotype data of the individual pigs were not
possible to retrieve (probably due to problems in the design
of the chip probes that could prevent the genotyping) and
(ii) for 63 DNA positions having all individuals homozygous
for only one genotype 59 of these base positions matched
with the genotype inferred by NGS, whereas 2 were called as
heterozygous and 2were called as homozygous for a noncom-
plementary nucleotide by sequencing data (Table S3). If we go
into more details for the 28 SNPs that failed to report reliable
genotyping data from the PorcineSNP60 BeadChip, for 12 out
of 28 both alleles were present in the NGS reads; 15 out of 28
showed only one allele and one was an erroneous SNP.

In addition to these overlaps between NGS sequencing
and genotyping data, we wanted to evaluate if the estimated
allele frequencies derived by NGS in RRLs obtained from
DNA pools could match the true allele frequencies at the
same positions obtained by using the PorcineSNP60 Bead-
Chip. Starting from 559 SNPs (derived by the subsequent
filtering steps of the 661 SNPs reported above), 262 (145
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Table 1: Summary of sequencing data obtained from the two reduced representation libraries (RRLs) of the positive (Pos HaeIII) and negative
(Neg HaeIII) back fat thickness estimated breeding value DNA pools.

Information1 Pos HaeIII Neg HaeIII Pos + Neg HaeIII
Sequenced reads 3,581,496 3,887,066 7,468,562
Reads after preprocessing 3,390,796 3,731,776 7,122,572
Removed duplicates 698,191 845,961 1,544,152
Mapped reads (Qm > 20; Rdup) 1,449,838 1,476,125 2,925,963
Sequenced bases (Qm > 20; Rdup) 137,429,598 145,859,611 256,880,473
Mean and max depth of coverage (Qm > 20; Rdup) 1.18; 209 1.16; 217 1.29; 426
Sequenced bases (Qm > 20; RD ≥ 3; Rdup) 3,394,898 3,057,171 3,942,266
Sequenced bases retained by SNAPE (Qm > 20; RD ≥ 3; Rdup) 3,369,555 3,034,731 237,969 (in common)
SNPs (Qm > 20; RD ≥ 3; Rdup) 10,694 10,339 39,165
1Qm = mapping quality; RD = read depth; Rdup = removed duplicates.

Table 2: Summary of the SNP annotation results obtained using the
variant effect predictor (VEP) tool.

Gene position or SNP effect Number of
SNPs

3 prime UTR variant 203
3 prime UTR variant, NMD transcript variant 1
5 prime UTR variant 58
Downstream gene variant 2710
Intergenic variant 24414
Intron variant 12591
Intron variant, NMD transcript variant 126
Intron variant, noncoding transcript variant 306
Missense variant 159
Missense variant, splice region variant 8
Noncoding transcript exon variant, noncoding
transcript variant 29

Splice acceptor variant 2
Splice donor variant 1
Splice region variant, 3 prime UTR variant 1
Splice region variant, intron variant 25
Splice region variant, synonymous variant 12
Stop gained 2
Stop lost 1
Stop retained variant 1
Synonymous variant 217
Synonymous variant, NMD transcript variant 3
Upstream gene variant 2675
Total∗ 43545
∗The sum includes 39,165 variations, 4,380 of which have multiple annota-
tions, for a total of 43,545 SNP annotations.

called SNPs by SNAPE) had the same type of substitution.
Excluding the transversions GC ↔ CG and AT ↔ TA, for
each one of the remaining 258 SNPs, we compared the minor
allele frequency (MAF) of the genotyping data against the
frequency of the same allele derived by the sequencing.
Results of the regression analysis are reported in Table 3 and

Table 3: Summary of regression analysis between allele frequency
estimated by Ion Torrent sequencing and the allele frequency
obtained by genotyping with the Illumina PorcineSNP60 BeadChip.

RD Polymorphic sites Polymorphic and monomorphic sites
𝑅
2 Positions 𝑅

2 Positions
≥3 0.1199 258 0.6882 317 (258 + 59)
≥4 0.1601 99 0.6399 119 (99 + 20)
≥5 0.1611 36 0.5868 41 (36 + 5)
≥6 0.3866 11 0.7006 13 (11 + 2)
RD = read depth; 𝑅2 = regression coefficient; positions: number of genomic
sites analyzed.

in Figure 1. As expected, a low correlation from these two data
was observed when considering all 258 SNPs due to the low
coverage depth (3x) that was not enough for a reliable allele
frequency estimation fromNGS data.This value increased up
to 3 times setting a coverage depth equal to or higher than the
double of the minimum coverage depth (≥6). When adding
data coming frommonomorphic allele, correlation increased
up to 0.70. These data indicate that even using a coverage
depth ≥6 the MAF of these SNPs can be estimated with good
approximation.

3.3. Sequencing Derived SNPs: Differences between the Two
Libraries. For each of the two initial pileups we filtered out
genomic positions having depth < 3x and then we used
SNAPE to extract the allele frequency of each genomic
position taking the advantage of the filters implemented in
it. Polymorphic positions were compared among the 237,969
positions that were in common between the two RRLs (Table
1). Among these nucleotides, 67 genomic positions (filtered to
54 when tested by SNAPE and inspected with IGV) showed
a 𝑃Fisher < 0.05 comparing alternative reads observed in
the two RRLs generated from DNA of pigs with extreme
and divergent BFT EBV (Table S4). Only one of these SNPs
showed a𝑃Fisher < 0.01. However, no one remained significant
after Bonferroni correction. These SNPs were located in
several autosomal chromosomes (SSC1, SSC3, SSC6, SSC8,
SSC9, SSC10, SSC12, SSC15, SSC16, SSC17, and SSC18). These
variants (only 12 of which already deposited in dbSNP) were
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Table 4: Overlapping results between the SNPs associated with back fat thickness as identified with the Ion Torrent sequencing data (𝑃Fisher <
0.05) and those obtained in the genome wide association study (GWAS) reported by Fontanesi et al. [10] (𝑃 < 0.05, window = ±0.5Mbp for
each marker).

Chr. Marker PosM PGWAS PosSNP 𝑃Fisher
∗

1 ALGA0000009 52,297 2.75𝐸 − 03 68,514 2.86𝐸 − 02

1 ALGA0000014 79,763 1.74𝐸 − 05 68,514 2.86𝐸 − 02

6 M1GA0008302 787,265 1.65𝐸 − 06 873,061 1.28𝐸 − 02

6 M1GA0008318 945,991 4.41𝐸 − 04 873,061 1.28𝐸 − 02

6 M1GA0008329 996,248 9.35𝐸 − 05 873,061 1.28𝐸 − 02

9 DRGA0009307 17,138,159 8.66𝐸 − 04 16,885,924 2.81𝐸 − 02

12 DIAS0000309 48,865,200 9.96𝐸 − 04 48,937,212 2.63𝐸 − 02

∗Only the top 𝑃Fisher for each marker is listed. All other data are presented in Table S5.
Chr. = chromosome;marker =marker in the Illumina PorcineSNP60 BeadChip; PosM = nucleotide position of themarker on the Sscrofa10.2 reference genome;
𝑃GWAS = 𝑃 value of association in the GWAS; PosSNP = nucleotide position on the Sscrofa10.2 reference genome of the SNP having 𝑃Fisher < 0.05; 𝑃Fisher = 𝑃
value of Fisher’s test.

MAF genotyping

A
lle

le
 fr

eq
ue

nc
y 

N
G

S

y = 1.2327x + 0.0264

R
2
= 0.386

0.8

0.7

0.6

0.5

0.6

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0
0

Figure 1: Scatter plot of allele frequency estimated by Ion Torrent
sequencing data for SNPs called by at least 6 reads (allele frequency
NGS) and obtained by genotyping data (MAF genotyping) for the
same SNPs.

localized as follows: 63% were intergenic variants, 21% were
in introns, 11% were upstream gene variants, and 5% were
downstream gene variants. Intronic variants were located
in four genes of which only two were annotated with a
known function: (1) dysbindin (dystrobrevin binding protein
1) domain containing 1 (DBNDD1); (2) phosphatidic acid
phosphatase type 2A (PPAP2A).

3.4. Comparison with Genome Wide Association Results. In
order to evaluate if the 54 SNPs that showed differences
in number of alternative reads between the two RRLs were
located in chromosome regions associated with BFT in
Italian Large White pigs (listed in Table S4), we compared
their positions on the basis of our previous GWA study

carried out in the same breed [12]. We considered a window
spanning ± 0.5 Mbp from each marker having nominal 𝑃
value < 0.05 in our previous study [12]. The top 𝑃Fisher for
each of the identified regions is reported in Table 4 (the
complete list is reported in Table S5). The most significant
marker (M1GA0008302; 𝑃 = 1.65𝐸 − 06) is located
72,572 bp downstream SNP SSC6:859837 (𝑃Fisher = 0.038)
and 85,796 bp downstream the 6th top SNP SSC6:873061
(𝑃Fisher = 0.012) obtained from the list of the 54 SNPs. In
this region there is the acyl-CoA synthetase family member 3
(ACSF3) gene that belongs to a family of enzymes that activate
fatty acids. In the same region we previously showed that
other markers (M1GA0008329, SSC6:996248, 𝑃 = 9.35𝐸 −
05, and M1GA0008318, SSC6:945991, 𝑃 = 4.41𝐸 − 04)
were associated with BFT in the same breed. Within Table 4,
the second most significant marker as reported previously
(ALGA0000014, 𝑃 = 1.74𝐸 − 05 [10]) is located close
to the SNP SSC1:68514 (𝑃Fisher = 0.029) identified in
the present study (Table 4). In this region there is another
marker associated with BFT in the previous GWA study
(ALGA0000009, 𝑃 = 2.75𝐸 − 03; [12]). An interesting
gene located in this part of the pig genome [12], delta-like
1 (Drosophila) (DLL1), seems associated to type 1 diabetes
in humans. For marker DRGA009307 (SSC9:17138159, 𝑃 =
8.66𝐸 − 04) there is no annotated gene in a ± 500 kbp
region. DIAS0000309 (SSC12:48865200, 𝑃 = 9.96𝐸 − 04)
is near the active breakpoint cluster-related (ABR) gene and
ENSSSCG00000017808 gene, orthologous of the acyl-CoA-
binding protein (DBI) gene. ABR gene is annotated with two
interesting gene ontology (GO) terms: phospholipid binding
and brain development. DBI gene functions as intracellular
carrier of acyl-CoA esters and it seems that it could act
as a neuropeptide modulating the action of the GABA
receptor. It is annotated with the GO terms: long-chain fatty
acyl-CoAbinding, transport, phosphatidylcholine acyl-chain
remodeling, and triglyceride metabolic process that might
suggest a potential role in fat metabolism and deposition.

4. Discussion

Next generation sequencing is changing the way to identify
markers associatedwith production traits in livestock species.
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Several applications and strategies have been designedmainly
using Illumina platforms (i.e., [14]). To our knowledge, this
study applied for the first time the Ion Torrent technology
to identify DNA polymorphisms in the pig genome. The
experimental design was quite simple as, at this stage, we
wanted to test this NGS technology to identify markers
that could be useful for subsequent association studies in
the Italian Large White pig breed. The identification of
polymorphisms was based on the construction and sequenc-
ing of two RRLs generated from DNA pools of pigs with
extreme and divergent BFT EBV. This approach was tested
to set up a strategy for the identification of polymorphisms
at a reduced fraction of the cost required for individual
sequencing. In this way, we could also identify variants that
might be enriched in one pool compared to the other one.
To call SNPs we used SNAPE that is a software package that
implemented a Bayesian approach for SNP identification and
MAF estimation in sequenced pools [20]. The validation of
identified SNPs was obtained by comparing the genotyping
data generated with the Illumina PorcineSNP60 BeadChip
on the same animals. As we sequenced DNA in pools and
genotyping data were obtained on individual animals, we
evaluated how allele frequency correlated between the two
approaches varying the depth of sequencing. This approach
was able to define an interesting procedure to validate SNPs
identified from DNA pools.

Reduced representation libraries were generated as a
simple strategy to reduce the complexity of mammalian
genomes and to obtain information from a small part of it
that can be sampled after restriction fragment digestion [29].
Several studies have already applied this strategy in farm
animals for SNP discovery [16, 30–32]. For example, in pigs,
Wiedmann et al. [31] and Ramos et al. [11] sequenced RRLs
for the identification of SNPs that were used to construct
the Illumina PorcineSNP60 BeadChip genotyping platform.
In our study, we identified about 40k SNPs in the pig
genome.This is a quite large number of SNPs, considering the
limited throughput of the benchtop Ion Torrent technology
(compared to Illumina platforms [33]) and the stringent
criteria that we used to call SNPs. As the technology is
prone to errors in case of homopolymeric regions [34], indels
were not considered in this study. That means that we could
probably have discovered other short variants but we did not
consider them to guarantee a high quality of the called poly-
morphisms. In addition, other bioinformatics tools should be
developed to obtain a reliable MAF estimation of indels from
sequencing data generated from DNA pools [22].

Among the 159 SNPs causingmissensemutations, 37were
predicted to affect the function of the encoded protein (Table
S2). These polymorphisms will be prioritized to evaluate
their association with several production traits together with
SNPs whose alleles were differentially enriched in the two
RRLs (Table 4, Table S4, and Table S5). The identification of
these latter SNPs was based on allele frequency generated
by mapping alternative reads in the two extreme groups of
pigs with divergent BFT EBV. The low coverage of many
SNP positions in both RRLs limited the possibility to identify
markers associated with this trait. This problem is also due
to the incomplete overlapping of read coverage between the

two RRLs. However, a comparative analysis of the nominally
significant SNPs with our previous GWA study for BFT
obtained using the same animals analyzed in this study [12]
indirectly supported, to some extent, the identified associa-
tion results. Someof thesemarkerswere located close to genes
already shown in humans andmouse to be involved in obesity
related phenotypes and pathologies suggesting a potential
effect of these polymorphisms on BFT and fat deposition
in Italian Large White pigs. These indications should be
supported by association studies with fat deposition traits in
the investigated breed or in other pig populations.

5. Conclusion

Several methodological approaches were tested in this study
for the first time: (i) partial sequencing obtained with Ion
Torrent technology of the pig genome from DNA pools by
using RRLs; (ii) the application of SNP calling and MAF
estimation on Ion Torrent low coverage sequencing data from
DNA pools; (iii) the validation of SNP called in DNA pools
using individual genotyping data from the same animals
of the pools; (iv) the possibility to identify enriched alleles
in the two sequenced RRLs representing two extremes for
important phenotypes (BFT). All these approaches were
implemented in a case study that tried to identify additional
markers associated with BFT in the Italian Large White pig
breed. The purpose was to set up a strategy that could reduce
as much as possible the sequencing cost and that could
produce data useful to identify novel markers for the targeted
trait. Association studies will be carried out to evaluate the
effects of the 54 selected markers.

Ion Torrent can be successfully applied for SNP discovery
even if its limited throughput reduced the possibilities to
obtain reliable allele frequencies in the twoDNApools. Other
reductionist approaches, like genotyping by sequencing or
genotyping by genome reducing and sequencing [35, 36],
might be used to identify and validate SNPs associated with
BFT.
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