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An important characteristic of human language is compositionality. We can efficiently

express a wide variety of real-world situations, events, and behaviors by compositionally

constructing the meaning of a complex expression from a finite number of elements.

Previous studies have analyzed how machine-learning models, particularly neural

networks, can learn from experience to represent compositional relationships between

language and robot actions with the aim of understanding the symbol grounding structure

and achieving intelligent communicative agents. Such studies have mainly dealt with

the words (nouns, adjectives, and verbs) that directly refer to real-world matters. In

addition to these words, the current study deals with logic words, such as “not,” “and,”

and “or” simultaneously. These words are not directly referring to the real world, but

are logical operators that contribute to the construction of meaning in sentences. In

human–robot communication, these words may be used often. The current study builds

a recurrent neural network model with long short-term memory units and trains it to learn

to translate sentences including logic words into robot actions. We investigate what kind

of compositional representations, which mediate sentences and robot actions, emerge

as the network’s internal states via the learning process. Analysis after learning shows

that referential words are merged with visual information and the robot’s own current

state, and the logical words are represented by the model in accordance with their

functions as logical operators. Words such as “true,” “false,” and “not” work as non-linear

transformations to encode orthogonal phrases into the same area in a memory cell state

space. The word “and,” which required a robot to lift up both its hands, worked as if it

was a universal quantifier. The word “or,” which required action generation that looked

apparently random, was represented as an unstable space of the network’s dynamical

system.

Keywords: symbol grounding, neural network, human–robot interaction, logic words, language understanding,

sequence-to-sequence learning

1. INTRODUCTION

In recent years, the development of robots that work collaboratively in our living environment has
attracted great attention. In many scenarios, these robots will be required to behave appropriately
by understanding linguistic instruction from humans. Here, the meanings of instructions may
change depending on the environment. Thus, robots must be able to flexibly adapt their behavior
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in accordance with the current situation or context. In the
real world, no two events are identical; thus, a model that can
generalize in order to translate an instruction to appropriate
behavior even in novel situations is required. Specifying rules
to define relations between language and behavior for various
possible contexts becomes difficult and costs much more as
task complexity increases. Therefore, to build a learning model
that enables a robot to acquire generalizable relations from
experience is especially desirable. To flexibly link language, which
operates on discrete elements, to behavior, which operates within
a continuous world, requires a solution to the symbol grounding
problem (Harnad, 1990; Taniguchi et al., 2016).

One important characteristic of human language that
enables us to describe even previously unseen situations is
compositionality. In the field of formal semantics, the principle
of compositionality (also referred to as Frege’s principle) models
a language system as follows: the meaning of a phrase or
a sentence is given as a function of the meanings of its
parts (e.g., words) (Partee, 2004). This principle means that
the meaning of a complex expression is built from the
meaning of its constituents and rules for combining them.
Thanks to the compositionality of language and our cognitive
ability to deal with it, humans can efficiently describe a wide
variety of situations and dynamic events in the real world
by compositionally constructing a complex expression from
a finite number of elements. Investigating the compositional
aspects of language deeply is important for understanding how
human languages work in practice and for building intelligent
communicative agents. Using the principle of compositionality
as a base, formal semanticists attempt to build theoretical
frameworks to explain the compositionality of natural language
in a top-down manner.

In contrast with the top-down approach, there is a bottom-
up approach that attempts to work from observation and
analyze what kind of symbolic or compositional expressions
emerge spontaneously through communicative tasks among
humans, robots, and other intelligent agents (Steels and
Kaplan, 1998; Steels and McIntyre, 1998; Steels, 2001; Kirby,
2002; Sasahara et al., 2007; Bleys et al., 2009; Schueller and
Oudeyer, 2015; Spranger, 2015; Sukhbaatar et al., 2016; Wang
et al., 2016; Havrylov and Titov, 2017; Lazaridou et al., 2017;
Mordatch and Abbeel, 2017). In particular, in recent years,
there have been many studies of multi-agent interaction, in
which agents implemented with a deep learning model are
developed in a mutually interactive manner and a compositional
communication protocol emerges through the interaction. In
Mordatch and Abbeel (2017), multiple agents situated within
simulated 2D environments were given collaborative tasks in
which agents had to symbolically communicate with each other
to tell other agents their own goals. Before learning, symbols were
meaningless. Being trained by reinforcement learning, the agents
spontaneously gave the symbols shared meanings, which were
sometimes interpretable by humans (e.g., “GO-TO,” “LOOK-
AT”), and they became able to communicate by combining the
symbols, each of which was a token representing a subject, verb,
or objective. In Havrylov and Titov (2017), two long short-term
memory (LSTM) networks developed their own communication

protocol to express the content of images. The sender network
encoded the image information as a sentence expression, and the
receiver network decoded the sentence and inferred which image
among alternatives was described by the sentence. The analysis
showed that a natural language-like coding such as hierarchy of
categories or the importance of word order could be developed.

In the bottom-up approach, there has also been much
research that trained neural network models by supervised
learning (Sugita and Tani, 2005; Ogata et al., 2007; Sugita
and Tani, 2008; Arie et al., 2010; Tuci et al., 2011; Chuang
et al., 2012; Stramandinoli et al., 2012; Ogata and Okuno, 2013;
Heinrich and Wermter, 2014; Heinrich et al., 2015; Hinaut
et al., 2014; Yamada et al., 2015, 2016; Zhong et al., 2017). In
these studies, the example sets of language and corresponding
behavior were designed and prepared by humans in advance.
These sets were used as ground truth during training, and
after that, compositional representations intermediating between
language and behavior were self-organized in their models. For
example, Sugita and Tani (2005) and Arie et al. (2010) trained
recurrent neural network (RNN) models (Elman, 1990) to learn
relations between 2- or 3-word sentences and corresponding
robot behavior. After training, representations corresponding to
verbs and nouns were topologically self-organized as different
components in the feature space binding language with robot
behavior. These were construed as plausible materialization of
linguistic compositionality by a dynamical system approach. Tuci
et al. (2011) also conducted robot experiments using a feed-
forward neural network and claimed that the compositional
aspects that potentially exist in the behavior space are required
for embedding robot behavior into compositional semantics
via language. Heinrich et al. (2015) trained an RNN model to
translate a robot’s visual input into a corresponding sentence
at the phoneme level. After training, the activated internal
states of the RNN were more correlated with the type of
word (color, shape, or position) than the phonemes. Hinoshita
et al. (2011) visualized a similar kind of abstract encoding
by a hierarchical RNN that was activated in accordance with
the categories of words, even though they trained the RNN
with linguistic sequences only. Investigating such representations
organized in machine learning models is valuable, not only for
understanding the compositionality of language but also for
building interpretable intelligent systems.

The current study follows the supervised learning approach
to the integration of language and behavior. In most previous
studies of this type, mainly words that are directly grounded in
real-world matters have been considered. For example, nouns
(e.g., ball, box) or adjectives (e.g., red, tall) correspond to
characteristics of objects. Verbs (e.g., hit, push) or adverbs
(e.g., quickly, slowly) correspond to characteristics of motion.
However, in our language, there are more abstract words (e.g.,
society, justice) that are not grounded in concrete physical objects
or actions. To tackle the grounding of such words, Cangelosi et
al. have conducted a series of language-robot experiments from
the point of view of cognitive developmental robotics (Cangelosi
et al., 2010; Chuang et al., 2012; Stramandinoli et al., 2012; Zhong
et al., 2014; Stramandinoli et al., 2017). In these works, a robot
implemented with a neural network develops its linguistic skill
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step by step, beginning by acquiring relations between simple
basic motions and words (e.g., “push,” “pull”) directly grounded
in them and moving on to achieving relationships between more
abstract actions and words (e.g., “give,” “reject”) only indirectly
grounded in them through connections to basic words.

However, the current study deals with another kind
of abstraction. Language expressions in this study include
grounded, in other words, referential1 words and logic words,
such as “not,” “and,” and “or”. These logical words are not directly
referring to the real world but act as logical operators in the
construction of the meaning of the sentence. For example, just
after you have closed a door, the commands “open the door!” and
“do not close the door!” can express the same behavior OPEN-
DOOR2. In another case, the appropriate behaviors in response
to “bring A or B” include BRING-A and BRING-B. These
logic words have not been addressed in conventional studies of
integrative learning of language and behavior. In accordance with
the formulation of formal semantics, even such non-referential
words working as logical operators can be handled in a unified
way. In fact, in cases of actual human–robot communication, it is
highly likely that these words will be used.

The current study investigates what kind of structure
representing compositional relations between language and robot
actions is self-organized in the space of internal states of an RNN
model trained through supervised learning. Here, our designed
tasks include referential words and non-referential logic words.
The meanings of sentences are constructed from both word
types. We analyze how logic words are processed and how their
functions are represented by the RNN dynamics along with
the referential words. More precisely, we apply the sequence-
to-sequence learning method that has recently attracted great
attention in the field of natural language processing (Sutskever
et al., 2014; Bahdanau et al., 2015; Vinyals and Le, 2015; Wu
et al., 2016) to the translation from sentences to robot actions
and analyze representations by visualizing internal states during
interactions that occur after training.

This paper is organized as follows. In section 2, we introduce
the learningmodel. In section 3, we give the results of the learning
experiment for the first task and analyze the representations
acquired by the learning model in detail. In section 4, we report
the results of the second task. In section 5, we discuss the results
and then conclude this study.

2. LEARNING MODEL

2.1. Problem Formulation
The aim of the current study is to investigate how the
compositional relations between language and robot actions

1In this paper, we use the term “referential” instead of “grounded” for the following

reason. We conduct two robot experiments in the following sections, but the first

task is numerically simulated on a computer. Even though the second task uses

a real robot, the visual input is still highly preprocessed. Strictly speaking, we do

not deal with the symbol grounding problem in accordance with the definition

by Harnad (1990). To prevent misunderstanding, we use the term “referential,”

and sometimes “linking” to express that a word has a referent or a corresponding

feature in other sensorimotor modalities.
2In this paper, we denote specific actions or behaviors executed by agents with

capital letters.

are developed and represented internally by the model from
direct experiences of interaction. Therefore, we define the
interactive instruction–action task as a simple problem, learning
to predict a robot’s joint angles appropriate to the current
situation. At each discrete time step t a neural network model
receives a word wt , visual information vt , and the robot’s current
joint angle configuration jt . An instruction sentence is given
as a concatenation of some words, thus it takes some time
steps. At each time step the model generates its prediction
jt+1 based on the input history w0 : t , v0 : t , and j0 : t . During
the instruction phase the appropriate prediction would be just
keeping the current posture jt . After an instruction is given,
an appropriate prediction should be the generation of angles
different from the current ones. An action corresponding to
the instruction must also be generated as a sequence of joint
angle configurations over several time steps. In our tasks, the
appropriate action sequence after an instruction is determined
by the combination of the instruction sequence, the visual
information given simultaneously with the sentence, and the
robot’s current posture.

2.2. Model Architecture and Forward
Dynamics
In this study, as a model that learns the aforementioned
problem, we use an RNN with an LSTM layer (Hochreiter and
Schmidhuber, 1997). The model is a three-layer neural network
whose middle layer is the LSTM layer, as shown in Figure 1.
All the LSTM units have a peephole connection (Gers and
Schmidhuber, 2000). At each time step, the model receives wt ,
vt , and jt . The LSTM layer calculates the current output ht from
these external inputs, the memory cell state in the previous step
ct−1, and its own output in the previous step ht−1:

ht = LSTM(wt , vt , jt , ht−1, ct−1; θ), (1)

where θ denotes the parameters of the LSTM layer. In this
process, ct−1 is also updated to ct . The output layer is a fully
connected layer. It receives the output of the LSTM layer and
predicts the appropriate joint angles for the next time step,
denoting these ĵt+1. We denote the model prediction by jt+1:

jt+1 = tanh(Wht + b), (2)

where W and b are a learnable weight matrix and a bias vector,
respectively. The model prediction is also used as the joint
angle input at the next time step. In this process, receiving an
instruction and generating an action are completely conducted
in the forward-propagation algorithm. An instruction sentence,
visual information, and the robot’s current posture are encoded
as the states of memory cells in the LSTM layer. After receiving
the instruction, a corresponding action sequence is generated by
decoding the integrated information.

The working after training seems to be similar to the
normal sequence-to-sequence models that have recently been
used in the field of natural language processing for tasks such
as question answering and translation. However, the current
model is different in that it has only one LSTM layer; in other
words, it does not separate the decoder from the encoder.
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FIGURE 1 | The framework employed to learn the current tasks. The learning model is a three-layer neural network whose middle layer is an LSTM layer. At each time

step, the model receives wordwt, visual information vt, and the current robot joint angles jt. The LSTM layer calculates the current output ht from these external

inputs, the memory cell state ct, and its own output in the previous step ht−1. The output layer is a fully connected layer. It receives the output of the LSTM layer and

predicts the appropriate joint angles for the next time step. In this process, receiving an instruction and generating an action are completely conducted in the forward

propagation algorithm. An instruction sentence, visual information, and the robot’s current posture are encoded as the states of memory cells in the LSTM layer. After

receiving the instruction, a corresponding action sequence is generated by decoding the integrated information.

Moreover, the algorithm does not explicitly switch between the
instruction and action phases. As visually illustrated in Figure 3

in the next section, the relations between instructions and
corresponding actions are experienced entirely in the sequential
data that represent human robot interaction, which consists of
repeated iteration of instructions and actions. With such data, as
mentioned above, the model learns to predict only the robot’s
joint angles appropriate for the next time step in the current
situation. Because both phases are only implicitly included in the
sequential data, the model has to learn to switch phases without
a priori knowledge. In more precise terms, the contrasting
functions of encoding and decoding (i.e., instruction receiving
and action generation) emerge as an apparent phenomenon as a
result of learning alone. The model continues to predict the joint
angles even during receipt of an instruction, while the target is
keeping the current posture. In contrast, zero-filled vectors are
continuously received as language inputs even when the robot is
generating an action sequence. Although no external algorithms
or explicit signals on the network I/O for phase switching exist,
the trained model behaves as though it flexibly switched phases.
Formore discussion from the point of view of dynamical systems,
refer to Yamada et al. (2016).

2.3. Training
To train the model, supervised learning is conducted by
minimizing the squared error between the model’s output jt+1

and the correct joint angles at the next time step ĵt+1: that is, the
model is trained to minimize

E =
∑

s

∑

t

(jt+1 − ĵt+1)
2, (3)

where s is the index of a sequence. The error at each time step
is back-propagated to the initial time step without truncation by
using the back propagation through time algorithm (Rumelhart

et al., 1986). In our tasks, sometimes there are multiple correct
actions. For example, if the instruction is “hit red or blue,” both
HIT-RED and HIT-BLUE can be correct. In such cases, one
action is chosen randomly each time and given as the correct
response.

In the following sections, we describe learning experiments
conducted using the model described in this section. We
designed two tasks, the “flag task” and the “bell task,” in which
a robot is required to generate an action in response to linguistic
instructions that sometimes include logic words. Although the
former task is numerically simulated on a computer from data
preparation to evaluation, it is interpretable as a task for a robot.
In contrast, the latter task collects motion data by using a real
robot; it is, therefore, a more complicated task.

3. EXPERIMENT 1: FLAG TASK

3.1. Task Overview
In this section, we first report the learning results of the first task,
the “flag task”. Although this task is completely performed in a
computer simulation, we describe the task as if it was undertaken
by a robot so that it is easy to imagine intuitively. First, a human
makes the robot grasp flags colored red, green, or blue, one in
the left hand and another in the right, at random. After that,
the human gives the robot a linguistic instruction. The sentence
consists of a combination of an objective (“red,” “green,” “blue”),
a verb [“up” (i.e., lift), “down” (i.e., lower)], and a truth value
(“true,” “false”). Note that the words are given in this order
because this gamewas designed bymodifying a popular children’s
game in Japan. Japanese is a subject-object-verb language (cf.,
English, which is a subject-verb-object language), therefore a verb
follows an objective word, and a truth value, which is one of the
auxiliary verbs, follows a verb. Here, the objective color word
indicates the arm that is grasping a flag of the stated color. The
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verb determines whether the flag should be raised or lowered.
Finally, if the truth value is “true,” the robot must behave as
indicated by the preceding verb. In contrast, if “false,” it must
generate the opposite action. For example, if the robot receives
an instruction “red up false” when it is grasping a red flag in the
right arm, the correct action is to lower the right arm (R-DOWN).
In other words, “true” and “false” roughly represent “do” and “do
not,” respectively.

In the objective part, two color words can be concatenated
by “and” (referred to as AND-concatenated). For example,
if the robot receives the instruction “red and blue up true”
when it is grasping red and blue flags, the robot must lift
up both arms. There are also cases in which two color words
are concatenated by “or” (referred to as OR-concatenated).
For example, if the robot receives the instruction “green or
blue up false” when it is grasping the green and blue flags,
the correct action is to lower either arm. However, if at least
one arm is already in the DOWN posture, the robot must
keep the current posture. The number of possible goal-oriented
actions is six: L-UP, R-UP, B-UP, L-DOWN, R-DOWN, and
B-DOWN, where L, R, and B mean left, right, and both,
respectively. However, there are situations in which, even though
the same goal-oriented action is required, the actual motion
that should be generated by the robot varies according to the
robot’s current posture (shown as arrows in Figure 2). Note that
there are even cases in which the robot should not move either
of its arms. The number of possible situations, based on the
combination of flag colors (6 patterns), instructions (24 patterns),
and the robot’s waiting posture (4 patterns), is 576. In this task,
instructions inconsistent with the flag colors are never given.
For example, if the colors of the flags held by the robot are
red and blue, the instruction “green up true” is never given.
Furthermore, cases in which both flags are the same color are not
permitted.

The requirements imposed on the robot in this game are
analyzed as follows. (1) First, the arm indicated by the color
words depends on the arm with which the robot holds the flag.
In other words, referring to an external situation is required.
(2) The actual motion trajectory to be generated depends on
the robot’s current posture. For example, suppose the robot is
required to generate L-UP action. If the robot’s left arm is in
the DOWN posture, the robot has to lift its left arm. However,
if the robot’s left arm is already in the UP posture, the robot
has to maintain its posture. (3) Finally, the RNN has to deal not
only with referential words (e.g., verb, objective) but also logic
words such as “true,” “false,” “and,” and “or,” which we focus
on in the current study. Due to this task setting, in extreme
cases, sentences completely orthogonal to each other can indicate
the same action (e.g., “red up true” with the red flag in the
left arm and “blue down false” with the blue flag in the left
arm). In contrast, some OR-concatenated sentences have an
ambiguity that allows the robot multiple choices even in the same
situation.

3.2. Data Representation
We represent the execution of the flag task as a sequence of 14-
dimensional vectors. The state St at time step t is represented as

follows:

jt = [j
(t)
l
, j(t)r ], (4)

vt = [v(t)r , v(t)g , v
(t)
b
], (5)

wt = [w
(t)
0 ,w

(t)
1 ,w

(t)
2 ,w

(t)
3 ,w

(t)
4 ,w

(t)
5 ,w

(t)
6 ,w

(t)
7 ,w

(t)
8 ], (6)

St = [jt; vt;wt]. (7)

Regarding the robot joints, only the left and right shoulder pitches

(j
(t)
l
, j
(t)
r ) are used. The permissible range of each shoulder pitch

is scaled in the interval [−1.0, 1.0]. The UP posture corresponds
to a pitch of 0.8, and the DOWN posture corresponds to a
pitch of −0.8. Posture changes from UP to DOWN or from
DOWN to UP after receiving an instruction are completed over
6 time steps. Visual information is represented in 3 dimensions

(v
(t)
r , v

(t)
g , v

(t)
b
). The three components correspond to the R, G,

and B channels, respectively. If the color is grasped by the left
hand, the component is set to 0.8; if it is in the right hand,
the component is −0.8; and if not grasped by either hand, the
component is 0.0. Nine elements are assigned for language. Each
element corresponds to one word, out of “red,” “green,” “blue,”
“up,” “down,” “true,” “false,” “and,” and “or,” and an instruction
sentence is represented as a sequence of one-hot vectors, which
have the value of 0.8 at one element and 0.0 at the other element.
In this study, the data representing the flag task are completely
generated on a computer without using a real robot. Example
interaction data are shown in Figure 3. Note that we added a
small amount of Gaussian noise (mean: 0.00; standard deviation:
0.02) to the values of joint angles. In the preliminary experiment,
we first trained the model without noise and got poor results. We
then added noise and the results improved. We discuss this effect
in section 5.

3.3. Learning Setting and Evaluation
Method
We made 2,048 sequential datasets for training, each of which
includes 10 episodes. The term, “episode” denotes a chunk
consisting of an instruction and an action response. The
situations included in each sequence were randomly ordered.
All 576 possible situations were included at least once. We
built five models with 50, 70, 100, 150, and 300 LSTM units
and trained them 10 times from randomly initialized learnable
parameters. We also trained the 100-node model with data
without noise applied to the joint angles. Adam, a version of the
stochastic gradient descent algorithm made stable by computing
individual adaptive learning rates for each parameter, is used
as an optimizer (for details, refer to Kingma and Ba, 2015).
The number of learning iterations is 10,000, and the learning
rate is set to 0.001. We coded our model within Python using
the Chainer (https://chainer.org) framework. The source code
of our model is available at https://github.com/ogata-lab/RNN_
FNR2017.

After learning, we made another dataset for the evaluation.
This dataset includes all the possible situations 10 times each.
Although the situations were randomly ordered, the order was
different from the training dataset. When the errors between
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FIGURE 2 | Overview of the flag task. The experimenter makes the robot grasp two colored flags. Instructions are given as sentences in the form of an objective

(“red,” “green,” “blue”), a verb [“up” (i.e., lift), “down” (i.e., lower)] and a truth value (“true,” “false”). The robot must generate one of six goal-oriented actions (L-UP,

L-DOWN, R-UP, R-DOWN, B-UP, B-DOWN) in accordance with the instruction. In the objective parts, two color words can be concatenated by “and”. In this case,

the robot must generate B-UP (B-DOWN) action. Two color words also can be concatenated by “or,” in which case the robot must move either arm. The actual

movements corresponding to these goal-oriented actions for each starting posture are indicated by the arrows in this figure.

FIGURE 3 | An example sequence that represents the flag task. Each vertical broken line indicates the end of an episode. (Top) An instruction is given as a

succession of words, which are each represented as a 1-hot vector. In the waiting and action-generation phases, zero-filled vectors are given. (Middle) Visual

information is continuously given as a sequence of three-element (R, G, B) vectors. The flag colors can be changed randomly just after action generation. Because this

task was numerically simulated on a computer, changes in flags were represented as instantaneous changes in values. Note that flags are sometimes not changed as

in the case from the first episode to the second episode in this figure. (Bottom) Each action immediately follows an instruction.

the generated postures of both arms six steps after receiving an
instruction and the correct ones are less than 0.04, we judge
that the RNN has succeeded in generating an appropriate action.
Here, there are cases in which the correct action cannot be
determined uniquely. In such cases, if the RNN succeeds in
generating any of the correct actions, we judge that as success.
We regard the situation patterns in which the RNN succeeds
in generating an appropriate action more than seven times out

of 10 as “appropriately learned”. Note that in the current task,
the sequences are given to the robot as multiple repetitions of
the instructions and corresponding actions. Therefore, even if
situations that are defined by combination of an instruction,
the vision, and the robot posture are the same, slightly
different activations are gained every time because the contextual
information of the previous episode remains in the memory cell
states. Thus, the generated action is not identical among trials.
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3.4. Task Performance after Training
We classify all possible situations into four types. (1) Situations
in which the instruction includes only one objective word
(192 situations). (2) Situations in which the instruction is
AND-concatenated (192 situations). (3) Situations in which the
instruction is OR-concatenated, but there is only one correct
action. For example, when the instruction is “red or blue up
true” and the both arms are already in the UP position, the
only correct action is to maintain the UP-UP posture (144
situations). (4) Situations in which the instruction is OR-
concatenated, and two correct actions exist (48 situations).
We evaluate performance by counting how many situation
patterns each model learns appropriately with respect to each
of the four types. Figure 4 shows the result. Most situations
in types (1), (2), and (3), in which the correct action is
uniquely determined, were appropriately learned by all the
models. However, the 100-node model trained with data without
noise applied to the joints could not learn sufficiently well. For
type (4), in which the correct action cannot be determined
uniquely, a clear difference exists between models: the number
of appropriately learned situations increased in accordance
with the number of LSTM nodes. The model without noise
also performed worse than the 100-node model with noise.
Figure 5 shows an actual example of interaction achieved by
the 300-node model. It can be seen that the RNN generates an

appropriate action immediately after receiving an instruction in
each episode.

Next, we checked which arm was actually moved in situations
of type (4). If the model learned the type (4) situations just
as a left-arm action or just as a right-arm action, the meaning
of “or” cannot be regarded as being truly learned, although
the aforementioned evaluation criteria is fulfilled. Here, we
investigated the results for a model with 300 LSTM units. In
45.4% of the trials, the left hand was moved. In 52.5%, the right
hand was moved. In 2.1%, neither movement could be generated
successfully. Overall, the arms were quite evenly chosen in these
situations. There are 48 situation patterns of type (4), and the test
was conducted 10 times for each of them. In all cases, the RNN
sometimes chose to move the left arm and other times chose to
move the right arm. In other words, the RNN could learn the
meaning of OR-concatenated instructions appropriately as “OR”.
Thus, the flag task was performed sufficiently well by the trained
models.

3.5. Analyses of Internal Representations
In the previous subsection, we confirmed that the RNN could
learn to execute the flag task. In this section, to analyze how
the RNN internally represents the relations between instructions
and sensorimotor information, we visualized the internal states

FIGURE 4 | Experiment 1 (flag task). Action generation performance. We evaluated performance by counting how many situation patterns each model learned

appropriately with respect to each of the four situation types: (1) the instruction includes one objective; (2) the instruction is AND-concatenated; (3) the instruction is

OR-concatenated, but there is only one correct action; and (4) the instruction is OR-concatenated, and two correct actions exist. Note that the written values are

averages of 10 trials in which learning began with different seeds. Error bars represent standard deviations.

FIGURE 5 | An example of the resulting interaction in the flag task. The 300-node model could generate an appropriate action in almost all situations.
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FIGURE 6 | Top left: The states of the memory cells after the instruction “(L-flag color word) up true” or “(R-flag color word) up true” is given to the robot projected

onto the space spanned by PC1, 2, and 3. Here, the robot is always waiting in the DOWN-DOWN posture, but the situations are different with respect to the colors of

the flags grasped in each hand. For example, the filled blue circle is the activation after receiving “blue up true” in the situation B-R in which a blue flag is in the left

hand and a red flag is in the right. In this task, which arm should be moved cannot be determined from the given objective word alone. However, in the PC1 direction,

which arm is indicated by the objective word is represented. The RNN learned to integrate the objective word information and the current visual information, and

acquired a representation corresponding to the meaningful pair of “left–right”. By using these activations, the robot could choose a correct arm for each trial.

Others: We also plotted the internal states after giving these instructions to the robot that is waiting in the other postures, together with the internal states on the

DOWN-DOWN condition. We projected them onto the PC1–2, PC3–4, and PC5–6 space. Note that we carried out PCA again by using the internal states on all of

these conditions. Plot colors and shapes are as in the top left panel except that the frame lines differ according to the robot current posture. In this case, the current

posture information is strongly reflected to the internal states, thus it is encoded in the PC1–2 plane. But the representation corresponding to “left” and “right” is still

able to be seen easily in the PC3–4 plane. The visual information was encoded in the PC5–6 space although the hexagon shape was a little distorted.

during the execution of the task by principal component analysis
(PCA)3.

3.5.1. Representations of Referential Color Words
First, the top left panel of Figure 6 shows the states of thememory
cells after the instruction “(L-flag color word) up true” or “(R-
flag color word) up true” is given to the robot. Here, the robot is
always waiting in the DOWN-DOWN posture, but the situations
are different with respect to the flag colors. Therefore, the RNN
has to choose which arm should be raised by integrating the
visual information and the input objective word. In the PC2–PC3
plane, the current visual input is directly embedded. However,
in the PC1 direction, which arm has been indicated by an
objective word is represented. In other words, in the experience

3Before applying PCA, parallel translation was applied to the internal state vectors

to make the mean of them the zero vector (i.e., centering preprocessing was

performed).

of generating action sequences by receiving an instruction and
visual input, the RNN acquired a representation corresponding
to the meaningful pair of “left” and “right”. We also plotted the
internal states after giving these instructions to the robot that is
waiting in the other postures, together with the internal states
on the DOWN-DOWN condition. In the other three panels of
Figure 6, we projected them onto the PC1–2, PC3–4, and PC5–
6 space. In this case, the current posture information is strongly
reflected to the internal states, thus it is encoded in the PC1–2
plane. But the representation corresponding to “left” and “right”
is still able to be seen easily in the PC3–4 plane. Here, note
that in the case of the UP-UP posture, the actual motions to be
generated by receiving “(L-flag color word) up true” or “(R-flag
color word) up true” are the same (keep the current posture),
and, in fact, the network could keep the posture. This analysis
shows that even in such situations in which the same action was
generated, themodel could internally represent these instructions
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as different meanings, “left” or “right”. Incidentally, the visual
information was also still encoded in a less principal component
space (PC5–6) although the hexagon shape was a little distorted.

3.5.2. Representations of Logic Words: “True” and

“False”
Next, we also analyzed the representations of logic words. We
visualized memory cell activations after giving eight possible
instructions with one objective word to a robot that was grasping
R-B flags and waiting in the DOWN-DOWN posture (Figure 7).
In the directions of PC1, PC2, and PC3, the activations directly
corresponding to each part of speech (objective, verb, truth
value) of the input sentence can be seen, that is, “red”/“blue”,
“up”/“down” and “true”/“false” pairs are reflected in the PC2,
PC1, and PC3 axes, respectively. Here, the problem is that the
RNN has to solve an X-OR problem that consists of “up”/“down”
and “true”/“false” (shown in the left panel of Figure 7), and to link
its interpretation into UP or DOWN goal-oriented action. More
precisely, if the sentence includes “up true” or “down false,” UP
action must be chosen. In contrast, if the sentence includes “up
false” or “down true,” DOWN action must be chosen.

Actually, by exploring the lower-rank component PC4, the
activations that were located diagonally across the parallelogram
in PC1–PC3 space were located in the same direction. “Up true”
and “down false,” which are mutually orthogonal but have the
same meaning UP, are represented in the bottom area of the right
panel. In contrast, “up false” and “down true” are represented
in the top area. Thanks to this non-linear embedding, the X-OR
problem is solved in the PC4 direction. In summary, the RNN has
extracted the XOR problem implicitly included in the sequential
experiences and learned to link the orthogonal instructions in
the same goal-oriented action by its non-linear dynamics, while
retaining the information that the input sentences are very
different from each other in the larger principal components.

3.5.3. Representations of Logic Words: “And” and

“Or”
The left panel of Figure 8 shows the memory cell states after
giving a robot that is grasping R-B flags some instructions
whose objective part is one word, AND-concatenated, or OR-
concatenated. The verb and the truth value are “up” and
“true,” respectively. AND-concatenated instructions that direct
the robot to raise both arms are represented away from other
instruction encodings in the PC1 direction. The pair of “red”
and “blue” is represented in the PC2 direction. Here, the word
“or” that directs the robot to raise either hand is embedded in
the middle space between these two encodings. This suggests
that “or” is represented as an unstable point of the network
dynamics and that, thanks to this acquired dynamics, behavior
which apparently looks like randomly choosing the left or right
arm has emerged.

To verify this, we conducted the following additional
simulation. To a robot that had 2,048 different contexts, we
gave the instruction “green or blue up true.” Specifically, in all
2,048 contexts, a robot is currently waiting in a DOWN-DOWN
posture with G-B flags. However, in each context, the order
of preceding episodes is randomly different from in the other
contexts. As mentioned in section 3.3, even when the situation,
defined by the combination of an instruction, the vision, and the
robot current posture (in this simulation, “green or blue up true,”
the green flag in the left hand, the blue flag in the right hand,
and DOWN-DOWN posture, respectively) is the same, different
activations occur every time because the contextual information
of the previous episodes still remains in the memory cell states.
Therefore, we see 2,048 different activations corresponding to
2,048 contexts. As shown in the top left panel of the right side
of Figure 8, the memory cell states after the instruction “green or
blue up true” were then arranged in an arch-shaped space. Each
point corresponds to one specific context. When the activation
was on the left side of the arch, the robot generated L-UP action.

FIGURE 7 | Memory cell states after giving eight possible instructions with one objective word to the RNN in the situation that the grasped flags are R-B and the

waiting posture is DOWN-DOWN. The left panel projects them onto PC1–3 space, and the right panel projects them onto PC2–4 space. In the directions of PC1,

PC2, and PC3, the activations directly corresponding to each part of speech (objective, verb, truth value) can be seen: that is, “red”/“blue”, “up”/“down” and

“true”/“false” pairs are reflected in the PC2, PC1, and PC3 axes, respectively. However, by exploring lower rank components, it can be seen that the X-OR problem

consisting of “up”/“down” and “true”/“false” pairs is solved in the PC4 direction by non-linearly embedding the input sentences.
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FIGURE 8 | Left: The memory cell states after giving a robot that is grasping red and blue flags some instructions whose objective part is one word,

AND-concatenated, or OR-concatenated. The verb and the truth value are “up” and “true,” respectively. The AND-concatenated instructions are represented away

from other instruction encodings in the PC1 direction. The pair of “red” and “blue” is represented in the PC2 direction. The “or” that directs the robot to raise either

hand is embedded in the middle space between these two encodings. Right: To a robot waiting in the DOWN-DOWN posture with G-B flags after 2,048 different

contexts, we gave the instruction “green or blue up true.” The memory cell states after the instruction (t = 0) were arranged on an arch-shaped space (left top). Each

point corresponds to one specific context. When the activation was on the left side of the arch, the robot generated L-UP action and the internal states converged to

the fixed-point corresponding to the UP-DOWN posture. In contrast, on the right side, the robot generated R-UP action, and the internal states converged to the

fixed-point corresponding to the DOWN-UP posture. When the activation was on the topmost area of the arch, a little unstable action was generated. However, even

in such cases, the internal states eventually converged to one of fixed-points, as shown in the right bottom panel.

In contrast, for right-side activation, the robot generated R-UP
action. When the activation was in the topmost area of the arch,
some unstable motion was generated. However, in all cases, the
internal states eventually converged into one of the fixed-point
attractors that corresponded to the DOWN-UP posture or the
UP-DOWN posture, as shown in the bottom rightmost panel
of Figure 8. This means that to respond to OR instructions that
require the robot to behave in a random exclusive-OR-like way,
the internal representation was the convergence from an unstable
space to either one of two stable points.

In this analysis, PC1 was strongly dominant (the contribution
ratio is 97.9%). Therefore, due to this important contribution
ratio, one could assume that only one neuron would be enough
to generate this unstable dynamics. However, the activation in
the PC1 direction was actually composed of the activations of
multiple units. Specifically, no single unit has cosine similarity of
more than 0.4 (or less than −0.4) to PC1. Instead, seven units
have cosine similarity of in the range between 0.2 and 0.4 (or
between −0.4 and −0.2) to PC1. In other words, this unstable
dynamics was realized in a distributed way.

3.5.4. Dynamical Representations of the Task

Execution
Finally, we visualized the internal dynamics during the execution
of the task. Figure 9 shows the state transition of memory cells
while the robot experienced four episodes and its posture is
moved in the order from DOWN-DOWN, through UP-DOWN,
UP-UP, DOWN-UP, to DOWN-DOWN. Here, the PC1-2 space
seems to roughly correspond to the robot’s posture. Moreover,
the transitions among different postures are represented as

FIGURE 9 | The state transition of memory cells while the robot experienced

four episodes and its posture moved in the order from DOWN-DOWN, through

UP-DOWN, UP-UP, DOWN-UP, to DOWN-DOWN. The transitions among

different postures are represented as transitions among different fixed-point

attractors (circle marks), each of which corresponds to a posture. By receiving

an instruction, the internal state is activated in the PC3 direction and reaches

the unstable point indicated by a + mark. By converging into one of the

fixed-points again after the activation, the corresponding goal-oriented action

is generated. The robot then waits for a subsequent instruction at that point.

transitions among different fixed-point attractors (shown as
circles), each of which corresponds to a posture. By receiving an
instruction, the internal state is activated in the PC3 direction
and reaches the unstable point indicated by a + mark. This
activation is gained as a result of the integration of the visual
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information and processing logic words, as mentioned above,
although it is difficult to visualize them simultaneously in this
figure. By converging to one of the fixed-points again after the
activation, the corresponding goal-oriented action is generated.
The robot then waits for a subsequent instruction at that point.
This is the case even when the correct action is to maintain the
current posture. While the apparent motion of joint angles is
remaining stationary, it was internally represented as converging
to the original fixed-point.

In summary, the RNN learned to encode the instructions in
a form integrated with the visual inputs and the current robot
posture and to generate an appropriate robot action through the
experience of sequential interaction data. It was also revealed that
logical words, “true,” “false,” “and,” “or” are processed along with
the other referential words and encoded in a way that reflects the
functions in the current task.

3.6. Generalization Ability
In the previous subsection, we showed the internal
representations of relations between instructions and actions
acquired through the experience of an imposed task. Empirically,
when such kinds of systematic representation can be organized,
the model achieves a certain level of generalization ability (Sugita
and Tani, 2005; Ogata et al., 2007; Yamada et al., 2016). Thus, we
conducted learning experiments again by removing 50 or 25%
of the possible situations from the training dataset. We chose
removed patterns regularly so that each word, robot posture, and
flag arrangement would appear uniformly, as shown in Table 1.
Here, we trained only three models with 100, 150, and 300 LSTM
units. The results are shown in Figure 10.

We first explain the performance of the models trained with
only 50% of possible situations. For types (2)–(4), the models
behaved appropriately for many of the possible patterns, even

TABLE 1 | To evaluate the model’s generalization ability for the flag task, we conducted learning experiments again by removing (a) 50% or (b) 25% of the possible

situations from training dataset.

Posture Colors Instructions

LUT LUF LDT LDF RUT RUF RDT RDF AUT AUF ADT ADF OUT OUF ODT ODF

DOWN-DOWN R-G ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦

G-R ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ◦ ⊚

G-B ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦

B-G ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚

B-R ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚

R-B ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚

DOWN-UP R-G ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚

G-R ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

G-B ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦

B-G ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ◦ ⊚

B-R ⊚ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦

R-B ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

UP-DOWN R-G ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚

G-R ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚

G-B ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦

B-G ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

B-R ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ⊚ ◦

R-B ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚

UP-UP R-G ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ◦

G-R ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚

G-B ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

B-G ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦

B-R ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚

R-B ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚ ◦ ⊚ ⊚

(a) In the former case, only the situations indicated by ⊚ marks were included in training data. (b) In the latter case, situations indicated not only by ⊚ marks but also by ◦ marks were

included in the training data. The situations denoted as an empty cell were included in traning data in neither case. In this table, instruction patterns are abbreviated as follows. L: Left

flag color; R: right flag color; A: AND-concatenated objectives; O: OR-concatenated objectives; U: up; D: down; T: true; F: false. For example, the cell referred to as DOWN-DOWN,

R-G, LUF is indicated by a ⊚ mark. It means that it is possible that the robot grasping R-G flags and waiting in a DOWN-DOWN posture receives an instruction “red up false” during

training in both cases of (a) and (b). As another example, the cell referred to as UP-UP, R-B, OUT is indicated by a ◦ mark. It means that it is possible that the robot grasping R-B flags

and waiting in an UP-UP posture receives an instruction “red or blue up true” and “blue or red up true” during training in only the case of (b). In the other example, the cell referred to as

DOWN-UP, B-R, LUT is denoted as empty. It means that the robot grasping B-R flags and waiting in an DOWN-UP posture does not receive an instruction “blue up true” during training

in either case.
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FIGURE 10 | To evaluate the model’s generalization ability for the flag task, we conducted learning experiments again by removing (a) 50% or (b) 25% of the possible

situations from training dataset. We evaluated the performance by counting how many unexperienced situation patterns each model dealt with appropriately. Similarly

to Figure 4, we evaluated the performances with respect to each of the four situation types.

for the unexperienced ones. In contrast, only about one-third
of the possible patterns of type (1) single-objective instructions,
could be dealt with appropriately. In fact, this performance
matches the level from chance, in which the robot uniformly
randomly chooses one of three possible motions for a single-
objective instruction (moving the left arm, moving the right arm,
or keeping the current posture). To clarify why the network failed
to generate appropriate motions, we checked some examples
actually generated by the 100-node model (Figure 11). In one
failure (indicated by the left rounded box), the final posture was
correct but the trajectory was not stable, and so it did not satisfy
the criterion that the error should be within 0.04. In another
failure (right rounded box), a wrong action was chosen. The
latter case indicates that although the model roughly learned
to generate some possible actions after an instruction input, it
failed to learn the relationships between color words and visual
information.

One possible reason for failing to respond to (1) single-
objective instructions is that only this type is actually linked with
visual information. For example, in the case of type (2) AND-
concatenated instructions, the RNN does not have to consider
visual stimuli because, when the instruction includes “and,” both
arms have to be moved, regardless of the flag colors. In fact,
when we tried to give the robot grasping R-B flags a contradictory
instruction “green and blue up true,” it raised both arms. In other
contradictory cases, the results were similar. Also for types (3)
and (4), when the instruction includes “or,” either arm should
be moved regardless of the flag colors. In that sense, type (1)
single-objective instructions are more difficult than other types.
It is possible that experiencing only half of the possible patterns
is not enough to completely generalize the task space. Then, we
performed the learning with the dataset in which only 25% of
the situations were removed. In this case, the models responded
appropriately to more than 80% of type (1) unexperienced
situations in a generalized way.

In the next section, we describe another learning experiment
based on the “bell task.” The bell task is different from the
flag task in two ways. First, the action sequences are more
complicated because we collect motion data by using a real
robot. Second, all the instructions including a logic word require

referring to the visual information. We investigate whether a
similar kind of representations of logic words that reflect their
function can be organized in more realistic setting.

4. EXPERIMENT 2: BELL TASK

4.1. Task Overview
As a more realistic task, we conducted a learning experiment
based on the bell task. In contrast with the first task, we collect
motion data by using a real robot. First, a human places three
bells colored red, green, and blue at random: one on the left,
another to the center, and the other on the right front of the
robot. Then, the human gives the robot a linguistic instruction
consisting of a combination of a verb (“hit,” “point”), an objective
(“red,” “green,” “blue”), and an adverb (“slowly,” “quickly”).When
the left or right bell is indicated, the robot must hit (point at)
the bell with the closer hand. However, when the center bell is
indicated, the robot can hit (point at) the bell with either hand.

Similarly to the flag task, two objective (color) words can be
concatenated by “and”. In such cases, the robot has to hit (point
at) the two indicated bells simultaneously. If two color words are
concatenated by “or,” hitting (pointing at) either bell indicated is
correct. In another case, the logic word “not” can be prefixed to
a color word (referred to as NOT-prefixed). In this case, hitting
(pointing at) the two bells that are the complementary set of
the indicated color is the correct response. For example, when
the instruction is “hit not red quickly,” the correct action is to
simultaneously hit both the green and blue bells quickly.

The number of possible situations are 432: a combination of
72 possible instructions and 6 bell arrangements. In contrast to
the flag task, in this task, the initial posture and end posture are
the same, therefore the motion does not depend on the robot’s
initial posture. However, the actual action sequences are more
complicated than the flag task, as shown in Figure 12.

4.2. Data Representation
We represent the execution of the bell task as a sequence of 26
dimensional vectors. The state St on time step t is represented as
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FIGURE 11 | In unexperienced situations of the flag task, some different patterns of failures could be seen (indicated by beige-colored rounded boxes). The first case,

indicated by the left rounded box, was that the final posture was correct but the trajectory was not stable, thus it could not satisfy the criterion that the error should be

within 0.04. The second pattern was that a wrong action was chosen. In the case indicated by the right rounded box, the right arm had to be raised. However, it was

actually kept in the DOWN posture.

FIGURE 12 | Overview of the bell task. A human places three bells colored red, green, and blue in random order. The human gives the robot an instruction consisting

of a combination of a verb (“hit,” “point”), an objective (“red,” “green,” “blue”), and an adverb (“slowly,” “quickly”). When the left or right bell is indicated, the robot must

hit (point at) the bell with the closer hand. In the case of the center bell, the robot may hit (point at) it with either arm. Two color words can be concatenated by “and”.

In this case, the robot must act to both bells simultaneously (not presented in this figure). Two color words also can be concatenated by “or,” in which case the robot

may hit (point at) either bell. In another case, the logic word “not” can be prefixed to a color word. In this case, simultaneously hitting (pointing at) the two bells that are

the complementary set of the indicated color is the correct response.
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follows:

jt = [j
(t)
l0
, j
(t)
l1
, j
(t)
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, j
(t)
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, j
(t)
l4
, j
(t)
r0 , j

(t)
r1 , j

(t)
r2 , j

(t)
r3 , j

(t)
r4 ], (8)

vt = [v
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l0
, v

(t)
l1
, v

(t)
c0 , v

(t)
c1 , v

(t)
r0 , v

(t)
r1 ], (9)

wt = [w
(t)
0 ,w

(t)
1 ,w

(t)
2 ,w

(t)
3 ,w

(t)
4 ,w

(t)
5 ,w

(t)
6 ,w

(t)
7 ,w

(t)
8 ,w

(t)
9 ], (10)

St = [jt; vt;wt]. (11)

To represent the robot joints, 10 elements that correspond to
shoulder pitch, shoulder roll, elbow roll, elbow yaw, wrist yaw
on each arm are assigned to the vector jt . Action sequences take
approximately 16 steps in the case of QUICKLY actions, and
approximately 25 steps in the case of SLOWLY actions. Action
sequences are recorded by actually controlling the robot joints
along predesigned trajectories. Visual information is encoded as
a six-dimensional vector (vt). Three pairs of elements encode the
bell colors. For example, vl0 and vl1 are used to represent the left
bell color. In this task, it is assumed that the hues R, G, and B
correspond to 0, 120, and 240◦ on the hue circle, respectively.

The component v
(t)
l0

is the sine of the angle of the left bell color

on the hue circle, v
(t)
l1

is its cosine. The pairs v
(t)
c0 , v

(t)
c1 and v

(t)
r0 , v

(t)
r1

encode the center and right bell colors, respectively, in the same
way. This encoding method was used by Sugita and Tani (2005)
and Yamada et al. (2016). Ten elements are assigned for language.
Each element ofwt corresponds to one word, out of “hit,” “point,”
“red,” “green,” “blue,” “slowly,” “quickly,” “and,” “or,” and “not,”
and an instruction sentence is represented as a sequence of 1-hot
vectors. Here, the instruction sentences and corresponding action
sequences are concatenated on a computer, and sequences that
represent interactions are similar to those for the flag task, with
multiple repetitions of instructions and corresponding actions
(and waiting phases).

4.3. Learning Setting and Evaluation
Method
We made 512 sequential datasets for training, each of which
includes eight episodes. All the possible situations were included
at least once. We built models with 100, 300, 500, and 700
LSTMunits, and trained them 10 times from randomly initialized
learnable parameters. Adam is used as an optimizer. The number

of learning iterations is 10,000, and the learning rate is set to
0.001.

After learning, we made another dataset for the evaluation
which includes all possible situations 10 times. When the root
mean squared errors between the generated angles and the
correct ones per time step per joint during the action generations
are less than 0.04, we judge that the RNN succeeds in generating
an appropriate action. We regard the situation patterns in which
the RNN succeeds in generating an appropriate action more than
seven times out of 10 as “appropriately learned,” just as in the flag
task.

4.4. Task Performance after Training
We classify all the possible situations into four types: situations
with (1) an instruction that includes only one objective
word (72 situations); (2) an instruction is AND-concatenated
(144 situations); (3) an instruction is OR-concatenated (144
situations); and (4) an instruction is NOT-prefixed (72
situations). We evaluate the performance by counting how many
situation patterns each model learns appropriately with respect
to each of four types. Figure 13 shows the results. The task
performance was improved by increasing the number of LSTM
nodes. However, there is no significant difference between 500
and 700 node models for all situation types.

Next, we investigated which action was chosen by the model
for instructions that had multiple correct actions. Here, we
counted the result of the model with 500 LSTM units. The
situations that havemultiple correct actions are divided into three
types. (a) The sentence instructs the robot to act on the center
bell. In this case, acting with either arm is correct; therefore, two
correct actions exist. (b) The sentence instructs the robot to act
on the “left or right” bell. In this case, there are also two solutions.
(c) The sentence instructs the robot to act on the “left or center”
bell, or the “right or center” bell. In this case, there are three
answers, (i) acting on the center bell with the left arm, (ii) acting
on the center bell with the right arm, and (iii) acting on the left
(right) bell with the left (right) arm. The results for these three
types of situation are shown in Table 2. As shown in Table 2, the
model could choose each of multiple solutions evenly. In fact,
types (a), (b), and (c) have 24, 48, and 96 possible variations,
respectively, and the test was conducted 10 times for each of

FIGURE 13 | Experiment 2 (bell task). Action generation performance. We evaluated performance by counting how many situation patterns each model learned

appropriately with respect to each of the four situation types: (1) the instruction includes one objective; (2) the instruction is AND-concatenated; (3) the instruction is

OR-concatenated; and (4) the instruction is NOT-prefixed. The written values are averages of 10 trials in which learning began with different seeds. Error bars

represent standard deviations.
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TABLE 2 | Ratios of chosen solutions for ambiguous cases (two or three

acceptable answers) of bell task.

Situation Choice 1 (%) Choice 2 (%) Choice 3 Failure (%)

(a) 49.2 42.9 – 7.9

(b) 50.0 44.4 – 5.6

(c) 29.1 29.4 36.6 5.0

The situations that have multiple correct actions are divided into three types. (a) The

sentence instructs the robot to act on the center bell. In this case, acting with either arm is

correct; therefore, two correct actions exist. (b) The sentence instructs the robot to act on

the “left or right” bell. In this case, there are also two solutions. (c) The sentence instructs

the robot to act on the “left or center” bell, or the “right or center” bell. In this case, there

are three correct answers: (i) acting on the center bell with the left arm, (ii) acting on the

center bell with the right arm, and (iii) acting on the left (resp., right) bell with the left (resp.,

right) arm.

them. In most of these ambiguous situations, the RNN chose
each possible solution at least once. Just as in the flag task, the
RNN could learn to behave appropriately even in such ambiguous
situations.

4.5. Analyses of Internal Representations
4.5.1. Representations of “Or”
As in the flag task, we investigated the internal representations
organized after learning by using PCA. First, we visualized
the states of the memory cells after giving instructions in the
form of “hit (objective part) slowly” that include one objective
word or two OR-concatenated objective words (the left panel
of Figure 14). This figure shows that the activations after the
OR-concatenated instructions are located between the activations
after the one objective word instructions. For example, “hit red
or green slowly” and “hit green or red slowly” are embedded
between the encodings of “hit red slowly” and “hit green slowly.”
This suggests the fact that “or” is represented by unstable points
in the network dynamics, as in the flag task. In fact, the right panel
of Figure 14 shows an arch shaped activation space like the one in
the flag task, although the shape is less clean. Note that although
in the flag task, the meaning of “or” is always “left or right”
regardless of the flag colors, in the current task the two candidate
bells depend on the input color words and visual information.
Even in this kind of situation, the functional meaning of “or”
can be appropriately acquired in a way that is integrated with the
objective color words.

4.5.2. Representations of “And” and “Not”
Figure 15 shows the memory cell states after giving instructions
in the form of “hit (objective part) slowly,” in which the
objective part is AND-concatenated or NOT-prefixed. The bell
arrangement was fixed in the order of R,G,B from left to right. In
this task, “not” indicates the complementary set. Therefore, for
example, “not green” and “red and blue” have the same meaning.
Although the objective parts of these instructions are completely
orthogonal to each other, they are located close each other in
the space spanned by PC4 and PC5 and, as a result, instructions
with the samemeaning form clusters: that is, R-AND-G, G-AND-
B, and B-AND-R. These instructions including logic words also
require the RNN to consider visual information to determine
the meaning of the sentence. Which two bells should be hit

(pointed at) depends on both the input color words and visual
information. The RNN learned to link these sentences flexibly
in the sensorimotor information just from the experience of
sequential data for the imposed task.

In summary, even in the bell task that requires both
referring to visual information and processing of logic words
simultaneously, the functional meaning of logic words could be
appropriately organized in a way that was integrated with the
referential words.

5. DISCUSSION

The current study conducted learning experiments involving
translation from linguistic instructions, including both
referential and logic words, into robot actions in order to
investigate what kind of compositional representations emerged
from the interactive experiences. In the case of referential
words, objective words were merged with visual input, verbs
were integrated with the robot’s own posture, and as a result,
appropriate actions were generated. Simultaneously, the model
could also deal with the logic words “true,” “false,” “not,” “and”
and “or”. By embedding these words as internal representations
that reflect their functional properties, appropriate actions were
achieved. In this following, we discuss three types of logic word
separately.

5.1. True, False, Not
“True” and “false” in the flag task were understood as the
goal-oriented action UP/DOWN by being combined with “up”
and “down” in a X-OR manner. “Not” in the bell hitting task
worked as an operation to choose a complementary set. For
example, “not red” corresponded to “green and blue.” The
RNN learned to embed these completely orthogonal phrases
as having the same meaning in the lower-ranking principal
component space by its non-linear transformation. In the field
of natural language understanding by deep learning, a similar
kind of analysis has been performed. Li et al. (2016) showed
that a model optimized for sentiment analysis changes its
internal encoding drastically in response to the negation of an
expression. Hence, for example, “not good” is encoded closer to
“bad” than to “good”. However, the visualization in the current
study showed that even though the information that input
sentences were completely different is still retained in the main
component space, the combined representation corresponding to
the behavioral meaning is reflected in the lower ranking principal
components. In other words, not only information encoding
compositionally integrated meaning but also information of
compositional elements are retained in the model’s memory.

This aspect seems to be important. For example, imagine that
both of the sentences “hit red quickly” in the case of an RGB
bell arrangement and “hit blue quickly” in the case of a BGR
arrangement were encoded just as the action HIT-L-QUICKLY
with the loss of the information about element words. In this case,
it would be impossible for the model to respond appropriately
to changes, such as a sudden replacement of bells during the
action generation, because the color word information has been
lost. By retaining the information about compositional elements,
adaptive behavior to respond to such fluctuations would be
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FIGURE 14 | Left: The states of the memory cells after giving instructions in the form of “hit (objective part) slowly” that include one objective word or two

OR-concatenated objective words. The activations after the OR-concatenated instructions are located between the activations for the one objective word instructions.

For example, “hit red or green slowly” and “hit green or red slowly” are embedded between the encodings of “hit red slowly” and “hit green slowly.” Right: To a robot

waiting with bells arranged in the order of RGB from left to right after 2,048 different contexts, we gave the instruction “hit red or blue slowly.” The memory cell states

after the instruction were arranged on an arch shaped space which was less defined than that for the flag task. When the activation was on the left side of the arch,

the robot generated HIT-L-SLOWLY action. For activation on the right side, the robot generated HIT-R-SLOWLY action. When the activation was in the topmost area,

an unstable action was generated.

possible, although it is not certain that our current model is
capable of dealing with such situations because they were not
included in training data.

5.2. And
In the flag task, “and” per se worked as a kind of universal
quantifier without referring to objective words. For example,
when a robot grasping R-B flags was given “green and blue up
true,” it lifted up both arms. In other contradictory cases, the
results were similar. In other words, if the instruction includes
“and,” the color words are ignored and only the verb (and truth
value) is considered. In that sense, “and” is represented as a
concept one step higher. This interpretation of “and” by the
neural network could not be expected before the experiment
and is actually out of our common usage of “and”; but it can
be seen as a reasonable and rational solution in the range of
the current task. In contrast, in the bell task, AND-concatenated
instructions required referring to visual information, and the
model appropriately integrated them with the visual information
and then generated correct both-hand actions.

In this way, “and” was represented in a different suitable
manner with respect to each task. However, in general, there
are more situations in which “and” is used in different ways to
combine words, phrases, or sentences. The investigation of how
such higher order or general types of “and” can be handled or
represented is left for future work.

5.3. Or
In the flag task it was shown that without noise applied to the
joint angles, the model learned less successfully than it did with
noise. This difference did not appear in preliminary experiments
that did not include OR-concatenated instructions. We think
that due to the inclusion of OR-concatenated instructions that
introduce ambiguity by giving as correct either of the answers

FIGURE 15 | The memory cell states after giving instructions in the form of “hit

(objective part) slowly,” in which objective part is AND-concatenated or

NOT-prefixed. The bell arrangement was fixed in the order of R, G, B from left

to right. In this task, “not” indicates the complementary set. Therefore, for

example, “not green” and “red and blue” have the same meaning. Although

the objective parts of these instructions are completely orthogonal, they are

located close each other in the space spanned by PC4 and PC5 and, as a

result, instructions with the same meaning form clusters: R-AND-G, G-AND-B,

and B-AND-R.

randomly each time, the optimization by minimization of the
simple squared error became unstable. This is a very similar
to a popular thought experiment called Buridan’s ass. In the
story, an ass is given grass feed on both its left and right
sides, located at exactly the same distance away. Faced with this
dilemma it could not choose a side and finally starved to death.
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Our analysis shows the possibility that the network solved this
problem, which the ass faced too honestly, by using the tiny
amount of noise as a clue to determine which arm moves and
by organizing unstable dynamics which converges to either of
two fixed-point attractors. However, a more detailed analysis
of the dynamical characteristics of the model is required. For
example, Tani and Fukumura (1995) showed that a deterministic
RNN model can reproduce a simple symbol sequence that is
generated in accordance with probabilistic rules by producing
a self-organizing chaotic dynamics. Namikawa et al. (2011) also
demonstrated that a temporally hierarchical RNN could learn to
generate pseudo-stochastic transitions between multiple motor
primitives on a robot. Our experiment showed that a similar
kind of function to generate actions as if they were generated
probabilistically is achieved from the learning of an interactive
instruction-action task that includes longer time dependency and
more complexity. Our results also showed that the ability to deal
with OR-concatenated instructions was improved by increasing
LSTM node numbers. We think that by increasing the number
of nodes and improving the representation ability the network
could learn to forcibly embed the probabilistic experiences in
a chaotic dynamics. We should analyze how the function is
dynamically represented in the future.

5.4. Summary and Future Work
This study conducted learning experiments that translates
linguistic sentences, including both referential and logic words,
into robot actions to investigate what kind of compositional
structures emerged from the experiences of interaction.
Referential words were linked in the visual information and the
robot’s current state and then appropriate actions were generated.
The logical words were also simultaneously represented by the
model in accordance with their functions as logical operators.
To be more precise, the words “true,” “false” and “not” work as
non-linear transformations to embed orthogonal phrases into
the same area in a lower-rank principal component space. “And”
in the flag task eliminated referring to the visual information in a
rational way and worked as if it per se was a universal quantifier.
“Or,” which requires action generation that looks apparently
random, was represented as an unstable space of the network’s
dynamical system.

Future work includes the following. First, we should confirm
whether both referential and logic words are simultaneously
learned when the complexity of the task is more extended.
Although the scaling up of vocabulary size is one way to extend,
the scaling up of syntactic variety is also required because

the sentence patterns in this study were fixed in each task.
In extended tasks, it would be possible that the logic words
are used not only between words but also between phrases or
clauses. Moreover, although the visual information in the current
experiments is highly preprocessed, in more realistic tasks, the
environment would include various meaningful information,
not only color. Therefore, the relationships between language
and the environment should be learned from low-level data
(e.g., raw images) in a less arbitrary way. To deal with such
tasks, we could extend our model by replacing the preprocessing
module with another neural network model for vision, such as a
convolutional neural network (CNN). In fact, some studies have
actually combined a CNNwith an RNN to learn the relationships
between linguistic instructions and corresponding behavior in an
end-to-end manner (Chaplot et al., 2017; Hermann et al., 2017).

Second, a more detailed analysis of the internal
representations is required. This includes the analysis of
more dynamical characteristics and the visualization of the
activation patterns of each neuron. In particular, the latter
seems to be valuable, because, although in the current study we
visualized activation only in the principal component space,
models that have memory cells, such as gated recurrent units
or LSTM, are expected to encode different information and
functions in specific nodes.

Finally, we are planning to build a bi-directional neural model
to translate between linguistic and behavioral sequences. In
fact, human language systems are bi-directionally translatable.
To build a bi-directional model would be valuable both for
understanding symbol grounding structure more deeply and for
developing more flexible communicative agents.
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