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Abstract 

Background:  The accurate characterization of protein functions is critical to under-
standing life at the molecular level and has a huge impact on biomedicine and phar-
maceuticals. Computationally predicting protein function has been studied in the past 
decades. Plagued by noise and errors in protein–protein interaction (PPI) networks, 
researchers have undertaken to focus on the fusion of multi-omics data in recent years. 
A data model that appropriately integrates network topologies with biological data 
and preserves their intrinsic characteristics is still a bottleneck and an aspirational goal 
for protein function prediction.

Results:  In this paper, we propose the RWRT (Random Walks with Restart on Tensor) 
method to accomplish protein function prediction by applying bi-random walks on 
the tensor. RWRT firstly constructs a functional similarity tensor by combining protein 
interaction networks with multi-omics data derived from domain annotation and 
protein complex information. After this, RWRT extends the bi-random walks algorithm 
from a two-dimensional matrix to the tensor for scoring functional similarity between 
proteins. Finally, RWRT filters out possible pretenders based on the concept of cohe-
siveness coefficient and annotates target proteins with functions of the remaining 
functional partners. Experimental results indicate that RWRT performs significantly 
better than the state-of-the-art methods and improves the area under the receiver-
operating curve (AUROC) by no less than 18%.

Conclusions:  The functional similarity tensor offers us an alternative, in that it is a 
collection of networks sharing the same nodes; however, the edges belong to differ-
ent categories or represent interactions of different nature. We demonstrate that the 
tensor-based random walk model can not only discover more partners with similar 
functions but also free from the constraints of errors in protein interaction networks 
effectively. We believe that the performance of function prediction depends greatly on 
whether we can extract and exploit proper functional similarity information on protein 
correlations.
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Background
As the major components of cells, proteins play important roles in almost all cell func-
tions. Biological functions are not conducted by a single protein but by a group of 
interacting proteins with the same or similar functions. Accurate annotation of protein 
function is fundamental to understand life at the molecular level, which has far-reach-
ing influences for biomedicine and pharmacy. Therefore, how to accurately determine 
functions of unknown proteins is the most challenging problem of the post-genomic era. 
Unfortunately, biological experiments have been unable to meet the need for functional 
annotation of the growing sequence data hampered by their high costs and inherent dif-
ficulties. To solve this dilemma, a number of computational methods have been put for-
ward, which implement functional annotation by discovering interacting proteins with 
known functions in biological networks. High throughput techniques provided high-
quality and large-scale protein–protein interaction data and resulted in the emergence 
of network-based method [1–3] to predict protein functions. The graph-theoretic algo-
rithm [4, 5] is also applied to annotate functions, due to the nature of PPI networks that 
can be modelled as graphs. However, incompleteness and errors contained in the PPI 
network, as well as the low coverage of protein interaction data in most species limit the 
performance of these approaches mentioned above.

Considering the diversity, systematicness and dynamics of protein functions, as well 
as the poor quality of PPI networks, a variety of approaches have been proposed to 
promote the prediction of protein function by incorporating multi-source biological 
information. The typical processing mode of these methods is to integrate and repre-
sent functionally associated attributes of proteins in the form of biological network, and 
then carry out annotation of functions of using diffusion algorithm [6], clustering algo-
rithm [7]. Liang et al. construct the Protein Overlap Network (PON) [8] for functions 
annotation based on the observation that two proteins are likely to perform the same 
or similar functions if they share the same domain compositions. Sarker et al. propose 
a method named GrAPFI [9], which reconstructs a protein- protein network based on 
the network topology and protein domain information, and uses the label propagation 
algorithm to annotate functions for unknown proteins. Peng et al. construct three bio-
logical networks: protein interaction network, domain co-occurrence network and func-
tional interrelationship network, and perform function prediction by using unbalanced 
random walk algorithm in these networks [10]. In our previous studies [11], we have 
designed a dynamic network model for annotation of functions by integrating PPI net-
works, gene expression profile and proteins domain information. Another commonly 
used processing way of these methods is to seek the most functional similar partners 
for unknown proteins based on the context of protein interaction networks. Zhang et al. 
[12] annotate unknown proteins with all functions of the neighbor which holds the high-
est domain context similarity in the PPI network. On this basis, Peng et  al. optimize 
calculation of domain context similarity by supplementing the domain compositions of 
proteins themselves and propose DCS (Domain Combination Similarity) [13] method. 
Moreover, they design another protein function similarity measure DSCP (Domain 
combination Similarity in Context of Protein Complex) depending on the domain com-
positions of both proteins and complexes including them. Rehman et  al. develop the 
FP (Functional Potential) [14] method to calculate the similarity between interacting 
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proteins based on motif similarity, homology similarity and sequence similarity. Piove-
san et al. propose function prediction methods named INGA [15] and INGA 2.0 [16], 
which integrate sequence similarity, domain architecture search and PPI networks. After 
comparing ligand similarity, sequence similarity and functional genomic similarity of 
proteins, O ’Meara et  al. [17] find that ligand similarity and functional genomic simi-
larity are complementary for protein function prediction. Stavros et al. propose a new 
co-expression measure MLC (Metric Learning for Co-expression) [18] instead of the 
Pearson correlation to assign a GO term-specific weight to each expression sample for 
gene function prediction. Gligorijević et al. design a novel graph convolution network-
based protein function prediction method DeepFRI [19], which extracts sequence fea-
tures from protein language models and protein structures.

These methods attempt to improve quality of PPI networks by assigning different 
weights to the edges at different levels corresponding to multi-omics data. They clas-
sically aggregate multiple biological data into a composite and reliable network, which 
tends to eliminate the topologies and attribution of the individual protein interaction 
networks. Research and experimental results indicate that each type of biological data 
has its property or correlation and can play a different role in prediction of protein func-
tions. The way of representing different types of data source in a system with a single 
type of link is no longer a magic cure-all for network science. In this context, the very 
pressing need for protein function prediction is to find a suitable data model. Intuitively, 
a proper data model describing function relevance in multi-omics data should satisfy 
two properties: it should not only be able to describe the hierarchy and heterogeneity 
of biological network, but also reflect the complex relationship between multi-omics 
data, and it should be supported by diversified solutions and rigorous theoretical system, 
which is conducive to generalization to other research fields. We formalize these two 
properties with a multidimensional tensor model integrating the topology of PPI net-
works with multiple biological data and develop the RWRT (Random Walks with Restart 
on Tensor) method to infer protein function. The RWRT method not only improves its 
performance but also preserves the functional relevance between multi-omics data and 
their own attributes. We apply the RWRT to the yeast protein interaction network and 
combine it with multiple biological data, including protein complexes and domain infor-
mation. Experimental results demonstrate that our proposed RWRT method outper-
forms six types of methods, including NC [1], Zhang [12], DCS [13], DSCP [13], PON 
[8] and GrAPFI [9].

Methods
Motivation

To eliminate limitations of poor quality of the underlying protein interaction data on 
computational approaches, researchers have concentrated on the prediction of protein 
function by combining PPI networks with multi-omics data. Although great progress 
has been made on these methods, it remains a challenge that building a suitable model 
to integrate network topology with biological information. The most prevalent way is 
to construct a single network with high confidence by weighting and summarizing PPI 
data and multi-omics data, which effectively eliminates the negative effects of network 
incompleteness. Unfortunately, it also amplifies the functional associations between 



Page 4 of 19Hu et al. BMC Bioinformatics          (2022) 23:199 

proteins and introduces a lot of false functional similarity partners, which restrict the 
performance improvement of prediction algorithms. The conclusion stems from analysis 
of yeast networks, in which more than 68% of proteins are functionally associated with 
other proteins from a single interaction, such as physical interaction, sharing domain 
context, etc. Less than 1.7% of proteins are connected by their functionally similar 
partner through all the given biological data. The process of simply encoding multiple 
biological data into edge property of a single network leads to the discovery of more 
neighbors with similar functions, but it also inevitably introduces a large number of ficti-
tious functions. Take the protein YAL024C as an example, which can be annotated by 
functions only from its physical interacting neighbors (YFR028C). However, neighbors 
with no functional similarity (YCR038C, YER155C and YLR310C) in the constructed 
single network are picked out to characterize the protein YAL024C. Meanwhile, the 
weight of multiple biological data in constructing a unique network varies from species 
to species, and even from different data sets within the same species. We believe that 
aggregating multiple biological data into a single and unique network is not the wisest 
choice. Therefore, we introduce the tensor model to characterize the functional correla-
tion between multi-omics data and PPI networks.

Plagued by the small-world and scale-free characteristics of PPI networks, traditional 
short-path distance or Euclidean distance is not suitable for the measure of functional 
distances between proteins. As an alternative approach, random walk model provides us 
with a more refined way by using the flow of information through network connections 
as a means to establish relationships between nodes [20]. A large number of random 
walk-based methods have been extensively used in essential proteins identification [21], 
tumors classification [22], protein function prediction [10], etc., which effectively veri-
fied the effectiveness of this model in biological networks. Inspired by these findings, we 
developed a tensor-based random walk with restart method for protein function predic-
tion by combination of PPI network topology and multiple biological data. In addition, 
there is a restart probability α in our model to ensure that a seed node can iteratively 
move to a random neighbour with probability α or return to its original location with 
probability 1-α.

Our RWRT method is composed of three major stages. First, integrating the topol-
ogy of PPI networks, protein domains, and protein complexes information, a functional 
similarity tensor T is constructed. The similarity tensor preserves and reflects multiple 
relationships between proteins derived from multi-omics data. In the second stage, an 
iterative procedure calculates functional correlation score for protein pairs in the net-
work. The iterative procedure is an extension of bi-random walks algorithm on the ten-
sor model, which simulates a high-order Markov chain by means of two state transition 
tensors. In the third stage, scoring and sorting all functions of their “similar” partners 
(neighbors), target proteins are annotated by top K of these predicted functions. The 
flowchart for the RWRT approach is given in Fig. 1.

Construction of the functional similarity tensor T

The success of functional genomics is involved in the rapid accumulation of diverse 
biological data about genes, proteins or other macromolecules [23]. We have access 
to multiple types of physical or functional interactions between proteins. These 
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different interactions with their peculiar features are better represented as a multi-
graph framework. Figure  2a is an example of a multi-graph with five nodes and 
three types of edges. The multi-graph can also be represented as a tensor, illustrated 
in Fig.  2b. The tensor, as an extension of a matrix in high-order space, has many 
advantages for the representation and processing of complex relationships between 
proteins or genes [24]. For our purpose, we construct a functional similarity tensor 
T ∈ R

n×n×m , where n and m represents the number of proteins and types of connec-
tion between proteins, respectively. If there is a k-th type of interaction between two 
proteins i and j, then t(i, j, k) ∈ T > 0 , otherwise t(i, j, k) ∈ T = 0 . In this paper, we 
consider three types of physical or functional association between proteins, including 

Fig. 1  - Flowchart of RWRT method. A Constructing the functional similarity tensor T according to functional 
association analysis based on original PPI network, domain context and protein complex information. B Given 
a testing protein pi, running a bi-random walks algorithm on the tensor T to obtain the functional similarity 
vector Xi between pi and the other proteins. C Removing redundant partners that have more external 
functional similarity than internal functional similarity within the module consisted of the target protein and 
its partners, and picking out top K of all functions of the remaining partners
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the physical association founded on topology of PPIs, the co-structure association 
derived from domain contexts and the co-module association coming from protein 
complex information.

The first type of association is guided by the ‘Guilt by Association’ principle. Given 
two proteins pi, pj with common interacting partners, their functional similarity is 
estimated as follows:

where Npi and Npj represent a set that includes pi and pj themselves and their direct 
neighbors, respectively.

Research shows that certain sets of domains are frequently found together and 
cooperate with each other to perform cellular functions [25]. Based on the observa-
tion, we establish the co-structure association between proteins using domain con-
tent similarity. For any two proteins pi and pj, let Di represents the set of distinct 
domain types in the neighbors of pi with itself included, and Dj is that of pj as well of 
its neighbors. DC denotes the set of distinct domain types contained by both neigh-
bors of pi and neighbors of pj, while DT is the set of domain types in the whole PPI 
networks. Then domain content similarity between pi and pj is calculated using the 
following equations:

Figure 3 shows an example of calculating the domain content similarity of two pro-
teins. Protein A and its four neighbors contain five different domains, while protein B 
involves three types of domains along with its two neighbors. The functional similar-
ity of co-structure association between pi and pj is measured by the normalization 
processing of their domain content similarity, which is formally described as follows:

(1)t(i, j, 1) =
4|Npi ∩ Npj |

2

(|Npi | + |Npi ∩ Npj |)× (|Npj | + |Npi ∩ Npj |)

(2)DS(pi, pj) = − log

(

|DT |

|DC|

)(

|DT | − |DC|
|Di| − |DC|

)(

|DT | − |Di|

|Dj| − |DC|

)

(

|DT |

|Di|

)(

|DT |

|Dj|

)

Fig. 2  - Example of a multi-graph. a Showing a multi-graph consisted of five nodes and three types of 
connection between nodes. b Representing the multi-graph with a tensor model formally
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Most cellular functions are carried out through interactions between multiple func-
tional modules at various levels [26]. It is evident that the functional module or protein 
complex information is important for protein function prediction. If two proteins par-
ticipate in the same module, they are likely to perform the same or similar functions. 
Firstly, we calculate the density score of experimental detection functional modules, 
which can be expressed as:

where Ek and Vk denotes the set of physical interactions and proteins in the module Mk, 
respectively. After getting the score of benchmark functional modules using Eq. (4), we 
can evaluate the reliability of co-module association between proteins. For any two pro-
teins pi and pj in networks, their functional similarity based on co-module association is 
calculated as follows:

Random walk with restart on the tensor T

In this paper, multiple functional associations are introduced in the constructed 
tensor T. Therefore, the significance of proteins is taken into account in the itera-
tive process as well as different types of interaction. Furthermore, our model is based 
on two hypotheses: proteins with high significance values connect to each other 

(3)t(i, j, 2) =

DS(pi, pj)− min
1≤i≤n,1≤j≤n

(DS(pi, pj))

max
1≤i≤n,1≤j≤n

(DS(pi, pj))− min
1≤i≤n,1≤j≤n

(DS(pi, pj))

(4)Score(Mk) =
2× |Ek |

|Vk | × (|Vk | − 1)

(5)t(i, j, 3) =

(

∑|M|

k=1,pi∈Mk ,pj∈Mk
Score(Mk)

)2

∑|M|

k=1,pi∈Mk
Score(Mk)×

∑|M|

k=1,pj∈Mk
Score(Mk)

.

Fig. 3  - Illustration of domain content similarity. The figure gives an example of the domain content similarity 
of protein A and B, in which rectangles in different colors are drawn to represent different types of domains. 
DA = {1, 2, 3, 4, 5}, DB = {5, 6, 7}, DC = DA ∩ DB = {5}
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through significant interactions, and interactions with high significance values fre-
quently are joined by many significant proteins. In this stage, our model performs 
iteration on the tensor T for a target protein to obtain functional association scores 
with other known proteins. Given a target protein pi, Xi = [xi1, xi2, . . . , xin]

T ∈ R
n and 

Yi = [yi1, yi2, . . . , yin]
T ∈ R

n is the vector representing functional similar scores with 
known proteins and significance scores of different categories of interaction between 
proteins, respectively. We can thus extend the classical random walk with restart 
algorithm to the tensor model. Our method performs a two-step iteration operation 
to update significance scores of proteins and different types of interaction by:

where 
∑n

j=1 xij = 1 and 
∑m

k=1 yik = 1 , T̃  and T̃ ′ are got from the tensor T constructed 
in the first stage by normalizing so that entries in each row sum to 1, and they are calcu-
lated as follows:

The parameter α ∈ [0, 1] is the probability of restart, and it balances between the 
iteration information and initial significant scores, which is set to 0.5 [27, 28]. Due to 
the low characteristic path length of the PPI network, nodes may not be able to return 
to their initial positions after the iterative process. While the random walk with 
restart model applied in our method can ensure that a seed node can iteratively move 
to a random neighbour with probability α or return to its original location with prob-
ability 1-α. It also guarantees the convergence of iteration on the tensor. In the Eq. (6),
X0
i = [x0i1, x

0
i2, . . . , x

0
in]

T ∈ R
n is the vector of initial functional similar scores, and its 

element X0
i,j can be calculated as:

where Di and Dj denotes the set of domains contained by protein pi and pj, repectively. 
Ci and Cj represents the set of functional modules in which pi and pj is involved, respec-
tively. Following iterations for all proteins, we obtain a functional similarity matrix Mfs, 
which is formally described as follows:

(6)
Xt+1
i = αT̃Xt

i Y
t
i + (1− α)X0

i

Y t+1
i = T̃ ′Xt

i X
t+1
i

(7)t̃i,j,k =

{

ti,j,k
∑n

i=1 ti,j,k
if

∑n
i=1 ti,j,k > 0

1/n otherwise

(8)t̃ ′i,j,k =

{

ti,j,k
∑m

k=1 ti,j,k
if

∑m
k=1 ti,j,k > 0

1/m otherwise

(9)dij =
|Di ∩ Dj|

√

|Di| × |Dj|
+

|Ci ∩ Cj|
√

|Ci| × |Cj|

(10)X0
i,j = dij/

n
∑

j=1

dij
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The proof of convergence for the random walk on tensor algorithm is related to our 
previous work [29].

Computational annotation of proteins with unknown functions

Benefiting from the iteration on the constructed tensor, we are able to discover more 
partners with similar functions to target proteins, which are ignored by PPI networks. 
These partners as well as the target protein interact with each other to carry out biologi-
cal functions within multiple functional modules. Intuitively, members within the same 
functional module are often more densely connected than those across functional mod-
ules [30]. Unfortunately, some of these partners are pretenders who have closer connec-
tions to the outside of the module than to the inside. Therefore, those pretenders should 
be removed from the functional module. We introduce the concept of cohesiveness coef-
ficient (CC) to assess whether a partner is false. Let fsin(pi) denote the total functional 
similarity score between all other proteins inside the functional module and the protein 
pi, and let fs.out(pi) denote the total functional similarity score between all proteins out-
side the functional module and the protein pi. The cohesiveness coefficient of pi is then 
given by

where fsin(pi) =
∑

pj∈M
xij , fsout(pi) =

∑

pk /∈M
xik , and M is a set of partners that have 

same or similar functions as the target protein. Cohesiveness coefficient provides an effi-
cient way to assess whether a functional module satisfies the properties of high cohesion 
and low coupling. A well-separated module consisted of many proteins with similar 
function has a high fsin and a low fsout. For a partner with similar functions to the target 
protein, its CC value is less than or equal to1/3 [31] implies that it has more external 
functional similarity than internal functional similarity and should be removed from the 
partners group. After cohesiveness-filter processing using Eq. (11), we are able to get a 
functional similarity proteins set FSP = {fsp1, fsp2, …, fspl}. Let F = {f1, f2, …, fm} be a list of 
distinct functions of proteins in FSP. We score and rank functions within F in descend-
ing order to annotate the target protein with top K of them. Given a function fi for the 
target protein pt, its ranking score is calculated by the following formula:

where xpt ,fspk is the functional similarity score between partner fspk and the target pro-
tein pt, GO (fspk) is a set of functions belonging to fspk. In this paper, the parameter K 
was assigned as the number of functions of the protein within FSP, which had the high-
est functional similarity score to the target protein.

(11)Mfs =













x11 x12 · · · x1n

x21
. . .

...

· · · · · ·
. . .

...
xn1 · · · · · · xnn













(12)CC(pi) =
fsin(pi)

fsin(pi)+ fsout(pi)

(13)RS(fi) =

l
∑

k=1

xpt ,fspk , fi ∈ GO(fspk)
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Results
Experimental data

To estimate the performance of RWRT for protein function prediction, we perform 
computational analysis on our method as well as other six competing algorithms, such 
as NC, Zhang, DCS, DSCP, PON and GrAPFI on two benchmark datasets from yeast, 
including DIP [32] and BioGRID [33]. The DIP dataset and BioGRID dataset updated 
to February 5, 2017 and Oct.28, 2017, respectively. The DIP dataset consists of 4,912 
proteins and 22,129 interactions among the proteins, and the BioGRID dataset consists 
of 4,113 proteins and 26,105 physical interactions. Self-interactions and repeated inter-
actions are removed from the two benchmark datasets. The annotation data of proteins 
used for validation is downloaded from GO official website [34]. We primarily investi-
gate and analyze the annotations in the Biological Process (BP) category in this manu-
script. To avoid too special and too general, only those GO terms that annotate at least 
10 and at most 200 proteins will be retained in our experiments [12]. The protein domain 
data is retrieved from the PFAM database [35], which involves 1064 and 1026 distinct 
domain types related to 2945 and 2566 proteins of the DIP dataset and BioGRID dataset, 
respectively. The experimental detection functional modules set comes from CYC2008 
[36], which makes up of 408 modules referring to 1465 and 1600 proteins in DIP and 
BioGRID, respectively. Table 1 lists the detail of the two datasets.

View of the constructed functional similarity tensor T

For a better understanding of the behaviour of the proposed RWRT method, we pro-
vide descriptive statistics on the two PPI networks and their corresponding functional 
similarity networks, which are represented by functional similarity matrixes in Eq. (11). 
Table 2 lists the basic statistics of the four networks, such as average degree, clustering 
coefficient etc. Figure 4 depicts the distribution of degree in these four networks, respec-
tively. Our statistics reveal higher cohesion and lower heterogeneity of the constructed 
functional similarity networks than their original network. So, it is reasonable to believe 

Table 1  Basic information of the two PPI networks

Dataset Proteins Interactions Annotated 
proteins

BioGRID 4113 26,105 2716

DIP 4912 22,129 2814

Table 2  Statistics of initial networks and their corresponding functional similarity networks

Networks Average degree Clustering 
coefficient

Network density Network 
heterogeneity

Initial DIP Network 9.396 0.153 0.004 1.385

Functional Similarity Network of DIP 21.509 0.859 0.017 1.101

Initial BioGRID Network 9.314 0.352 0.004 1.537

Functional Similarity Network of BioGRID 96.648 0.458 0.037 0.673
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that the tensor-based random walk model is helpful to reduce the negative effect of false 
negative and improve the accuracy of prediction of protein functions.

Assessment criteria

To evaluate the effectiveness of RWRT and other six competing methods in protein 
function prediction, we apply cross validation to split proteins of PPI networks into the 
training set and the testing set using two strategies, which are leave-one-out cross vali-
dation and ten-fold cross validation. In one round of cross validation, the functions of 
each protein in the testing set are predicted according to the proteins in the training set. 
The validation process is repeated multiple times until each protein has an opportunity 
to become a member of the testing set. The final performances are evaluated by the aver-
age of all rounds. The process of function prediction using leave-one-out cross valida-
tion and ten-fold cross validation is described below.

To measure quality of the predicted functions by each method, we use two assessment 
criteria: AUROC (area under the receiver-operating curve) [37] and average F-score [38, 
39]. AUROC is widely used in performance evaluation for protein function prediction. 
As the harmonic mean of Precision and Recall, F-score is another measure to evaluate 
the performance of a method synthetically. Precision is the fraction of predicted func-
tions that are matched with known proteins while Recall is the fraction of known func-
tions that are matched with predicted functions. In this study, true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN) represents the number of 
matched predicted functions, matched known functions, incorrectly matched predicted 
functions and missing matched known functions, respectively.

Fig. 4  -The distribution of degree in four networks. This figure shows the distribution of degree in the two 
initial PPI networks and their corresponding functional similarity networks. a Initial DIP network, b Functional 
similarity network of DIP, c Initial BioGRID network, d Functional similarity network of BioGRID
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Leave‑one‑out cross‑validation

In our first set of evaluations, we apply leave-one-out cross validation to assess quality 
of the predicted functions predicted by RWRT, as well as other six competing methods: 
NC, Zhang, DCS, DSCP, PON and GrAPFI. The performance is averaged with only one 
protein into the testing set and rest of proteins used as the training set. We first evalu-
ate the performance of RWRT and six competing methods on these target proteins by 
the average Precision, TPR (True Positive Rate), FPR (False Positive Rate) and F-Score. 
Table  3 lists the prediction results of RWRT and other competing methods. RWRT 
achieves the highest average Precision, TPR and F-Score values, and the lowest FPR val-
ues among the seven methods. Take the DIP dataset as an example, the average F-Score 
of RWRT is 107.46%, 135.59%, 41.84%, 18.47%, 218.32% and 93.06% higher than NC, 
Zhang, DCS, DSCP, PON and GrAPFI, respectively. For comprehensive performance 
comparison between RWRT and competing methods, we employ piecewise statistics of 
the predicted results according to functional size of target proteins. The results, shown 
in Figs. 5 and 6, suggest that these methods get different performance for different size 
of proteins, each with its own unique advantages. The performance of our RWRT has 
obvious advantages with size falls into [2, 8], while the prediction accuracy of DSCP on 
BioGRID data sets dropped sharply when size is in [6, 9]. Note that only four proteins 
have ten or more functional annotations. Therefore, the results of these methods in [10, 
14] are not statistically significant and are not included in this analysis.

To further investigate the performance of RWRT and six competing methods, we 
adopt the ROC curve, whose vertical and horizontal coordination are the values of TPR 
and FPR, respectively. Figure 7a and b depicts the ROC curve of seven methods on the 
BioGRID dataset and DIP dataset, respectively. For an intuitive evaluation of the per-
formance of various methods, we calculate the area under all curves and list the results 
in Table  4. The AUROC of RWRT on BiosGRID is 18.43%, 102.36%, 51.18%, 47.70%, 
576.32% and 283.58% higher than that of NC, Zhang, DCS, DSCP, PON and GrAPFI, 
respectively. As for the DIP dataset, the AUROC of RWRT increases by no less than 

Table 3  The results of RWRT and six competing methods on the DIP and BioGRID dataset

Dataset Methods Precision TPR FPR F-score

DIP RWRT​ 0.410 0.426 0.590 0.417
NC 0.126 0.491 0.831 0.201

Zhang 0.176 0.179 0.761 0.177

DCS 0.291 0.297 0.672 0.294

DSCP 0.348 0.355 0.594 0.352

PON 0.135 0.126 0.456 0.131

GrAPFI 0.221 0.211 0.371 0.216

BioGRID RWRT​ 0.430 0.449 0.571 0.439
NC 0.172 0.633 0.780 0.270

Zhang 0.292 0.301 0.666 0.297

DCS 0.349 0.358 0.626 0.354

DSCP 0.383 0.386 0.566 0.385

PON 0.146 0.136 0.439 0.141

GrAPFI 0.220 0.210 0.365 0.215
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Fig. 5  - The average FPR of seven methods according to different functional size of target proteins. The 
figure depicts the average false positive rate of our method and other competing methods fluctuate under 
different functional size of target proteins. Here functional size means the number of GO terms in each target 
protein. Size ranges from 1 to 14, except for 13. a Predicting results of seven methods on the BioGRID dataset. 
b Predicting results of seven methods on the DIP dataset

Fig. 6  - The average F-Score of seven methods according to different functional size of target proteins. 
The figure shows the average F-Score of RWRT and other competing methods fluctuate under different 
functional size of target proteins. a Predicting results of seven methods on the BioGRID dataset. b Predicting 
results of seven methods on the DIP dataset

Fig. 7  - ROC curves of seven methods using leave-one-out cross validation. The figure denotes the ROC 
(receiver-operating) curves of RWRT and other six competing methods (Zhang, DCS, DSCP, PON and 
GrAPFI) based on the average prediction performance over all testing proteins. The vertical and horizontal 
coordination of the ROC curves are the values of true positive rate and false positive rate, respectively. a ROC 
curves of seven methods on the BioGRID dataset. b ROC curves of various methods on the DIP dataset
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60% compared with other competing methods. Comparison results also reveal a phe-
nomenon that the performance of these methods in the DIP dataset is significantly infe-
rior to that of them on the BioGRID dataset. For NC, Zhang, DCS and DSCP, which 
mainly depend on neighbors, the gap is even more obvious. In our opinion, it is due to 
the fact that the DIP network is sparser than the BioGRID network. However, this does 
not appear to have much effect on the RWRT method. Experimental comparison results 
strongly prove the effectiveness and robustness of our method.

To analyze why RWRT obtains superior performance for the prediction of pro-
tein function, we investigate full matching, perfect matching, etc. between the bench-
mark set and the predicted set by the seven approaches. Table 5 lists matching results 
of RWRT and six competing methods on the two PPI networks. In Table 5, OM is the 
number of proteins that match at least one function, while FM is the number of pro-
teins whose functions are fully matched and ZM is the number of proteins annotated 
by zero mismatching functions. PM is the number of proteins perfectly matching the 
known functions. In other words, a prediction has the same functions with the known 
functions matched with it. From Table 5, we can see that RWRT contains the second-
biggest number of matched proteins (OM) and number of fully matched proteins (FM) 
after NC, while ZM and PM of our method is far higher than NC’s. The low precision 
of the NC method is mainly limited by its unweighted strategy, which is similar to that 
of the GrAPFI and PON method. Researches show that if the weight of an interaction 
reflects its reliability, then the weighted interactions should better represent the actual 
interaction network than the initial binary ones. RWRT archives the biggest number of 

Table 4  AUROC of RWRT and other competing methods on the DIP and BioGRID dataset

Dataset RWRT​ NC Zhang DCS DSCP PON GrAPFI

BioGRID 0.257 0.217 0.127 0.170 0.174 0.038 0.067

DIP 0.237 0.114 0.055 0.117 0.145 0.035 0.067

Table 5  The matching results of RWRT and six competing methods on the DIP and BioGRID dataset

Dataset Methods OM FM ZMM PM

DIP RWRT​ 1499 897 832 533
NC 1607 1121 85 76

Zhang 661 371 352 244

DCS 1069 634 608 429

DSCP 1249 766 746 522

PON 521 212 261 212

GrAPFI 805 401 450 401

BioGRID RWRT​ 1562 896 809 536
NC 1945 1428 100 84

Zhang 1071 591 557 371

DCS 1244 737 698 485

DSCP 1315 802 796 547

PON 536 229 277 229

GrAPFI 774 123 136 123
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perfect matching proteins (PM) and number of zero mismatching proteins (ZM), which 
is due in large part to the constructed tensor model for the integration of multi-omics 
data. In addition, predicted functions of RWRT, NC, PON and GrAPFI are derived from 
multiple functional neighbors, while that of Zhang, DCS and DSCP only come from the 
most similar protein. Our statistics show that nearly 68 percent of proteins have part-
ners whose functions completely overlap, and more than 70 percent of these have only 
one function. Proteins interact with each other to form functional modules or protein 
complexes and perform useful cellular functions. Although some redundancy may be of 
biological importance, functional modules overlapping keep within a certain extent. So, 
we believe that the strategy of annotating target proteins with the functions of multiple 
proteins is sensible, which is especially favorable to proteins with large functional sizes.

To assess the relative importance of each type of biological information on protein 
function prediction, we try to remove these multi-omics data respectively and run our 
RWRT method. Ablation results of RWRT on the DIP and BioGRID dataset are shown 
in Table 6. From Table 6 we can see that each interaction data source plays a different 
role in the prediction of protein function. The loss of functional module information has 
the greatest impact on the performance degradation of RWRT method, followed by that 
of domain context and PPI network topology.

In the RWRT method, we obtain a functional similarity network by performing itera-
tive operations on the tensor model, which is formally described by Eq.  (11). To ver-
ify the effectiveness of the tensor representation in fusing multi-omics data for protein 
function prediction, we run another version of the RWRT method named single-RWRT 
to annotate target proteins, in which the functional similar network is replaced by a sin-
gle network. The single network SN is summarized by three types of physical or func-
tional association involved in constructing the functional similarity tensor T. For a pair 
of proteins pi and pj, the weight of edge (pi, pj) in SN is defined as:

where a ∈ (0, 1), b ∈ (0, 1) and a + b < 1. t(i, j, 1), t(i, j, 2) and t(i, j, 3) is calculated in 
Eqs. (1), (3) and (5), respectively. Table 7 lists the comparison results between the single-
RWRT and RWRT on the BioGRID dataset and DIP dataset. The optimal parameters of 
the single-RWRT are set according to the two dataset. Table 7 indicates that RWRT out-
performs single-RWRT on two PPI networks obviously. At the same time, we also run 
the NC [1] method on the single network SN. The prediction results show that the recall 
(TPR) is close to 1, but the precision is very low. This is largely due to the fact that almost 

(14)SN (pi, pj) = a ∗ t(i, j, 1)+ b ∗ t(i, j, 2)+ (1− a− b) ∗ t(i, j, 3)

Table 6  Ablation results of RWRT on the DIP and BioGRID dataset

Dataset Conditions Precision TPR FPR F-score

DIP PPIs removed 0.334 0.346 0.666 0.340

Co-structure removed 0.308 0.304 0.692 0.306

Co-module removed 0.237 0.228 0.763 0.232

BioGRID PPIs removed 0.360 0.380 0.640 0.370

Co-structure removed 0.331 0.340 0.669 0.335

Co-module removed 0.315 0.336 0.685 0.325
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all known proteins are picked out as candidates to annotate the target protein. Integrat-
ing multiple biological data into a credible single network can indeed improve network 
connectivity and effectively eliminate false negatives in PPI networks, which leads to an 
increase in recall. However, it also inevitably introduces a lot of noise and reduces the 
precision of prediction. So, any increase in recall is more than offset by the accompany-
ing increase in false positives [2]. The comparison results between the single-RWRT and 
RWRT strongly confirm the effectiveness of the tensor model.

Ten‑fold cross validation

For comprehensive comparison between the novel method RWRT and the six other 
competing methods, we adopt the ten-fold cross validation to examine the stability of 
these methods on the training dataset. Proteins are randomly divided into ten subsets, 
a single subset is retained for the testing set, and the remaining nine subsets are used as 
the training set. The cross validation process is then repeated ten rounds, each of which 
uses different folds as the training and validation data. Ten results from the folds are 
then averaged to produce the final performance. We run functional annotation methods 
of RWRT as well as other six competing methods on the BioGRID and DIP network. 
Figure 8 presents the average Precision, TPR, FPR and F-score of seven methods on two 
datasets. Additionally, we draw ROC curves of all methods on the two PPI networks, 
which are illustrated in Fig. 9. The AUROC of RWRT on BiosGRID is 19.38%, 604.49%, 
271.73%, 96.42%, 51.75% and 48.28% higher than that of NC, PON, GrAPFI, Zhang, DCS 
and DSCP, respectively. On the DIP dataset, AUROC of RWRT increases by 110.79%, 
559.46%, 241.54%, 322.87%, 103.87% and 61.80%, respectively, compared to the above six 

Table 7  Comparison results between single-RWRT and RWRT on two datasets

Dataset Methods Precision TPR FPR F-score

DIP Single-RWRT​ 0.193 0.203 0.807 0.198

RWRT​ 0.410 0.426 0.590 0.417

BioGRID Single-RWRT​ 0.322 0.328 0.678 0.325

RWRT​ 0.430 0.449 0.571 0.439

Fig. 8  - The predicted results of various methods using ten-fold validation. Numbers of each bar are the 
values for each score, including average Precision, TPR (True Positive Rate), FPR (Fale Positive Rate) and 
F-score. a Results of seven methods on the BioGRID dataset. b Results of various methods on the DIP dataset
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methods. All of these experimental results indicate that RWRT still outperforms other 
six competing methods using other validation.

Discussions
Accurate annotation of protein functions is still a big challenge for understanding life 
in the post-genomic era. In spite of the advances in computational methods for protein 
function prediction, it still fails to achieve satisfactory prediction accuracy plagued by 
the incompleteness and errors in the original PPI data. To overcome this problem, the 
integration of different types of biological data has become an important and popular 
strategy, which has led to the emergence of various interactions between proteins. Each 
type of biological data has its own property or correlation and can play a different role in 
prediction of protein functions. Inspired by it, we set up a multidimensional data model 
and describe it formally with the tensor. To get rid of constraints of the small-world 
and scale-free properties of PPI networks, we extend the bi-random walks algorithm 
to the tensor model. In this way, we can discover more potential proteins with similar 
functions to target proteins and improve the true positive rate of prediction. However, 
enlargement of the traversal range of similar functional neighbors will inevitably lead 
to the increase of noise. The NC method is a typical example to illustrate the fact. For 
this purpose, we run the functional module detection algorithm based on the concept of 
cohesiveness coefficient to filter out pretenders and reduce the false positive rate of pre-
diction. We are of the opinion that there are both overlaps and differences in functional 
annotation between proteins. It is not appropriate to annotate a target protein with all 
the functions of the protein most similar to it.

Conclusions
In this paper, we design a novel protein function prediction method named RWRT by 
applying a tensor-based bi-random walks model. The RWRT method constructs a func-
tional similarity tensor depending on the original PPI network as well as multi-omics 
data firstly. And then, it extends the random walk with restart algorithm to the tensor by 

Fig. 9  - ROC curves of seven methods using ten-fold cross validation. This Figure shows the ROC curves of 
RWRT and other six methods using ten-fold validation. The entire set of proteins is divided into ten equal 
sets randomly, nine of which are used for training and the remaining part is used for testing. The process is 
repeated 1000 times, each time using another testing set. a ROC curves of seven methods on the BioGRID 
dataset. b ROC curves of various methods on the DIP dataset
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simulating a high-order Markov chain. After this phase, RWRT can discover more func-
tional similarity partners ignored by original protein interactions data. However, it also 
inevitably introduces some spurious nodes. Therefore, a pretender-filtering procedure is 
applied to remove possible pretenders loosely connected to the target protein and finally 
generate predicted functions from the remaining functional partners. Experimental 
comparison results on two PPI networks indicate that RWRT performs significantly bet-
ter than the state-of-the-art methods and the proposed model can provide more insights 
for future study in PPI networks.
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