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Abstract 

Background:  An imbalance of intracellular iron metabolism can lead to the occurrence of ferroptosis. Ferroptosis 
can be a factor in the remodeling of the immune microenvironment and can affect the efficacy of cancer immuno‑
therapy. How to combine ferroptosis-promoting modalities with immunotherapy to suppress triple-negative breast 
cancer (TNBC) has become an issue of great interest in cancer therapy. However, potential biomarkers related to iron 
metabolism and immune regulation in TNBC remain poorly understand.

Methods:  We constructed an optimal prognostic TNBC-IMRGs (iron metabolism and immune-related genes) signa‑
ture using least absolute shrinkage and selection operator (LASSO) cox regression. Survival analysis and ROC curves 
were analyzed to identify the predictive value in a training cohort and external validation cohorts. The correlations of 
gene signature with ferroptosis regulators and immune infiltration are also discussed. Finally, we combined the gene 
signature with the clinical model to construct a combined model, which was further evaluated using a calibration 
curve and decision curve analysis (DCA).

Results:  Compared with the high-risk group, TNBC patients with low-risk scores had a remarkably better prognosis in 
both the training set and external validation sets. Both the IMRGs signature and combined model had a high predic‑
tive capacity, 1/3/5- year AUC: 0.866, 0.869, 0.754, and 1/3/5-yaer AUC: 0.942, 0.934, 0.846, respectively. The calibration 
curve and DCA also indicate a good predictive performance of the combined model. Gene set enrichment analysis 
(GSEA) suggests that the high-risk group is mainly enriched in metabolic processes, while the low-risk group is mostly 
clustered in immune related pathways. Multiple algorithms and single sample GSEA further show that the low-risk 
score is associated with a high tumor immune infiltration level. Differences in expression of ferroptosis regulators are 
also observed among different risk groups.

Conclusions:  The IMRGs signature based on a combination of iron metabolism and immune factors may contribute 
to evaluating prognosis, understanding molecular characteristics and selecting treatment options in TNBC.
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Background
Breast cancer, an extremely heterogeneous disease, is 
the most common cancer for women worldwide [1]. 
Triple-negative breast cancer (TNBC) is the most aggres-
sive subtype of breast cancer with a high risk of distant 
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relapse in the first 3 to 5  years following diagnosis [2]. 
More importantly, since there is no powerful targeted 
therapy currently available, the overall survival of TNBC 
patients is worse than patients with other subtypes of 
breast cancer [3, 4]. Therefore, identification of new 
sensitive biomarkers to determine prognosis or develop 
novel therapies for TNBC patients remains an urgent 
clinical need.

Iron is an essential trace element for the human body, 
and either an excess or shortage can influence many 
physiological and pathological processes including 
energy metabolism, mitochondrial function and DNA 
synthesis and repair [5]. It is reported that iron metabo-
lism has dual effects in tumor growth and development. 
On the one hand, cancer cells are more dependent on 
iron intake for proliferation and more susceptible to 
iron deficiency than non-cancer cells, which is termed 
“iron addition” [6]. On the other hand, highly increased 
iron concentrations lead to cell death driven by excessive 
reactive oxygen species (ROS) and lipid peroxidation, 
known as ferroptosis [7]. Ferroptosis is a novel form of 
programmed cell death that is different from apopto-
sis, pyroptosis, necroptosis, and autophagy [8]. TNBC 
cells are more prone to ferroptosis due to their complex 
metabolic characteristics and cellular signaling pathways, 
which make it a promising choice to overcome the refrac-
tory disease [9].

An increasing amount of evidence indicates that immu-
notherapy can be an effective treatment strategy for 
TNBC patients [10]. Immune cells like macrophages and 
lymphocytes can play major roles in iron homeostasis 
through iron recycling of senescent erythrocytes [11] and 
non-transferrin bound iron uptake [12], respectively. In 
addition, a report has implicated a new mechanism by 
which CD8 + T cells repress tumor development through 
inducing ferroptosis [13]. Based on the crosstalk between 
iron metabolism and the tumor microenvironment 
(TME), it would be of significance to identify any poten-
tial applications of iron metabolism and immune related 
genes in targeted therapy and immunotherapy for TNBC 
patients.

Compared with a single biomarker, multigene signa-
tures have been proven to produce a higher accuracy 
prognosis [14]. Previous studies have primarily focused 
on the prognostic value of the ferroptosis-related signa-
ture [15] and immune-related signature [16] in breast 
cancer. However, the identification of iron metabolism 
and immune-related signature in TNBC remains unclear.

The main purpose of this study was to identify the iron 
metabolism and immune-related genes (IMRGs) associ-
ated with the prognosis of TNBC through bioinformatics 
analysis, and then to build a prognosis model of TNBC 
patients according to LASSO regression analysis. The 

molecular characteristics of this model were identified 
by iron metabolism and tumor infiltrating lymphocytes. 
Finally, we combined the gene signature with the clinical 
model to construct a combined model, which had excel-
lent predictive performance in terms of prognosis.

Materials and methods
Patient data sets
The gene expression profiles and clinical information 
of 119 normal samples and 123 TNBC samples were 
extracted from The Cancer Genome Atlas (TCGA) data-
base (https://​portal.​gdc.​cancer.​gov/). The validation 
cohorts GSE2603 and GSE21653 (the available TNBC 
patient datasets with integral microarray data and sur-
vival data) were downloaded from the NCBI-GEOdata-
base  (https://​www.​ncbi.​nlm.​nih.​gov/​gds). There were no 
ethical conflicts because all data came from the public 
database.

Identification of IMRGs
To meet the high demand of iron, cancer cells have 
remodeled iron metabolism pathways, including 
acquisition, storage, and efflux, affecting iron homeo-
stasis [17]. Therefore, iron metabolism related genes 
were extracted from the gene sets “M15748: iron ion 
homeostasis”, “M11074: cellular iron ion homeosta-
sis”, “M24450: cellular response to iron ion”, “M37743: 
abnormality of iron homeostasis”, “M18915: iron ion 
binding” and “M962: iron uptake and transport” from 
the Molecular Signatures Database (MSigDB). Ferrop-
tosis related genes were obtained from the FerrDb data-
base, “ferroptosis pathway (map04216)” from the KEGG 
PATHWAY Database [18] and “M39768: ferroptosis” 
from MSigDB. After integration of intersecting genes 
and elimination of unrelated genes, 499 iron metabo-
lism and ferroptosis related genes were included in the 
follow-up studies. We also found 2483 immune related 
genes from the ImmPort database.

Differential expressed analysis
Differential expressed genes (DEGs) of TNBC were 
identified between 119 normal samples and 123 TNBC 
samples with the cut-off values: |log2 fold change|> 1 
and P < 0.05. Differently expressed genes were obtained 
between high-risk and low-risk groups with |log2 fold 
change|> 1 and P < 0.05 as the threshold. The results were 
calculated using the ‘limma’ package.

Gene signature construction
The least absolute shrinkage and selection opera-
tor (LASSO) was used to construct the TNBC-
IMRGs signature by TCGA transcriptome data. 
Risk score = -0.05076 × ExpEGR3-0.22386 × Exp-
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C C N D 2 - 0 . 0 6 7 5 4  ×  E xp S O C S 3 - 0 . 0 6 6 2 2  ×  E xp -
JunD-0.52219 × ExpSLC27A6.

Functional enrichment analysis
KEGG/GO and GSEA were analyzed by the ‘clusterPro-
filer’ package [19]. The annotated gene sets of GSEA were 
selected, c2.cp.v7.2.symbols.gmt and c5.all.v7.2.symbols.
gmt, from the MSigDB Collections (https://​www.​gsea-​
msigdb.​org/​gsea/​msigdb/​index.​jsp), the number of 
permutations was set to 1000 times. The significance 
threshold was placed at FDR < 0.25, and P—value < 0.05.

Immune infiltration analysis
The ESTIMATE algorithm was determined by the ‘esti-
mate’ package (version 1.0.13) [20]. The association 
between risk score and immune cell infiltration levels 
were analyzed via TIMER [21], QUANTISEQ [22], MCP-
COUNTER [23], XCELL [24], EPIC [25], and CIBER-
SPRT [26] algorithms from TIMER2.0 (https://​cistr​ome.​
shiny​apps.​io/​timer/). Single sample GSEA (ssGSEA) was 
performed with the ‘GSVA’ package (version 1.34.0) [27].

Statistical analysis
All R packages were executed using R Studio software 
(version 4.0.5). The ‘ggplot2’ R package (version 3.3.3) 
was used to visualize the volcano plot and heatmap. A 
Pearson correlation was used to describe the correla-
tion analysis. Univariate and multivariate Cox regres-
sion analysis were used to identify the prognostic factors. 
Kaplan–Meier survival curves were compared using the 
log-rank test. The ROC analysis was performed with the 
‘pROC’ package. Significance was statistically considered 
at ***P < 0.001, **P < 0.01, *P < 0.05, and ns, P ≥ 0.05.

Results
Identification and validation of TNBC‑IMRGs 
signature‑based prognostic model
This study was conducted according to the flow chart 
presented in Fig. 1. The detailed clinicopathological fea-
tures of TNBC patients from different cohorts are sum-
marized in Table S1. A total of 2087 differently expressed 
genes (TNBC-DEGs) were identified between 119 nor-
mal samples and 123 TNBC samples from the TCGA 
dataset (Fig.  2a). We crossed over 499 iron metabolism 
and ferroptosis-related genes with 2483 immune-related 
genes to yielded 56 IMRGs. A Pearson correlation analy-
sis was performed between TNBC-DEGs and IMRGs 
(Correlation Coefficient > 0.4 or < 0.4 and P < 0.01) and 
subsequently we acquired 1244 TNBC-IMRGs that had 
potential functions in both iron metabolism and tumor 
immunity. This dataset was integrated with the prog-
nostic gene dataset from TCGA-BRCA (P.cox < 0.01) 
to obtain 30 candidate prognostic TNBC-IMRGs. 

The heatmap in Fig.  2b shows the expression profiles 
of these genes in TNBC and normal samples. Some 
TNBC-IMRGs show interrelationships in Fig.  2c. To 
further identify the best candidate genes, we performed 
LASSO cox regression to establish a TNBC-IMRGs 
signature-based prognostic model. When the model 
reached the minimum of lambda (λ), an optimal prog-
nostic model with five non-zero coefficient genes (EGR3, 
CCND2, SOCS3, JunD, and SLC27A6) was constructed 
(Fig.  3a, 3b). A median risk score was calculated as fol-
lows: risk score = -0.05076 × ExpEGR3-0.22386 × Exp-
C C N D 2 - 0 . 0 6 7 5 4  ×  E xp S O C S 3 - 0 . 0 6 6 2 2  ×  E xp -
JunD-0.52219 × ExpSLC27A6, and then we categorized 
patients into high-risk and low-risk groups. The distri-
butions of the risk scores, survival time, survival status, 
and the expression patterns of five TNBC-IMRGs are 
displayed in Fig. 3c. As expected, all of these five protec-
tive genes were highly expressed in the low-risk group. 
Kaplan–Meier survival analysis showed that patients with 
low-risk scores exhibited a significantly better outcome 
than those with high-risk scores in the TCGA train-
ing set (P = 0.001, Fig.  3d). We used GSE2603 (Fig.  3f ) 
and GSE21653 (Fig. 3i) as external validation sets to test 
the robustness of the model based on the TCGA-TNBC 
cohort. We consistently found that high-risk groups 
which were stratified using the same calculation formula 
as the training set were markedly related to worse prog-
nosis in the validation sets (Fig.  3g, 3j). Next, through 
ROC curves, we evaluated the predictive accuracy of the 
prognostic model. The AUC of the TCGA cohort (Fig. 3e) 
at 1-, 3- and 5-years were 0.866, 0.869, and 0.754. The 
AUC at 1-, 3-, and 5-years of the GSE2603 cohort were 
0.444, 0.652, and 0.772 (Fig. 3h) and for GSE21653 cohort 
were 0.643, 0.610, and 0.649 (Fig. 3k), respectively. These 
results indicate a very good prognostic value of this 
TNBC-IMRGs signature.

Stratified prognostic analysis of the TNBC‑IMRGs signature
Stratified prognostic analysis suggests that the high-risk 
score is significantly associated with a worse OS in TNBC 
patients of an older age (> 55) (Figs.  4a-b) or smaller 
tumor size (T1-2) (Figs. 4e-f ). Additionally, no matter the 
lymph node score (Figs. 4c-d) and stage status (Figs. 4g-
h), patients with a low-risk score shown a better outcome 
than the high-risk group. This TNBC-IMRGs prognostic 
signature may act as an effective biomarker in assessing 
the prognosis of TNBC patients.

Functional enrichment analysis and immune infiltration 
analysis
To explore the potential molecular characteristics 
in different risk groups, differently expressed genes 
between the high-risk group and low-risk group were 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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screened out. The volcano map is depicted to visual-
ize 44 DEGs (Fig. 5a). GO enrichment analysis revealed 
that the DEGs were significantly clustered in extracel-
lular matrix organization, response to metal ions, posi-
tive regulation lipid metabolic process, establishment 
of T cell polarity, dendritic cell chemotaxis, and others 
(Fig.  5b). The KEGG pathway analysis demonstrated 
that most DEGs were clustered in physiological sign-
aling pathways such as the PPAR signaling pathway, 
estrogen signaling pathway, NF-kappa B signaling path-
way, etc. (Fig.  5c). Additionally, using GSEA analysis 

we found that multiple metabolism processes includ-
ing cellular response to hypoxia, glucose metabolism, 
nucleotides and fatty acid metabolism, and oxidative 
phosphorylation were highly clustered in the high-risk 
group (Fig. 5d). While in the low-risk group, immune-
related responses were enriched; for example, T cell, B 
cell, and lymphocyte activation, as well as the response 
to interferon (Fig. 5e, 5f ).

Recent studies have already investigated a series of 
key regulatory genes that affect ferroptosis through 
abnormal accumulation of iron, free radicals, and ROS. 

Fig. 1  Study flow chart. Firstly, 2087 TNBC-DEGs and 56 IMRGs were identified. Next, a Pearson correlation analysis was performed between 
these two datasets and then we acquired 1244 TNBC-IMRGs. Subsequently, this dataset was integrated with the BRCA prognostic genes to obtain 
30 candidate prognostic TNBC-IMRGs. Through LASSO analysis, a five-IMRGs signature was constructed. Survival analysis and ROC curve were 
performed to identify the prognostic value. Differences of molecular characteristics were evaluated between high- and low- risk groups. Finally, a 
combined model was constructed by combining the gene signature with the clinical variables
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Our results show that a total of four ferroptosis driv-
ers (e.g., ACSL4 [28]) were upregulated in the low-risk 
group, while five anti-ferroptosis regulators (e.g., GPX4 
[29], and FTH1 [30]) were overexpressed in the high-
risk group (Fig. 5g).

Infiltrating stromal and immune cells, which make up 
the majority of normal cells in tumor tissue, not only 
interfere with tumor signaling but also regulate can-
cer biology. To further determine the relation of bio-
logical function with the TNBC-IMRGs signature in the 
immune response, we made use of various algorithms to 
investigate the immune microenvironment landscape. 
The ESTIMATE algorithm suggests that there might 
be a weak trend toward a negative correlation between 
risk score and immune-related score at the macro-lev-
els (Figs.  6a-c). Therefore, we applied other algorithms, 
including TIMER, QUANTISEQ, MCPCOUNTER, 
EPIC, and CIBERSORT to further explore specific infil-
trating immune cells (Fig.  6d). The results indicate that 
immunoreactive cells (like B cells, CD4 + T cells, and T 
follicular helper cells) were more abundant in the low-
risk group, while immunosuppressive cells (e.g., M2 mac-
rophage) were enriched in the high-risk group. There 
was a moderate negative correlation between CD4 + T 
cells and risk score (r = -0.501, P < 0.001) (Fig.  6e). Sub-
sequently, differences were distinguished between the 
high- and low- risk groups in the quantities of 16 types 

of immune cells through ssGSEA (Fig.  6f ). Similarly, 
the enrichment scores of immunoreactive cells (e.g., B 
cells, DC, iDC, Mast cells, NK cells, TFH, and Tgd) were 
higher in the low-risk group compared with the high-risk 
group (P < 0.05).

Immune checkpoint inhibitors are antitumor immuno-
therapies that are increasing used in clinical practice. Dif-
ferences in immune checkpoint gene expression between 
high- and low-risk groups may confer differential suscep-
tibility to immune checkpoint inhibitors. In our obser-
vations, we found that expression of some checkpoint 
molecules such as VTCN1, CD160, HLA-DOB, and IL6 
in the low-risk group were all higher than that in the 
high-risk group (Fig.  6g). Taken together, these results 
suggest that the TNBC-IMRGs prognostic signature 
may be related to some extent to iron metabolism and 
immune cell infiltration.

Construction and validation of the combined gene 
and clinical model
The forest plots are presented to illustrate the summary 
of the univariate and multivariate Cox regression analyses 
of some clinical features including risk score based on the 
TNBC-IMRGs signature (Fig.  7a). Node stage (P = 0.03) 
and risk score (P < 0.001) were determined to be robust 
independent prognostic predictors in the TCGA cohort. 
To further compare the superiority of gene-based 

Fig. 2  Thirty (30) candidate prognostic TNBC-IMRGs. a Volcano plot of TNBC-DEGs (|log2 fold change|> 1 and P < 0.05). Significantly upregulated 
and downregulated genes are depicted as red and blue dots, respectively. b Heatmap of expression profiles of 30 TNBC-IMRGs between TNBC and 
normal samples. c Correlation heatmap of 30 TNBC-IMRGs in expression levels

Fig. 3  Identification and validation of TNBC-IMRGs signature. a The optimal lambda resulted in five nonzero coefficients. b Partial likelihood 
deviation curve was plotted. c Distribution of the risk score, survival status, and expression profiles of five genes in the TCGA training set. d Kaplan–
Meier survival analysis of the high-risk group and low-risk group. e Time-dependent ROC curves at 1-, 3-, and 5-year of the TNBC-IMRGs signature for 
the training cohort. f, i Distribution of the risk score, survival status, and expression profiles of five genes in GSE2603 and GSE21653 validation set. 
g-h, j-k Kaplan–Meier survival analysis and ROC curves for the TNBC-IMRGs signature in the GSE2603 and GSE21653. Survival status: 1: dead, 0: alive. 
Low: low-risk group, High: high-risk group. Time: days. AUC: area under the curve

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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signature, we constructed a clinical prognostic model 
that included Tumor stage and Node stage. The formula 
of the clinical risk score was as follows: clinical risk sco
re = -1.18194 + 0.33509*Tumor stage + 1.01152*Node 
stage (Fig. 7b). The Fig. 7c depicts the AUC of the clini-
cal model for 1-, 3-, and 5-year survival at 0.805, 0.791, 
and 0.657. It is obvious that the predictive power of 
the clinical model is not as good as the gene signature. 
We also established a combined model integrating the 
genomic risk score and clinical variables. The com-
bined risk score was calculated as follows: combined risk 
score = 4.10626 + 0.32847*Tumor stage + 1.33369*Node 
stage + 2.94864*Risk Score (gene signature). The prog-
nostic nomogram in the TCGA dataset is shown in 
Fig. 7d, and the C-index value for this combined model 
is 0.901. The combined model shows better prognostic 
performance than the gene signature and clinical model. 
There is a marked difference in prognosis between the 
high- and low-risk groups (Fig.  7f. P < 0.001). Likewise, 
the same trend is also observed in the validation sets; 
GSE2603 and GSE21653 (Fig.  8a, 8c). In addition, the 
AUC of the combined model for 1-, 3- and 5-year sur-
vival are 0.942, 0.934 and 0.846 (Fig. 7g). The calibration 
analysis of the 1-, 3- and 5- year outcome prediction is 
illustrated in Fig. 7e. The blue and red lines, not the green 
one, have a closer fit to the dotted gray line, revealing 
that the nomogram may do better predicting short-term 

prognosis than long-term prognosis. Additionally, deci-
sion curve analysis (DCA) indicates that the combined 
model has the best performance in prognosis prediction 
compared with the clinical model and gene signature 
(Fig.  7h). We also used two validation sets to evaluate 
this combined model. From Fig.  8, we can observe that 
the 1-, 3-, and 5-year AUC of the combined model in the 
GSE2603 set and GSE21653 set are higher than for the 
gene signature (0.444–0.779 vs. 0.444–0.772 and 0.657–
0.735 vs. 0.610–0.649), which indicates the better prog-
nostic performance of the combined model.

Discussion
The imbalance of iron metabolism leads to excessive 
intracellular iron storage and the accumulation of lipid 
reactive oxygen species, which in turn induces ferropto-
sis. Intriguingly, some reports reveal that ferroptosis has 
been involved in the remodeling of the immune micro-
environment and it can modify the efficacy of cancer 
immunotherapy. How to combine ferroptosis-promoting 
modalities with immunotherapy to produce a synergetic 
effect of tumor suppression has become a hot research 
topic. Recent evidence suggests that TNBC is particularly 
susceptible to ferroptosis, making it an attractive drug 
target. However, potential biomarkers related to both 
iron metabolism and immune regulation in TNBC have 
not been sufficiently examined.

Fig. 4  Stratified prognostic analysis of the TNBC-IMRGs signature. a-h The survival differences between high- and low- risk groups stratified by 
clinical variables: a, b age (≤ 55 and > 55), c, d node (N0 and N1-3), e, f tumor (T1-2 and T3-4), g, h stage (stage I-II and stage III-IV). Time: days
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Fig. 5  Functional enrichment analysis. a Volcano plot of DEGs between high- and low-risk groups (|log2 fold change|> 1 and P < 0.05). Significantly 
upregulated and downregulated genes are depicted as red and blue dots, respectively. b-c GO and KEGG enrichment analysis. d-f GSEA analysis 
for high- and low-risk groups. NES: normalize enrichment score. g Comparison of the differential expression of ferroptosis regulators in high- and 
low-risk groups
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Fig. 6  Immune infiltration analysis. a-c The correlation between risk score and immune related-scores with ESTIMATE algorithm. d Heatmap of 
infiltrating immune cells based on TIMER, QUANTISEQ, MCPCOUNTER, XCELL, EPIC, and CIBERSORT (* higher in low-risk group, *P < 0.05, **P < 0.01, 
***P < 0.001; # higher in high-risk group, #P < 0.05, ###P < 0.001). e Scatter plot of the correlation between risk score and CD4 + T cell. f Enrichment 
scores of immune cells evaluated by ssGSEA. aDC: activated DC, iDC: immature DC, pDC: plasmacytoid DC, TFH: T follicular helper, Tgd: T gamma 
delta. g Differential expression analysis of immune checkpoint genes between high- and low-risk groups
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Fig. 7  A predictive nomogram of the combined model was established. a Univariate and multivariate Cox regression analysis of the correlation 
between OS and various clinical variables including risk score. b-c Kaplan–Meier survival analysis (b) and ROC curves (c) in the clinical model. d 
The nomogram of the combined model for predicting the OS of patients with TNBC at 1-, 3-, and 5-year survival (Node stage and Tumor stage are 
categorical variables, Risk Score is a numeric variable). e Calibration plots of the nomogram at 1-, 3-, and 5-year survival. f-g Kaplan–Meier survival 
analysis (f) and ROC curves (g) in combined model. h Decision curve analysis of clinical model, gene signature and combined model. Low: low-risk 
group, High: high-risk group. Time: days. AUC: area under the curve
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There are already a variety of multigene signatures 
applied in breast cancer, for example Oncotype Dx® (21-
genes) [31], Mammaprint (70-genes) [32], Breast Cancer 
Index (BCI) [33] and EndoPredict® (EP) [34]. However, 
the multigene prognostic model is poorly designed and 
validated in TNBC. As far as we know, our study is the 
first one to synthetically identify prognostic IMRGs in 
TNBC. We constructed a five-IMRGs signature and a 
combined prognostic model integrating the IMRGs sig-
nature with Tumor stage and Node stage to predict the 
likelihood of adverse events in TNBC patients. Com-
pared with the high-risk group, TNBC patients with low-
risk scores had remarkably better outcomes in both the 
training set and external validation sets. Both the IMRGs 
signature and the combined model had higher AUC val-
ues for 1-, 3- and 5-year survival than the clinical model.

TNBC cells are prone to ferroptosis, which is deter-
mined by intracellular metabolic processes that include 
lipid metabolism, iron metabolism, and amino acid 
metabolism [35, 36]. In our study, we found the high-risk 
group mostly enriched in various metabolic pathways 
(Fig.  5d). Apart from the common crucial regulatory 
genes of ferroptosis presented in Fig.  5g, five IMGRs 
(EGR3, SOCS3, JunD, SLC27A6, and CCND2) which 
were used to construct the gene signature were also 
shown to be partially involved in the process of ferrop-
tosis. SOCS3, a member of the suppressor of cytokine 
signaling (SOCS) family, has been found to negatively 
regulate the upregulation of hepcidin which is a key 
regulator of iron metabolism [37]. More importantly, it 
has been shown to participate in tumor suppression and 
regulate ferroptosis by interacting with p53 [38]. Ferri-
tin is a major cytosolic storage protein for iron that che-
lates excessive free iron, thereby reducing the occurrence 
of iron-mediated oxidative stress. Tsuji, Y reported that 
JunD was able to bind to the ferritin heavy chain and acti-
vate its transcription, which then protected cells from 
ROS in hepatocarcinoma cells [39]. Ni et  al. found that 

cyclin D2(CCND2) downregulation promotes cardio-
myocyte ferroptosis [40]. Whether EGR3 or SLC27A6 is 
involved in iron metabolism and ferroptosis has not been 
reported, our finding may provide clues for an underlying 
mechanism.

Since immune-related genes (EGR3 [41], CCND2 [42], 
SOCS3 [43], and JunD [44]) were also included in our 
IMRGs signature, we hypothesized that patients in dif-
ferent risk groups would have different proportion of 
infiltrating immune cells. Through various algorithms 
(Fig.  6), we found that the IMRGs risk scores tended 
to be negatively linked to immune cell infiltration lev-
els, suggesting that increased IMRGs risk was associ-
ated with fewer infiltrating stromal and immune cells 
and higher tumor cells component [20]. In line with the 
tumor immunoediting hypothesis, some cancers may be 
eliminated by antitumor immune responses, whereas 
others develop due to evasion or partial control of 
immune surveillance [45]. Clearly, the high-risk group 
had a higher immunosuppression signature (e.g., M2 
macrophage) and lower antitumor immune cell popula-
tions (e.g., B cells, NK cells, and T follicular helper cells) 
in the tumor microenvironment (Figs. 6d-f ), which coin-
cided with tumor progression and a worse prognosis 
for the high-risk group. Interestingly, most algorithms 
revealed that the B cell infiltration level was upregulated 
in the low-risk group (Fig.  6d). Lglesia et  al. reported 
that the improved metastasis-free/progression-free sur-
vival was related to the B cell gene signature, mainly 
observed in basal-like and HER2-enriched breast cancer 
subtypes [46], which is in accordance with our results. 
We found that some immune checkpoint molecules 
expressed in immune cells (e.g., VTCN1 and CD160) 
were upregulated in the low-risk group, which may 
be driven by the increased infiltration of immune cells 
such as T cells and NK cells (Fig.  6g). However, due to 
the lower proportion of immunoreactive cells and lower 
expression of immune checkpoint genes, the high-risk 

Fig. 8  Validation of the combined model. a-d Kaplan–Meier survival analysis (a, c) and ROC curves (b, d) of the combined model in the validation 
sets GSE2603 and GSE21653
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group with a poorer prognosis may benefit less from 
immune checkpoint inhibitors than the low-risk group. 
A report has indicated that IFN-γ induces cell ferropto-
sis by activating the JAK1-2/STAT1/SLC7A11 signaling 
pathway. Meanwhile, treatment with IFN-γ reduces the 
level of GPX4, making cells more sensitive to ferropto-
sis [47]. In our data, we also found that IFN-γ related 
responses were enriched in the low-risk group (Fig. 5f ). 
Maybe combination therapies with IFN-γ will be a basis 
for treatment of TNBC patients.

However, our study is not without limitations. Firstly, 
our study was mainly based on retrospective data of 
TCGA and GEO datasets, and prospective studies of 
the gene signature and combined model in multi-center 
cohorts will be necessary. Secondly, further biological 
experiments in  vitro and vivo should be performed to 
reveal the potential mechanisms of IMRGs in TNBC.

Conclusions
In conclusion, our study established a predictive signa-
ture associated with iron metabolism and tumor immu-
nity that can accurately distinguish TNBC patients with 
different clinical outcomes. Moreover, this study provides 
evidence to support the combination of ferroptosis-
induced cell death and antitumor immune in future clini-
cal therapy in TNBC patients.
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