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STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that
has been implicated in Alzheimer’s disease (AD), the most common form of dementia,
and many other neurological diseases. The protein level and activity of STEP have been
found to be elevated in most of these disorders, and specifically in AD as a result of
dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as
impairments of both proteasomal and lysosomal systems. The upregulation in STEP
leads to increased binding to, and dephosphorylation of, its substrates which are mainly
found to be synaptic plasticity and thus learning and memory related proteins. These
proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor
subunits GluN2B and GluA2. The dephosphorylation of these molecules results in
inactivation of these kinases and internalization of NMDA and AMPA receptor complexes
leading to synapse loss and cognitive impairments. In this study, we aim to review STEP
regulation and its implications in AD as well as other neurological disorders and then
summarize data on targeting STEP as therapeutic strategy in these diseases.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia and is characterized by a gradual
loss of short-term memory and a progressive decline of cognitive functions. It has been a major
public health problem in modern society which will undoubtedly increase dramatically in the
coming years, unless drugs that can prevent or cure the disease become available. According to the
World Alzheimer Report, over 50 million people worldwide are currently living with dementia, and
this number is estimated to reach 152 million by 2050 (Alzheimer’s Disease International, 2019).
The two main histopathological hallmarks of AD are extracellular deposit of amyloid beta (Aβ)
forming senile plaques, and intracellular hyperphosphorylated tau forming neurofibrillary tangles
(Bennett et al., 2004). In addition to these, age-dependent synapse loss and the accompanying
memory impairment are the next most common characteristics of AD patients as well as many AD
models (Terry et al., 1991; Knobloch and Mansuy, 2008). Due to failure of many tau and Aβ based
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therapeutic strategies (Extance, 2010; Rinne et al., 2010), more
drug development researches are now being shifted toward
multitarget-directed ligands approaches like disease-modifying
therapies (DMTs) which temporarily slow the worsening of
dementia symptoms of those patients with AD and other
dementias (Paoletti et al., 2013; Henley and Wilkinson, 2016).
The 2020 Alzheimer’s disease drug development pipeline revealed
that synaptic plasticity/neuroprotection agents in Phase 3 and
Phase 2 clinical trials have reached up to 23.5% and 27.3%
of DMT, respectively (Cummings et al., 2020), indicating that
preventing and/or correcting alterations in synaptic functions in
AD and other dementia patients might be a promising strategy in
the management of these diseases.

Synapse has been regarded as a key target for different
molecular assaults, like Aβ, that lead to the development and
progression of AD, and synaptic dysfunction also correlates with
the degree of cognitive decline in AD patients and transgenic AD
mice (Terry et al., 1991). Glutamate receptors, including NMDA
and AMPA receptors, play crucial roles in the mammalian central
nervous system (CNS), where they involve in excitatory neuronal
transmission and many other forms of synaptic plasticity
(Paoletti et al., 2013; Henley and Wilkinson, 2016). Subunits
that constitute NMDA receptors (NMDARs) include GluN1,
GluN2A-D, GluN3A/B, while those that make up the AMPA
receptors (AMPARs) are GluA1-4 (Henley and Wilkinson, 2016;
Iacobucci and Popescu, 2017). NMDARs play central roles
in brain development, synaptic plasticity, and learning and
memory (Bliss and Collingridge, 1993; Aamodt and Constantine-
Paton, 1999). Stimulating synaptic NMDARs activates pro-
survival PI3K/AKt/CREB signaling pathways (Hardingham et al.,
2002; Ivanov et al., 2006; Hardingham, 2009), which are
involved in learning and memory formation. Interestingly, a
reduced concentration of the GluN2B subunit of NMDAR and
the postsynaptic density protein 95 (PSD-95), impaired long-
term potentiation (LTP) and decreased NMDA and AMPA
receptors’ currents in hippocampal CA1 region have also
been reported in transgenic AD mice (Dewachter et al.,
2009). It has been previously found that STriatal-Enriched
protein tyrosine Phosphatase (STEP) is increased in AD, and
opposes the development and strengthening of synapses via
dephosphorylating and inactivating synaptic proteins including
kinases such as Fyn, Pyk2, and ERK1/2 (Venkitaramani et al.,
2009; Xu et al., 2012; Li et al., 2014). Besides, it can also lead to
the dephosphorylation and internalization of synaptic receptor
complexes like GluN2B/GluN1 and GluA2/GluA1 subunits of
NMDA and AMPA receptors, respectively (Snyder et al., 2005;
Zhang et al., 2008; Poddar et al., 2010; Wu et al., 2011).

STriatal-Enriched protein tyrosine Phosphatase is an
intracellular phosphatase, enriched in the CNS except in the
cerebellum, that is encoded by the PTPN5 gene, and is a member
of a family of over a hundred protein tyrosine phosphatases
(PTPs) (Lombroso et al., 1991, 1993), and it is one of the targets
via which Aβ exerts its deleterious effects in AD. Elevated level
of Aβ in AD is believed to be, at least in part, responsible for
the activation of STEP via binding to and activation of the α7
nicotinic acetylcholine receptors (α7nAChRs) (Dineley et al.,
2001; Stevens et al., 2003; Lacor et al., 2004). The activation of

these receptors leads to increased calcium influx resulting in the
activation of calcineurin, also known as protein phosphatase 2B
(PP2B) (Stevens et al., 2003), and subsequent dephosphorylation
and inactivation of DARPP-32, the inhibitor of protein
phosphatase 1 (PP1). This process activates PP1, which then
dephosphorylates STEP at the regulatory serine residue within
the kinase-interacting motif (KIM) domain (Snyder et al., 2005),
thereby activating STEP. Also, prolonged stimulation of NMDA
receptors was found to dephosphorylate and activate STEP
via the activation of the PP2B/PP1 pathway (Paul et al., 2003;
Valjent et al., 2005). Dysregulations of STEP levels and activity
have also been implicated in many neuropsychiatric disorders
with cognitive dysfunctions including Parkinson’s disease (PD),
Schizophrenia (SZ), Fragile-X syndrome (FXS), Huntington’s
disease (HD) and others (Kurup et al., 2010, 2015; Zhang et al.,
2010; Gladding et al., 2012; Chatterjee et al., 2018; Xu et al.,
2018). The net result of this dysregulated function is alterations
and mainly inactivation of many synaptic proteins including
kinases and receptor complexes leading to learning and memory
impairment, and cognitive deficits. In this study, we mainly
summarized STEP isoforms, their activation and regulation via
different posttranslational modifications, reviewed data on the
implication of STEP in AD and other neuropsychiatric disorders,
and finally highlighted the therapeutic strategies targeting STEP.

STEP ISOFORMS EXPRESSION,
POSTTRANSLATIONAL MODIFICATIONS
AND FUNCTION

The family of STEP protein contains five isoforms that are
presently known. Of these, four (STEP61, STEP46, STEP38, and
STEP20) are the result of alternative splicing from the STEP gene
(PTPN5), while the other one (STEP33) is the cleavage product of
the protease calpain (Figure 1; Lombroso et al., 2016). Like other
PTPs, the normal fully functional STEP contains a C-terminus
catalytic signature consensus sequence [I/V]HCxAGxxR[S/T]G,
and upstream KIM and kinase-specificity sequence (KIS)
domains that allow the binding and specificity of STEP to its
substrates, respectively (Bult et al., 1996; Pulido et al., 1998;
Muñoz et al., 2003; Francis et al., 2014; Xu et al., 2015). The
KIM domain is critical for binding, while KIS domain affects
the binding, as evidenced by the fact that deleting both KIM
and KIS domains decreased GluA2 binding to 7%, whereas
deleting only the KIS domain decreased it to 45% (Won et al.,
2019). In another study evaluating the effect of STEP on ERK1/2
phosphorylation, it was found that deletion of both KIM and
KIS, KIM or KIS alone, or the C-terminal KIS resulted in a
decreased kcat/Km ratio by 50-60-fold, whereas deletion of the
N-terminal KIS decreased the ratio by only 20-fold (Li et al.,
2014). Moreover, mutations involving the conserved arginine
residues or the hydrophobic motif around the KIM domain
were found to decrease the kcat/Km by 4-6-fold and 2.5-7-
fold, respectively (Li et al., 2014). Also, deletion of the KIM
domain decreased the ability of STEP interaction with both Fyn
and Pyk2 (Nguyen et al., 2002; Xu et al., 2012). These further
indicate that both KIM and KIS are required for efficient ERK,
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FIGURE 1 | Isoforms and domains structure of STEP. The alternative splicing of PTPN5 gene results in the production of four STEP isoforms (STEP61, STEP46,
STEP38, and STEP20), while the fifth STEP isoform, STEP33, is the result of calpain cleavage of STEP61 at Ser224/Leu225 site. STEP61 and STEP46 are the fully
active and major STEP proteins in the CNS. These two isoforms contain the KIM, KIS and PTP domains, which are respectively required for substrate interaction,
specificity and phosphatase activity. STEP61 has two additional TM domains that serve for targeting it to the ER and PSD, as well as two PR (PR1 and PR2) regions
that specifically provide binding with Fyn and Pyk2, respectively. The activity of STEP is inhibited via PKA phosphorylation at Ser221 and Ser49 within the KIM
domain for STEP61 and STEP46, respectively. PKA can also phosphorylate STEP at Ser160 around the PR2 region, but its function is still unknown. The function of
STEP can also be decreased by dimerization of STEP molecules via the C65 and C76 present within the TM domain. Together with STEP33 (the isoform that has
disrupted binding domain), STEP38 and STEP20 are inactive variants since they have no PTP domain and thus lack phosphatase activity. Therefore, it is speculated
that they may serve as negative regulators of STEP substrates by competitive binding. Adapted from Lombroso et al. (2016).

Fyn and Pyk2 dephosphorylation by STEP. The two fully active
and most abundant forms of STEP are STEP61 and STEP46
which, are differentially expressed in the brain in terms of space
and time (Boulanger et al., 1995; Sharma et al., 1995; Bult
et al., 1997; Xu et al., 2015). STEP46 is a cytosolic protein,
whereas STEP61 contains a unique 172-amino-acid domain at
its N-terminus that targets it to the endoplasmic reticulum (ER)
and both synaptic and extra-synaptic membranes (Boulanger
et al., 1995; Oyama et al., 1995; Bult et al., 1996). STEP61
has two polyproline-rich regions that are necessary for Fyn
(Nguyen et al., 2002) and Pyk2 (Xu et al., 2012) interactions
(Figure 1). Both STEP46 and STEP61 isoforms are present
in glial cells and neurons including excitatory and inhibitory
neurons (Hasegawa et al., 2000; Lorber et al., 2004; Goebel-
Goody et al., 2009), and are expressed in various regions of the
brain including, but not limited to, the striatum, hippocampus
and cortex (Boulanger et al., 1995; Lorber et al., 2004). While

STEP46 is not expressed until day 6 postnatally, STEP61 is readily
expressed in abundance at birth and throughout adulthood
(Raghunathan et al., 1996; Okamura et al., 1997). The other
two isoforms that result from alternative splicing (STEP38 and
STEP20) do not have the PTP signature consensus sequence
(Figure 1) and, therefore, are catalytically inactive (Sharma et al.,
1995). But they both do contain KIM domain, indicating their
ability to bind to target substrates and thus might protect from
active STEP dephosphorylation. Several mechanisms including
posttranslational modifications and others regulate the ability
of STEP to bind and dephosphorylate its substrates. These
processes include phosphorylation, ubiquitination, dimerization,
proteolytic cleavage, and local translation.

The phosphorylation of STEP within the KIM domain
decreases its ability to bind and dephosphorylate its substrates.
This process is mainly regulated by two key enzymes including
the cAMP dependent protein kinase A (PKA) and PP1 that
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FIGURE 2 | STriatal-enriched protein tyrosine phosphatase activity regulation. The phosphorylation (deactivation) of STEP is mediated by the D1R stimulation of
cAMP synthesis that activates PKA. The activated PKA directly phosphorylates STEP in the KIM domain, and this inhibits the binding of STEP to its substrates. PKA
can also indirectly mediate the phosphorylation of STEP via the phosphorylation and activation of DARPP-32, an inhibitor of PP1. This leads to the inhibition of PP1
activity, the STEP phosphatase, thereby increasing the phosphorylation of STEP. Phosphorylation of STEP downregulates its ability to bind and dephosphorylate its
substrates. On the other hand, the dephosphorylation (activation) of STEP is mediated via NMDAR, and in other condition via α7nAChR, activation that induce
intracellular calcium influx and activation of PP2B. The activated PP2B dephosphorylates and inactivates DARPP-32, thereby removing its inhibitory effect, leading to
the activation of PP1 and thus increasing STEP dephosphorylation and activation. STEP level and thus activity could also be regulated via ubiquitination and
proteasomal degradation which are mediated by synaptic activation of NMDARs, and could be enhanced by PSD-95.

are involved in its phosphorylation and dephosphorylation,
respectively (Paul et al., 2000; Valjent et al., 2005). Directly, PKA
phosphorylates STEP61 and STEP46 at regulatory Ser221 and
Ser49 within their KIM domains, respectively (Paul et al., 2000),
and thus sterically hindering STEP from binding to its substrates.
Indirectly, PKA phosphorylates DARPP-32, a potent inhibitor of
PP1, thereby maintaining STEP at its phosphorylated inactive
state (Valjent et al., 2005). PKA can also phosphorylate STEP61
at Ser160 but its function is still unknown (Paul et al., 2000). The
phosphorylation state of STEP could also be indirectly regulated
by PP2B, which in the presence of increased intracellular calcium
dephosphorylates and inactivates DARPP-32 thereby removing
the inhibitory effect on PP1 which then dephosphorylates and
activates STEP (Figure 2; Paul et al., 2003; Snyder et al., 2005;
Valjent et al., 2005).

Moreover, the cellular level of STEP could be regulated
by ubiquitin proteasome system (UPS) (Figure 2). This is
evidenced by the finding that upon synaptic NMDAR activation,
STEP is rapidly ubiquitinated and degraded (Xu et al., 2009),
probably to decrease the dephosphorylation of STEP substrates
and promote synaptic plasticity. In line with this hypothesis,
it was found that following synaptic NMDAR activation,
the phosphorylation of ERK1/2, a positive synaptic plasticity
related protein, positively correlated with ubiquitination and

degradation of STEP, leading to upregulation of dendritic spines’
size and density, and therefore, memory formation. However,
the molecular mechanisms underlying ubiquitination of STEP
are still unknown, but were speculated to be related to PEST
sequences which were found at the amino terminal of STEP61
(Bult et al., 1996), as these sequences are often found in UPS
degraded proteins (Spencer et al., 2004).

The activity of STEP could also be affected by two
molecules of this protein itself coming together to form dimers.
Under basal physiological conditions this dimerization process
fundamentally occurs with STEP61, but not STEP46, via the
formation of intermolecular disulfide bonds between the two
cysteine residues (Cys65 and Cys76), that are present within
the hydrophobic region of the amino terminus of STEP61
(Figure 1; Deb et al., 2011). However, oxidative stress can
induce oligomerization of both STEP61 and STEP46 leading
to a decrease in their phosphatase activity (Deb et al., 2011),
possibly via involving additional sites other than Cys65 and
Cys76. Interestingly, calpain can proteolytically cleave STEP61
between the Ser224 and Leu225 residues within the KIM domain
(Figure 1), producing STEP33 that cannot associate with its
substrates. It was found that STEP33 is produced after extra-
synaptic NMDAR stimulation, and since STEP33 is inactive, this
results in increased activation (phosphorylation) of the STEP61
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substrate, p38, and initiation of cell death signaling pathways
(Xu et al., 2009).

Local translation is another way to rapidly regulate STEP level
in neuronal cells. Synaptic plasticity sometimes requires rapid
translation of messages at distinct synapses via local translation.
More importantly, this process is required in LTP as well as long-
term depression (LTD) (Huber et al., 2000; Sutton and Schuman,
2006; Bramham and Wells, 2007; Costa-Mattioli et al., 2009).
These plastic changes are possible due to the presence of mRNAs
in a suppressed form along dendrites, until an appropriate
synaptic stimulus ignites their translation (Bramham and Wells,
2007; Glock et al., 2017; Fonkeu et al., 2019). Interestingly,
STEP was found to be locally translated as elaborated by the
findings that STEP mRNA and protein were present in puncta
along dendrites and near postsynaptic densities (PSDs), and
its translation was upregulated within synaptosomes following
(R, S)-3,5-dihydroxyphenylglycine (DHPG) activation of mGlu5
(Zhang et al., 2008). The dendritic local translation of STEP
is believed to be regulated by the cytoplasmic polyadenylation
element binding protein (Piqué et al., 2008) and fragile X mental
retardation protein (FMRP) (Darnell et al., 2011; Goebel-Goody
et al., 2012a; Chatterjee et al., 2018), that associate with, and
repress STEP mRNA in dendrites until the arrival of appropriate
stimuli, such as mGlu5 agonist activation. Moreover, there is
evidence suggesting that STEP mRNAs, together with several
other mRNAs, that are locally translated in response to synaptic
activity, are shuttled by major vault protein to dendritic location
(Paspalas et al., 2009).

STEP ACTIVATION AND REGULATION

The activity of the tyrosine phosphatase STEP is regulated by
kinases and phosphatases as well as processes like dimerization.
As mentioned above, the two main enzymes that regulate STEP
activity are PKA and PP1. In normal conditions, STEP exists in
a phosphorylated inactive state. This phosphorylation status is
mainly due to the activation of PKA which can either directly or
indirectly (Figure 2) maintain the phosphorylation of STEP and
hence control its activity. Moreover, it has been demonstrated
by previous studies that dopamine signaling can regulate STEP
activity. In this model, the stimulation of dopamine D1 or
blockage of D2 receptors was found to activate PKA which then
phosphorylates and inactivates STEP, whereas the stimulation
of D2 receptors had the opposite effects (Paul et al., 2000;
Fitzpatrick and Lombroso, 2011). This is in support to the
hypothesis that STEP is an intermediate bridge between the
dopamine signaling and the glutamate signaling pathways,
whereby dopamine regulates STEP activity and thus, tyrosine
phosphorylation and surface expression of both NMDA and
AMPA receptor complexes (Pelkey et al., 2002; Snyder et al., 2005;
Zhang et al., 2008; Venkitaramani et al., 2011). In addition, the
UPS regulates STEP level and thus its activity (Figure 2), via
ubiquitination following synaptic NMDAR activation (Xu et al.,
2009). Moreover, PSD-95 increases proteasomal degradation of
STEP, and at the same time stabilizes NMDA receptors at the PSD
favoring synaptic strengthening (Won et al., 2016). Interestingly,

the expression of STEP in the PSD was increased in both PSD-95
knockdown neuronal cultures and PSD-95 KO mice (Won et al.,
2016), indicating that PSD-95 is an important regulator of STEP.

On the other hand, stimulation of NMDARs was found
to lead to a rapid but transient phosphorylation of ERK1/2,
which has limited duration due to dephosphorylation and
activation of STEP via the activation of the PP2B/DARPP-32/PP1
pathway (Paul et al., 2003; Valjent et al., 2005). The activated
STEP can readily bind to its target proteins and lead to their
dephosphorylation. It has been previously reported that there
is a two- to three-fold increase in the level of STEP at the
extra-synaptic sites as compared to synaptic sites (Goebel-Goody
et al., 2009). This is supported by the findings that only extra-
synaptic NMDAR expression and currents were increased upon
STEP knockdown (Won et al., 2016, 2019). In a situation where
glutamate levels increase at the synapse, there is subsequent
activation of extra-synaptic NMDA receptors resulting in more
calcium influx and activation of calpain which cleaves STEP61
into STEP33 that can no longer bind to and/or dephosphorylate
its substrates (Xu et al., 2009; Lombroso et al., 2016). This
decrease in the STEP activation promotes the activation of cell
death signaling pathways via p38 (Xu et al., 2009). It is worth to
note that recently conducted in vitro studies showed that STEP
can be activated by a small molecule termed BI-0314 which binds
to its phosphatase domain (Tautermann et al., 2019), however,
further studies are needed before in vivo testing of this molecule.

STEP SUBSTRATES

STriatal-Enriched protein tyrosine Phosphatase acts via
dephosphorylating its substrates, and the discovery of these
substrates has elucidated the role played by STEP in neuronal
signaling. Several proteins have been recognized as substrates
of STEP, and many of them are related to learning and memory
processes. These include subunits of both AMPA and NMDA
receptors, kinases like ERK1/2, p38, Fyn, Pyk2 and other proteins
such as PTPα and SPIN90 (Table 1).

The phosphorylation of GluN2B subunit of NMDARs is
regulated by STEP via two different pathways, including direct
dephosphorylation of Tyr1472 and the inactivation of Fyn, that
phosphorylates GluN2B at the above-mentioned site (Nakazawa
et al., 2001; Nguyen et al., 2002). Upon dephosphorylation
by STEP, GluN2B binds to clathrin adaptor proteins which
promote the internalization of GluN1/GluN2B receptor complex
(Roche et al., 2001; Lavezzari et al., 2003). In concordance
with this, it was observed that STEP KO mice showed an
increased surface expression of GluN1/GluN2B receptor complex
(Zhang et al., 2010; Venkitaramani et al., 2011). Moreover, it
was found that increased amounts of STEP decreased NMDA
receptors’ excitatory postsynaptic currents (EPSCs) and abolished
LTP, while inhibition of STEP by anti-STEP antibody led to
an enhanced EPSCs (Pelkey et al., 2002), and both genetic
deletion (Olausson et al., 2012) and pharmacological inhibition
(Saavedra et al., 2019) of STEP promoted LTP. Also, STEP
ubiquitination and degradation following NMDAR stimulation
ultimately permits the induction of LTP (Xu et al., 2009).
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TABLE 1 | STriatal-enriched protein tyrosine phosphatase substrates dephosphorylation and the consequent effects.

STEP
substrates

Phosphorylation
mechanism

Site Consequences of STEP action References

GluN2B Directly and indirectly via
Fyn dephosphorylation

Tyr1472 Internalization of GluN1/GluN2B receptor
complex and impaired synaptic plasticity

Nakazawa et al., 2001; Roche et al., 2001;
Nguyen et al., 2002; Lavezzari et al., 2003

GluA2 Direct dephosphorylation Tyr876 Internalization of GluA1/GluA2 receptor
complex and impaired synaptic plasticity

Zhang et al., 2008; Won et al., 2016, 2019

ERK1/2 Direct dephosphorylation Tyr204/187 Decreased ERK1/2 substrates (CREB, Elk1)
phosphorylation, synaptic plasticity deficits

Paul et al., 2003; Valjent et al., 2005; Paul and
Connor, 2010; Li et al., 2014

p38 Direct dephosphorylation Tyr182 Inhibition of cell death pathways, enhanced cell
survival

Xu et al., 2009; Poddar et al., 2010

Fyn Directly and indirectly via
Pyk2 dephosphorylation

Tyr420 Inhibition of Fyn substrates (GluN2B)
phosphorylation

Nguyen et al., 2002; Venkitaramani et al., 2011

Pyk2 Direct dephosphorylation Tyr402 Inhibition of Pyk2 substrates (Fyn)
phosphorylation

Xu et al., 2012

PTPα Direct dephosphorylation Tyr789 Inhibition of Fyn dephosphorylation at inhibitory
Try531 residue (Fyn inhibition)

Engen et al., 2008; Ingley, 2008; Xu et al., 2015

SPIN90 Direct dephosphorylation Y85, Y161or Y227* Activation of cofilin which depolymerizes actin
leading to spine collapse, memory impairment

Cho et al., 2013a,b

*It is not confirmed which of these sites is/are STEP dephosphorylation residue (s).

The other memory related receptor that is also regulated
by STEP is AMPA receptor. It has been shown that trafficking
of AMPA receptor occurred in LTD via its endocytosis from
synaptic surface (Snyder et al., 2001; Hsieh et al., 2006). STEP
was reported to regulate the Tyr dephosphorylation of the
GluA2 subunit of AMPARs favoring the internalization of
GluA1/GluA2 complex (Zhang et al., 2008; Won et al., 2019).
Also, the surface expression of GluA1/GluA2-containing AMPA
receptors was reported to be elevated in STEP KO mice (Zhang
et al., 2008; Venkitaramani et al., 2011; Won et al., 2019). It
was previously not clear whether STEP directly or indirectly
induces the dephosphorylation and endocytosis of AMPARs
complex since the Tyr876 of GluA2 can also be phosphorylated
by SFKs (Hayashi and Huganir, 2004), which might also be
dephosphorylated and inactivated by STEP. Additionally, GluA2
can directly interact with BRAG2 and activate Arf6, which then
recruits adaptor protein-2 and clathrin to synaptic membranes
(Krauss et al., 2003), to promote GluA2 endocytosis (Scholz et al.,
2010). However, a recent study highlighted the mechanism of
STEP regulation of AMPARs, whereby STEP binds to the C
termini of GluA2 and GluA3, but not GluA1, to promote their
tyrosine dephosphorylation (Won et al., 2019). Interestingly,
in STEP overexpressing neuronal cultures, treatment with
chloroquine (a lysosomal degradation blocker), but not MG-132
(a proteasomal degradation blocker), rescued GluA2/3 proteins
and GluA2-PSD95 colocalization to control level (Won et al.,
2019), indicating that STEP regulation of synaptic AMPARs is
mediated by lysosomal degradation.

Together, these findings indicate that fine-tuning of STEP
activity is important for the regulation of proper levels of
these glutamate receptors at synapses, since prolonged neuronal
activity results in the upregulation of STEP that leads to
the removal of NMDA and AMPA receptors from synaptic
membranes, while prolonged neuronal inhibition has the
opposite effect. Moreover, knocking down STEP in hippocampal
slices increases AMPAR-mediated, but not NMDAR-mediated

synaptic currents, while its overexpression reduced both synaptic
expression and currents of AMPARs as well as NMDARs
(Won et al., 2016, 2019). These facts together indicate that
STEP preferentially regulates synaptic AMPA receptors, while
on the other hand it regulates extra-synaptic NMDA receptors,
suggesting a modulatory role of STEP in defining activity-
dependent glutamate receptor localization. Thus, STEP is
involved in the regulation of homeostatic synaptic plasticity
(Jang et al., 2015) by regulating the surface expression of both
NMDARs and AMPARs (Figure 3).

Other molecules that are involved in synaptic plasticity and
memory, and have also been confirmed substrates of STEP are
the two members of the MAPK family ERK1/2 and p38 (Muñoz
et al., 2003; Paul et al., 2003; Kim et al., 2008; Paul and Connor,
2010). ERK1/2 is centrally implicated in synaptic plasticity and
memory formation via several mechanisms including dendritic
spines stabilization, local dendritic protein synthesis, nuclear
transcription, and transmission of action potentials (Davis et al.,
2000; Sweatt, 2004; Venkitaramani et al., 2009, 2011). The
activity of ERK1/2 is dependent on its phosphorylation at
the regulatory residues Thr202/185 and Tyr204/187 by MAPK
kinases (MAPKK) such as MEK1/2 (Robinson and Cobb, 1997).
To inactivate ERK1/2, the Tyr sites are dephosphorylated by
STEP (Paul et al., 2003; Valjent et al., 2005; Paul and Connor,
2010; Li et al., 2014), and both KIM and KIS domains of STEP
are required for ERK interaction (Li et al., 2014). Moreover,
it was reported that ERK1/2 is necessary for the development
of synaptic strengthening as well as the consolidation of fear
memories in the amygdala, and STEP colocalizes with ERK1/2
in this brain area (Paul et al., 2007). Moreover, STEP KO mice
showed a significant increase in the level of phospho-ERK1/2
and its downstream targets, CREB and Elk1, and improved
hippocampal learning and memory (Venkitaramani et al., 2009,
2011). Also, UPS degradation of STEP led to the activation of
ERK1/2, synaptic strengthening and neuronal survival pathways
(Xu et al., 2009).
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FIGURE 3 | STriatal-enriched protein tyrosine phosphatase substrates. Following the NMDAR or α7nAChR stimulation mediated activation, STEP can then bind and
dephosphorylate regulatory tyrosines within its substrates. The dephosphorylation of STEP substrates including GluN2B, GluA2\GluA3, Fyn, Pyk2, ERK1/2, p38 and
SPIN90 leads to their inactivation. The dephosphorylation of GluN2B and GluA2\GluA3 subunits of NMDARs and AMPARs, respectively, results in internalization from
the PSD. The dephosphorylation of Fyn, Pyk2, ERK1/2, and p38 leads to inhibition of their kinase activity and impairment of the downstream effects. The
dephosphorylation of SPIN90 leads to its translocation to the dendritic shaft causing the release of its binding partner cofilin. STEP dephosphorylates GluN2B
subunit of NMDARs by two mechanisms. First, STEP can directly dephosphorylate GluN2B at Tyr1472. Secondly, STEP can indirectly mediate the
dephosphorylation of GluN2B via the inactivation of Fyn, the kinase that phosphorylates GluN2B at the same Tyr1472. The net result is endocytosis of
GluN2B-containing NMDARs. STEP can also mediate the endocytosis of AMPARs via direct dephosphorylation of GluA2 and GluA3 subunits of these receptors.

The p38 is another family member of MAPK and also a
substrate of STEP (Poddar et al., 2010). However, in contrast
to ERK1/2, p38 is implicated in cell death pathways and
extra-synaptic NMDAR-mediated excitotoxicity (Ivanov et al.,
2006; Semenova et al., 2007). As a phosphatase, STEP can
dephosphorylate and inactivate p38 at the Tyr182 residue in
the activation loop of p38 (Xu et al., 2009; Poddar et al.,
2010). In this circumstance, STEP might play a protective
role. However, the activation of extra-synaptic NMDA receptors
leads to increased calcium and calpain activation, which in
turn, cleaves STEP into an inactive STEP33 variant that is
unable to bind to its substrates. This leads to increased
phosphorylation and activation of p38 and thus activation
of cell death signaling pathway (Xu et al., 2009). It should
be noted that, synaptic NMDA receptor stimulation increases
STEP activity which shortens the duration of p38 MAPK
activation and favors neuronal survival, but extra-synaptic
NMDARs stimulation causes significant degradation of active
STEP via calpain-mediated proteolysis, leading to p38 MAPK
activation (Poddar et al., 2010). This indicates that STEP
serves as a modulator of NMDA receptor-mediated cell death
by regulating p38 MAPK. On the other hand, both ERK1/2
and p38, can in turn, regulate STEP expression levels by
modulating two phosphorylation sites (Ser59 and Thr72) within
the KIS domain of STEP, dephosphorylation of which sites

can trigger ubiquitination and thus degradation of STEP
(Mukherjee et al., 2011).

Other substrates of STEP include Pyk2 and Fyn kinases.
The two polyproline-rich (PR1 & PR2) regions of STEP
(Figure 1) are implicated in substrate binding as well as
specificity for Fyn (Nguyen et al., 2002) and Pyk2 (Xu et al.,
2012), respectively. Upon binding, STEP can dephosphorylate the
regulatory tyrosines in the activation loops of these kinases and
inactivate them (Nguyen et al., 2002; Xu et al., 2012). Another
identified substrate of STEP is PTPα, which is an activator of
Fyn (Xu et al., 2015). STEP was reported to dephosphorylate
PTPα at a Tyr789 site which, when phosphorylated, normally
results in the translocation of PTPα to the lipid rafts to
activate Fyn. PTPα dephosphorylates Fyn at an inhibitory
Tyr531 residue in contrast to STEP which acts on the
activation loop of Fyn at Tyr420 (Engen et al., 2008; Ingley,
2008). Thus, STEP can directly inactivate Fyn via Tyr420
dephosphorylation, or indirectly by dephosphorylating and
blocking PTPα translocation to the membrane, thus maintaining
the inhibitory Tyr531phosphorylation of Fyn.

SPIN90 is another substrate of STEP which in its
phosphorylated form binds to and reduces the actin-
depolymerizing activity of cofilin (Cho et al., 2013a). However,
when SPIN90 is dephosphorylated by STEP (Figures 3, 4), it
leads to cofilin activation and actin depolymerization, therefore,
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FIGURE 4 | STriatal-enriched protein tyrosine phosphatase dysregulation in Alzheimer’s disease. Both protein level and activity of STEP are implicated in Alzheimer’s
disease, and are thought to be the result of increased Aβ. Increased soluble Aβ levels precede the appearance of cognitive impairments. Aβ activation of α7nAChRs,
together with glutamatergic NMDAR stimulation, increased calcium influx which then activates PP2B/DARPP-32/PP1 pathway leading to the dephosphorylation and
activation of STEP. On the other hand, Aβ can also inhibit the proteasomal degradation of STEP leading to accumulation of STEP. These together lead to increased
level of active STEP which aberrantly dephosphorylates its substrates. Dephosphorylation of SPIN90 by STEP also leads to the dissociation of SPIN90 from cofilin,
leading to the activation of cofilin which then depolymerizes F-actin to G-actin. These events, together with the inactivation of other STEP substrates, and AMPA and
NMDA receptors’ internalization, lead to dendritic spine and synapse loss resulting in the learning and memory and cognitive impairments seen in AD. Aβ-induced
alterations in PKA/Akt/CREB pathway result in deficient BDNF/TrkB signaling, which in turn, contributes to the synapses loss and synaptic plasticity and cognitive
deficits, via impairing the degradation of STEP.

contributing to spine collapse (Cho et al., 2013b). Interestingly,
it was found that loss of synaptic clustering with either Shank
or PSD-95 following SPIN90 dephosphorylation by STEP
affects both the size and density of dendritic spines (Cho et al.,
2013a). The results from these studies indicate that SPIN90
dephosphorylation could be another way that STEP mediates
Aβ-induced synaptic plasticity and memory impairments.

Recently, a study by Won et al. (2019) has identified 315
STEP interactors candidate proteins in WT mouse brain samples,
including cytoskeletal-associated proteins and motor proteins
like α-actinin, DBN1, myosin-10, MAP2, Arp2/3 complex;
vesicle trafficking proteins like AP-2, Rab3a, SNX1, SNX4,
NBEA; kinases and phosphatases like Fyn, PKA, PP2A, PP1;
ion channels, receptors, and transporters like GluN2B, GluN1,
GluA2, mGlu5; ATP synthase and ATPases like Na+/K+-
transporting ATPase α-subunit; scaffolding proteins such as PSD-
95, SynGAP, Kalirin, Shank; cell adhesion proteins like δ-catenin,
NLGN-1; G protein-coupled receptor signaling proteins like
Gα(o), Gα(q), Gβ-5; and ubiquitin enzyme proteins like Nedd4,
RNF14, KCMF1. Among these, some proteins such as GluN2B
and Fyn are already established STEP substrates, GluA2 recently
confirmed, while many others will probably be confirmed
in future studies.

STEP AND DENDRITIC SPINES

Loss of dendritic spines and decline of cognitive function are
hallmarks of patients with AD and the loss of synapses correlated
with cognitive deficits. Notably, in early stage of AD, studies
revealed the existence of reduced dendritic spine density in the
frontal cortex and hippocampal CA1 region of AD patients
(DeKosky and Scheff, 1990; Scheff et al., 2006). Moreover, a
decrease in the mushroom (memory) type spine density was
reported in in vivo and in vitroAβ toxicity (Popugaeva et al., 2015;
Qu et al., 2017), cultures of hippocampal slice from AD transgenic
mice (Tackenberg and Brandt, 2009; Penazzi et al., 2016), as well
as in AD mouse models (Saito et al., 2014; Sun et al., 2014).
Consistently, another study reported a shift from mushroom to
stubby spines in cortical biopsies from AD patients (Androuin
et al., 2018), indicating loss of memory-related spines. This loss of
spines might be caused by Aβ peptide long before the appearance
of clinical manifestations of the disease, that is, during the
prodromal phase of AD, and was found to occur even before the
disintegration of neuronal networks and consequent cognitive
decline (Palop and Mucke, 2010; Kashyap et al., 2019). Several
studies have revealed that transgenic AD mouse models as well
as neurons exposed to Aβ show loss of spines (Lacor et al., 2004;
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Calabrese et al., 2007; Shankar et al., 2007; Wei et al., 2010; Spires-
Jones and Hyman, 2014). Interestingly, it was recently shown that
dendritic spine plasticity can provide cognitive resilience against
dementia among AD patients (Boros et al., 2017).

It has been previously found that STEP is increased in
AD and it was reported to oppose the development and
strengthening of synapses via dephosphorylating and inactivating
synaptic proteins including kinases like Fyn, Pyk2, and ERK1/2
(Venkitaramani et al., 2009; Xu et al., 2012; Li et al., 2014),
as well as leading to the internalization of synaptic receptor
complexes like GluN1/GluN2B and GluA1/GluA2 subunits of
NMDA and AMPA receptors, respectively (Snyder et al., 2005;
Zhang et al., 2008; Poddar et al., 2010; Wu et al., 2011; Won
et al., 2019). Moreover, it was found that pharmacological
inhibition as well as genetic depletion of STEP were able to
ameliorate cognitive function and hippocampal memory in the
3×Tg-AD mouse model. In line with this, it was reported that
STEP inhibition not only improved cognitive functions, but also
increased synaptic connectivity in both cell cultures and 3×Tg-
AD mouse model (Chatterjee et al., 2021), further highlighting
the potential of STEP inhibitors as therapeutic agents. It has
been reported that abundant ER are present in hippocampal
dendritic spines and play an important role in synaptic plasticity
(Holbro et al., 2009). Moreover, the ER in the spines exhibit
highly dynamic changes that are largely dependent on NMDARs
activity (Ng et al., 2014). Previous studies have also pointed out
the involvement of STEP in the dynamics of dendritic spines,
whereby dephosphorylation of SPIN90 by STEP led to cofilin
activation and actin depolymerization to induce spine collapse,
while elimination of STEP induced upregulation of dendritic ER-
positive spines as well as dendritic spines’ ER growth (Cho et al.,
2013b; Ng et al., 2014). Therefore, the upregulated ER changes
observed upon STEP elimination might be, at least in part, due to
the abrogation of the negative regulation of STEP on NMDAR.

Evidence from studies has indicated that LTD can induce
removal of postsynaptic AMPA receptors and loss of spines
(Snyder et al., 2001). Increased Aβ levels was shown to reduce
pyramidal neuron spine density via LTD driven endocytosis
of synaptic AMPA receptors, and removal of synaptic AMPA
receptors was necessary and sufficient to produce dendritic
spine loss and synaptic NMDA responses (Hsieh et al., 2006).
Interestingly, it was recently reported that STEP can bind to
and results in the dephosphorylation and decreased synaptic
expression of GluA2 (Won et al., 2019), suggesting that STEP
might mediate the Aβ-induced AMPA receptor internalization
and synaptic impairment. Also, a 120 min Aβ treatment of
cortical neurons resulted in increased STEP levels in these
neurons with concomitant tyrosine dephosphorylation of STEP
substrates, and a reduction in the protein levels of GluN2B
receptors on membrane fractions (Kurup et al., 2010), while
application of 1 µM of the STEP inhibitor TC-2153 was found to
inhibit STEP activity in cortical cultures and restore the Tyr1472
phosphorylation of GluN2B receptor subunits (Xu et al., 2014).

Since studies have shown that Aβ leads to loss of spine in
exposed neurons and that Aβ also increases STEP protein level
and activity, it is interesting to investigate whether or not STEP is
implicated in spine loss. Recently, a study reported that treatment

of 18-day-old cortical neurons with conditioned media from
mutant CHO cells containing Aβ showed significant decrease in
dendritic complexity (dendritic junctions or nodes and Ends),
as analyzed by Sholl analysis, compared to control neurons
(Chatterjee et al., 2021). Interestingly, a 48 h pretreatment
with the STEP inhibitor TC-2153 prior to Aβ treatment in
cortical neurons significantly minimized the loss of dendritic
complexity (Chatterjee et al., 2021). Moreover, in two studies
using presynaptic and postsynaptic markers colocalization
puncta to indicate the presence of synapse, it was also reported
that Aβ-treated neurons showed significantly fewer colocalized
synaptic puncta than control neurons (Kono et al., 2019),
and that pretreatment with TC-2153 significantly increased
the colocalized synaptic puncta in Aβ-treated neurons, and
rescued the loss of dendritic spine density in 3×Tg-AD mice
(Chatterjee et al., 2021).

Aβ and STEP also influence dendritic spines via their effect
on actin. It was recently reported that upon Aβ exposure, fibrillar
actin (F-actin), a major cytoskeletal protein that determines the
shape of spines, depolymerizes to globular actin (G-actin) and,
therefore, contributes to the decrease and collapse of spines
(Kommaddi et al., 2018). Interestingly, the phosphorylation of
the STEP substrate, SPIN90, leads to its binding with cofilin
thereby reducing the actin-depolymerizing activity of cofilin
(Cho et al., 2013a). However, when SPIN90 is dephosphorylated
by STEP, it dissociates from cofilin leading to cofilin activation
and thus, actin depolymerization, therefore, contributing to spine
collapse (Figures 3, 4; Cho et al., 2013b). Furthermore, it was also
reported that phosphorylated SPIN90 interacts with scaffolding
proteins PSD-95 and Shank in the post-synaptic compartment.
There are also substantial evidences showing the role of PSD-
95 in increasing spine density as well as the number of synapses
(El-Husseini et al., 2000), and of Shank in promoting spine
maturation and enlargement (Sala et al., 2001). Consistent with
these findings, a study reported a loss of synaptic clustering with
both Shank and PSD-95 following SPIN90 dephosphorylation by
STEP, that led to downregulation of dendritic spines in terms of
size and density (Cho et al., 2013a). It should also be noted that
inhibition of STEP with TC-2153 was able to improve dendritic
spine abnormalities in Fmr1 KO cultures and spine density in
Fmr1 KO mice model of FXS (Chatterjee et al., 2018).

Together, the data reviewed here strongly suggest that STEP is
centrally involved in the loss of dendritic complexity and decrease
spine density observed in AD patients as well as AD animal
models and even in other neurological disorders.

STEP IN SYNAPTIC PLASTICITY AND
COGNITIVE IMPAIRMENT

Cognitive and behavioral impairments are some of the primary
and main clinical manifestations of neurodegenerative disorders
like AD. Synaptic dysfunctions seen as synapse loss seem to
significantly correlate with the functional and cognitive deficits
observed in different stages of AD (Terry et al., 1991). Numerous
studies have highlighted the role of STEP in the alterations
of cognitive function in AD. For example, the Tg-2576 AD
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model mouse line carries mutations in APP that are found
in early onset familial AD (Mirra et al., 1991; Terry et al.,
1991; Khachaturian, 2006). These mice show normal cognitive
functions at 3 months of age, however, at 10 months of age they
exhibit significant cognitive impairments (Hsiao et al., 1996).
Interestingly, the levels of STEP were found to be normal in
these mice at 3 months but significantly elevated at 10 moths
(Kurup et al., 2010), suggesting an implication of STEP in the
observed alterations in these animals. Similarly, in 3×Tg-AD
mouse model that has the same mutation with the Tg-2576 in
addition to the presenilin and tau mutations, it was also found
that the levels of STEP were normal at early stage of life, but
increased at late stage and this change went together with the
appearance of behavioral alterations. This has been corroborated
by reports which showed that in 3×Tg-AD mice, STEP activity
is significantly elevated after 6 months of age, which coincides
with the start of memory deficits (Zhang et al., 2010). Moreover,
crossing STEP KO mice with 3×Tg-AD mice prevents these
cognitive alterations (Kurup et al., 2010; Zhang et al., 2010).
These STEP KO mice have enhanced learning abilities including
hippocampal-dependent learning (Venkitaramani et al., 2011)
as well as amygdala-dependent learning (Olausson et al., 2012),
indicating that elevated levels of STEP might disrupt synaptic
plasticity and thus learning and memory formation. Interestingly,
the STEP inhibitor, TC-2153, was reported to significantly rescue
cognitive impairments (Xu et al., 2014) and the loss of dendritic
spine density in 3×Tg-AD (Chatterjee et al., 2021), suggesting
that inhibition of STEP might at least decrease the progression of
neuronal deterioration in these AD mice models.

From the data reviewed above, it is clear that the loss of STEP
leads to increased phosphorylation of its substrates including
NMDA and AMPA receptors as well as ERK1/2, Fyn and Pyk2.
Thus, it is logical to stipulate that loss of STEP could favor
learning and memory. In line with this idea, a study reported that
in a water maze reversal training task, STEP KO mice showed
significantly better performance than WT (Venkitaramani et al.,
2011), suggesting a higher degree of cognitive flexibility in
STEP KO mice. The same study also revealed that in the
water-escape motivated radial arm maze, STEP KO mice also
outperformed WT mice. This test simultaneously evaluates
spatial working and reference memories, and during the first
2 days of training in this test, STEP KO mice committed fewer
reference and working memory errors compared with WT mice
(Venkitaramani et al., 2011). Moreover, fear conditioning that
tests amygdala-dependent memory showed that STEP KO mice
exhibited a greater degree of fear memory (Olausson et al.,
2012). However, no significant differences were found between
these two groups when evaluating anxiety, motor coordination,
and motor learning (Venkitaramani et al., 2011). This is in
line with other studies showing that animals with increased
expression or activation of STEP substrates like GluN2B, GluA1
and ERK1/2 had enhanced memory in MWM, fear conditioning
and novel object recognition tasks (Tang et al., 1999; Wang et al.,
2004; Okun et al., 2010). Pyk2 lies upstream of Fyn and when
Pyk2 is activated following its phosphorylation at Tyr402, it
phosphorylates and activates Fyn, which can then phosphorylate
GluN2B at Tyr1472. Consequently, activation of Pyk2 leads to

a greater phosphorylation and increased surface expression of
GluN2B (Le et al., 2006), as well as enhanced phosphorylation
of ERK1/2 (Nicodemo et al., 2010). Interestingly, the inhibition
of Pyk2 results in blockage of LTP induction (Huang et al.,
2001). As discussed earlier, Pyk2 is a substrate of STEP, and
thus Pyk2 dephosphorylation by STEP would oppose these
processes and impairs synaptic plasticity. In support of this,
upregulated phosphorylation of Pyk2 was reported in STEP KO
mice (Venkitaramani et al., 2011).

Numerous studies have suggested that BDNF and its receptor
TrkB signaling alterations were also implicated in synaptic
plasticity and memory impairments, and evidence suggested that
this might be related to STEP dysregulation. For example, it was
reported that the decreased BDNF level in AD was associated
with reduced cortical cholinergic synapses, emphasizing the fact
that dysregulation of BDNF might affect cholinergic synapses
and thus synaptic plasticity (Amidfar et al., 2020). Recently, it
was shown that upregulation of BDNF/TrkB mRNAs expression
in the hippocampus is associated with improvement of memory
(Amidfar et al., 2018). Moreover, alterations in BDNF expression
and BDNF/TrkB signaling pathway might induce synapse loss
and the consequent cognitive dysfunction (Song et al., 2015),
while early downregulation of BDNF in AD was associated with
the severity of cognitive impairments (Peng et al., 2005; Garzon
and Fahnestock, 2007). In addition, BDNF/TrkB deprivation was
recently found to activate JAK2/STAT3 pathway, leading to the
upregulation of C/EBPβ, which in turn, increased the expression
of asparaginyl endopeptidase (AEP), resulting in the cleavage of
both APP and Tau, thus aggravating neuronal loss. Interestingly,
inhibition of this cascade was able to rescue synaptic plasticity
and cognitive impairments (Wang et al., 2019). CREB was
shown to induce transcription and translation of BDNF (which
binds to TrKB) leading to the phosphorylation of AMPA and
NMDA receptors, while Aβ-induced inactivation of PKA/Akt
inactivates CREB, and induces deficient BDNF/TrKB signaling
leading to hippocampal synapse loss, synaptic plasticity and
memory impairments in AD (Amidfar et al., 2020). Interestingly,
it was found that BDNF/TrkB signaling can induce a decrease in
the protein level of STEP in primary cortical neurons, via rapid
ubiquitination and degradation of STEP, while downregulation
of BDNF in cell and animal models increased the level of
STEP (Saavedra et al., 2016; Xu et al., 2016). Moreover, the
use of TrkB antagonist led to STEP accumulation and impaired
long-term memory formation (Saavedra et al., 2019). The levels
of Tyr phosphorylation of GluN2B and pERK1/2 were also
increased in neuronal cultures following BDNF treatment or
TrkB activation (Saavedra et al., 2016; Xu et al., 2016). Together,
these studies indicate that the increased STEP in AD patients
and animal models might possibly reflect the alterations in
BDNF/TrkB signaling. In support of this hypothesis, it was
reported that the TrkB signaling activator 7,8-DHF as well as the
STEP inhibitor TC-2153 both ameliorated motor hyperactivity
and Tyr phosphorylation of STEP substrates in BDNF± mice
(Xu et al., 2016).

Moreover, in other neurological disorder models, either
pharmacological or genetic inhibition of STEP was able to
ameliorate behavioral alterations. For example, it was found that
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inhibition of STEP improved locomotion, hyperactivity, memory,
novel object recognition, anxiety and sociability observed in
different models of SZ as well as in a model of FXS (Chatterjee
et al., 2018; Xu et al., 2018). Furthermore, genetic deletion
of STEP could delay the onset of motor dysfunction and
prevent the appearance of cognitive deficits in R6/1 mice of
HD, and this effect was associated with an increase in pERK1/2
levels and a reduction in the size of mHTT aggregates, in
both the striatum and CA1 hippocampal region. Moreover,
pharmacological inhibition of STEP with TC-2153 improved
cognitive function in these mice (García-Forn et al., 2018).

STEP ALTERATIONS IN AD AND OTHER
NEUROLOGICAL DISEASES

STriatal-Enriched protein tyrosine Phosphatase is highly
expressed in different brain regions except in the cerebellum,

thus, it is not surprising that many studies have evaluated and
confirmed the implications of STEP in several neurodegenerative
disorders (Table 2), including AD (Kurup et al., 2010;
Zhang et al., 2010), Parkinson’s disease (Kurup et al., 2015),
Huntington’s disease (Gladding et al., 2012), schizophrenia
(Xu et al., 2018), fragile X syndrome (Chatterjee et al., 2018),
age-related memory decline (Castonguay et al., 2018), depressive
disorders (Elizabeth and Alexander, 2017) and in mouse model
of Sepsis-Associated Encephalopathy (Zong et al., 2019).

Alzheimer’s Disease
There is accumulating evidence that STEP activity, Aβ levels,
and synapse regulation are closely related. The level of STEP
has been reported to be elevated in AD, the most common
neurodegenerative disorder, including in the brain of post-
mortem AD patients and in several AD mice models like the
Tg2576 (Kurup et al., 2010), J20 (Chin et al., 2005), APP/PS1
(Zhang et al., 2013), and 3×Tg-AD mice (Zhang et al., 2010).

TABLE 2 | STEP alteration mechanisms in neurological disorders and the therapeutic strategies.

Disease Model (s) Changes
in STEP

Mechanism of STEP alterations Intervention strategies and outcome References

Alzheimer’s
disease

Humans,
Mice &
Cells

↑ Aβ-induced dysregulation of UPS,
activation of α7nAChRs and
dysregulation of BDNF/TrkB signaling

Pharmacologic (TC-2153) or genetic inhibition
(KO, KD) of STEP improved phosphorylation of
GluN2B, GluA2, ERK1/2, Fyn, Pyk2, synaptic
connectivity, BDNF and cognitive functions

Dineley et al., 2001; Stevens
et al., 2003; Lacor et al., 2004;
Chin et al., 2005; Almeida et al.,
2006; Venkitaramani et al.,
2007, 2011; Tseng et al., 2008;
Kurup et al., 2010; Zhang et al.,
2010, 2013; Olausson et al.,
2012; Xu et al., 2014, 2016;
Saavedra et al., 2016

Parkinson’s
disease

Humans,
Rats, Mice

& Cells

↑ Disrupted UPS associated with
mutation/decreased activity of parkin, a
product of PARK2 gene and
downregulation of BDNF/TrkB signaling

Activation of BDNF signling decreases STEP
level and activity which results in upregulation of
pERK, pCREB and BDNF

Kitada et al., 2009; Chagniel
et al., 2014; Kurup et al., 2015;
Saavedra et al., 2016; Xu et al.,
2016

Huntington’s
disease

Mice ↑↓ Downregulation: enhanced PKA and
reduced PP2B activities; Upregulation:
decrease DARPP-32 levels

Genetic deletion of STEP delayed onset of
motor and cognitive symptoms. TC-2153
improved cognition, TAT-STEP increased
VGLUT1-GluN2B colocalization, Y1472GluN2B
and BDNF expression

Desplats et al., 2006; Hodges
et al., 2006; Saavedra et al.,
2011; Gladding et al., 2012;
García-Forn et al., 2018

Schizophrenia Humans,
Mice &
Cells

↑ NRG1 mutation and NRG1/ErbB4
signaling abnormality

Neuroleptic drugs or genetic inhibition of STEP
improved synaptic proteins (NRG1, GluN2B,
Pyk2 and ERK1/2) and behavioral deficits

Stefansson et al., 2004; Barros
et al., 2009; Belforte et al.,
2010; Carty et al., 2012;
Goebel-Goody et al., 2012a;
Loh et al., 2013; Xu et al., 2018

Fragile X
syndrome

Mice &
Cells

↑ Defect in the Fmr1 gene causes
deficiency of FMRP, the protein product
of Fmr1, which normally binds to and
suppresses mRNAs translation
including that of STEP; mGlu signaling
alteration

TC-2153 or genetic deletion of Fmr1 or
STEP/Fmr1 double KO improved exaggerated
LTD, audiogenic seizure incidences,
c-Fos-positive neurons hyperactivity, anxiety
and synaptic aberrations

Huber et al., 2002; Hou et al.,
2006; Gross et al., 2010;
Darnell et al., 2011;
Goebel-Goody et al., 2012b;
Chatterjee et al., 2018

Age-related
memory decline

Humans,
Monkeys,

Mice &
Cells

↑ Abnormalities in the UPS as well as
alteration in the NMDAR and ERK
signaling pathways

Up- or down-regulation, led to worsening or
alleviation of age-related memory deficits,
respectively; TC-2153 improved synaptic
proteins and alleviated cognitive impairments

Castonguay et al., 2018

Depressive
disorders

Humans &
Mouse

↑* Downregulation of BDNF signaling
pathway

TC-2153 mitigates depressive-like symptoms in
mice via decreasing 5-HT2A receptor and
increasing BDNF

Kulikov et al., 2012; Elizabeth
and Alexander, 2017; Kulikova
et al., 2018

*There is a controversy regarding the level of STEP in depressive disorders with elevation of this enzyme seen in mice but no changes were observed in postmortem
human study. Therefore, further researches are needed to draw a conclusion.
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The increment in STEP is believed to be the consequence of
increased levels of Aβ in AD, which leads to the dysregulation of
the UPS and activation of α7nAChRs, both of which eventually
lead to an increase in the expression levels and activity of STEP
(Kurup et al., 2010; Zhang et al., 2013). Aβ can bind to and
activate α7nAChRs (Dineley et al., 2001; Stevens et al., 2003;
Lacor et al., 2004), triggering calcium influx that activates PP2B,
that in turn, inactivates DARPP-32, leading to the activation of
PP1, which then dephosphorylates and activates STEP (Figure 4;
Snyder et al., 2005). Consequently, the activated STEP can readily
bind to and dephosphorylate its target proteins. It has been shown
that transgenic AD mouse models as well as neurons exposed to
Aβ show loss of spines (Lacor et al., 2004; Calabrese et al., 2007;
Shankar et al., 2007; Wei et al., 2010; Spires-Jones and Hyman,
2014). Consistently, neurons treated with Aβ or those that
overexpress APP exhibit decreased glutamatergic transmission
(Ting et al., 2007). Moreover, exogenous Aβ treatment was
shown to induce endocytosis of NMDA receptors through a
STEP-dependent pathway (Kurup et al., 2010). Additionally,
NMDA receptors are involved in the regulation of dendritic
spine density and morphology (Ultanir et al., 2007), suggesting
that STEP-mediated downregulation of NMDA receptors may
contribute to the loss of synaptic density in AD. It was also
believed that Aβ oligomers might also cause synaptic dysfunction
by inducing PP2B-dependent internalization of AMPA receptor
(Hsieh et al., 2006). Moreover, it was recently reported that
STEP binding results in the dephosphorylation and decreased
synaptic expression of GluA2, while synaptic expression of GluA2
is increased in the brain of STEP-KO mice (Won et al., 2019).
This could therefore be at least one of the ways Aβ mediates
AMPA receptor internalization and synaptic impairment. It was
also observed that both neuronal cultures treated with Aβ and AD
mouse models have an accumulation of active STEP (Chin et al.,
2005; Kurup et al., 2010; Zhang et al., 2010, 2013) associated with
the Aβ-mediated impairment of the UPS (Almeida et al., 2006;
Tseng et al., 2008), since neither transcription nor translation of
STEP was altered. Moreover, studies have reported an increase
in STEP level as a result of Aβ-mediated disruption of the
UPS pathway (Venkitaramani et al., 2007; Kurup et al., 2010).
Thus, in AD, a decrease in its degradation together with an
increase in its dephosphorylation would be in part responsible
for the significant increase in the level of active STEP. The
net outcome of increased active STEP in the brain is the
dephosphorylation of GluN2B Tyr1472 and internalization of
GluN1/GluN2B receptor complex (Snyder et al., 2005; Kurup
et al., 2010; Zhang et al., 2010), dephosphorylation of the GluA2
subunit of AMPA receptor and internalization of GluA1/GluA2
complex (Zhang et al., 2008; Won et al., 2019), dephosphorylation
and inactivation of Fyn, Pyk2 (Nguyen et al., 2002; Xu et al.,
2012), ERK1/2 (Paul et al., 2003; Valjent et al., 2005; Paul and
Connor, 2010), SPIN90 (Cho et al., 2013b; Figure 4). Taken
together, these indicate that STEP mediates the Aβ induced
synaptic plasticity and cognitive impairments seen in AD animal
models as well as AD patients via inactivation of synapse related
proteins and endocytosis of both NMDA and AMPA receptors.

As summarized above, substantial evidence has highlighted
the implication of BDNF in AD (Peng et al., 2005;

Garzon and Fahnestock, 2007; Song et al., 2015; Amidfar
et al., 2018; Wang et al., 2019). Both protein levels and mRNA
expression of BDNF were reported to be reduced in postmortem
brain samples of AD patients (Tanila, 2017) and in animal
models of AD resulting in decreased cholinergic synapses (Iulita
et al., 2017; Amidfar et al., 2020). It is known that CREB could
induce the transcription and translation of BDNF leading to
the phosphorylation of AMPA and NMDA receptors, while Aβ

can inactivate the PKA and dephosphorylate Akt which would
inactivate CREB and induce deficit in BDNF pathway leading
to hippocampal synaptic loss, synaptic plasticity impairment
and memory deficit in AD (Amidfar et al., 2020). Activation
of BDNF/TrkB signaling can induce a decrease in the protein
level of STEP and increased phosphorylation of its substrates,
while downregulation of BDNF had the opposite effect (Saavedra
et al., 2016; Xu et al., 2016). The level of STEP was reported to be
increased while that of BDNF to be decreased in AD patients and
animal models. This is an indication that the decreased BDNF
and/or BDNF/TrkB signaling in AD could possibly be, at least in
part, responsible for the increase in the STEP level, suggesting
that, in AD, Aβ induces alterations in BDNF/TrkB signaling to
alter synaptic morphology possibly via increasing activation and
protein level of STEP.

Another way that STEP mediates the Aβ-induced cognitive
impairment is via the STEP dephosphorylation of SPIN90 that
induce F- to G-actin depolymerization of cofilin (Cho et al.,
2013a,b; Kommaddi et al., 2018). Moreover, STEP also disrupts
the interaction of PSD-95 and Shank that is important in the
maintenance of dendritic spine integrity (El-Husseini et al.,
2000; Sala et al., 2001). These together, lead to decreased size
and density of dendritic spines and eventually spine collapse.
This evidence highlights an additional pathway via which
Aβ/STEP triggers AD pathology via reduced dendritic spine
density and synapse loss which appears as the learning and
memory and cognitive impairments seen in AD patients and
AD animal models.

Parkinson’s Disease
Studies have also reported an upregulation of STEP in PD brain
as well as in MPTP-induced PD model (Kurup et al., 2015),
the next most common neurodegenerative disorder after AD,
which is characterized by loss of dopaminergic neurons in the
substantia nigra and dopamine depletion in the striatum (Saiki
et al., 2012). The increase in STEP is correlated with a decrease
in the phosphorylation of ERK1/2 and CREB, an effect that
might contribute to the synaptic and cognitive impairments
seen in PD (Kurup et al., 2015). There is substantial evidence
indicating that a decrease in the expression of parkin, a product
of PARK2 gene, is involved in the genetic forms of PD. This
is supported by the fact that mutations of the PARK2 gene
result in an autosomal recessive juvenile parkinsonism with early
onset of PD symptoms (Shimura et al., 2000; Tanaka et al.,
2004), and alterations in the activity of parkin were involved in
both familial and sporadic PD (Sriram et al., 2005; Dawson and
Dawson, 2010, 2014). Moreover, the dopaminergic neurotoxins
MPP+ and MPTP induced alterations in the levels or activity
of parkin with consequent accumulation in pathogenic parkin
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substrates such as AIMP2 and PARIS (Ko et al., 2010; Imam
et al., 2011; Dawson and Dawson, 2014). Interestingly, the level
of STEP is increased in both human PD samples and PD models
(Kurup et al., 2015). STEP is normally degraded via the ubiquitin
proteasome system, and it was found that parkin is an E3 ligase
that ubiquitinates STEP in vivo and in vitro, suggesting that the
decrease in parkin activity might be responsible for the observed
increase in STEP protein in PD (Kurup et al., 2015). In support
of this, it was found that shRNA-downregulated and parkin KO
rats showed an increase in the level of STEP, and that STEP
upregulation was associated with down-regulation of synaptic
proteins in the striatum (Kurup et al., 2015). Interestingly, the
striatum of PARK2 KO mice showed a decrease in evoked
dopamine release and resulted in impaired LTP and LTD in
striatal medium spiny neurons (Kitada et al., 2009). As reviewed
above, increased STEP can impair LTP and LTD via inactivation
of its substrates including GluN2B, GluA2, ERK1/2, Fyn and
others. Thus, these indicate that the reduction in dopamine
release in PARK2 KO mice might decrease the PKA-induced
STEP phosphorylation (inactivation), resulting in increased STEP
activity and consequent cognitive deficits seen in PD. Consistent
with this, it was found that PKA-mediated phosphorylation of
STEP correlated with enhanced motor learning, and attenuating
striatal STEP activity via PKA phosphorylation was believed to
be associated with a striatal molecular pathway involved in the
consolidation of complex motor skills during motor learning
(Chagniel et al., 2014).

Moreover, it was also found that BDNF signaling could
lead to a rapid ubiquitination and degradation of STEP via
binding to its receptor TrkB, which results in the activation of
the phospholipase Cγ and protein kinase C (PKC) pathways
(Saavedra et al., 2016; Xu et al., 2016). Decreased neurotrophic
factor signaling has been proposed to be implicated in the
pathophysiology of PD (Baquet et al., 2005; Rangasamy et al.,
2010; He et al., 2013), and STEP levels are increased in human
PD samples and MPTP-lesioned mice (Kurup et al., 2015).
These are indications that the increase in STEP expression levels
in PD could be the result of decreased neurotrophic factor
signaling which may probably contribute to PD pathophysiology.
In line with this, previous studies reported that inhibiting PTPs
protected dopaminergic neurons from PD toxins by activating
ERK1/2 via increasing BDNF signaling (Lu et al., 2002), and
that phosphorylation of ERK1/2 and CREB was decreased in
sporadic PD samples (Kurup et al., 2015). In summary, BDNF
leads to a downregulation of the protein level of STEP, whereas
increased STEP levels result in decreased pERK1/2/pCREB-
mediated expression of BDNF, suggesting a feedback regulation.

Huntington’s Disease
STriatal-Enriched protein tyrosine Phosphatase alterations have
also been documented in Huntington’s Disease (HD), a genetic
disorder characterized by progressive neurodegeneration, poor
muscle coordination, mood disorders, and dementia (Ross and
Tabrizi, 2011). There are controversies in the dysregulation
of STEP in HD as both downregulation and upregulation
have been observed. For instance, a study by Saavedra et al.,
reported a decreased STEP activity. In their study, these authors

showed that with age a decrease in protein level of STEP was
observed in the striatum and cortex of R6/1 HD mouse model,
while increased STEP phosphorylation was seen in striatum,
cortex and hippocampus (Saavedra et al., 2011). These changes
together resulted in decreased STEP activity which correlated
with enhanced PKA and reduced PP2B activities as well as an
increased phosphorylation of two STEP substrates ERK1/2 and
p38. Downregulation of STEP activity was also reported in other
HD mouse models including R6/2, Tet/HD94, and HdhQ7/Q111

(Saavedra et al., 2011). Interestingly, it was reported that R6/1
mice showed resistance to quinpirole, an NMDA receptor
agonist, induced excitotoxicity (Hansson et al., 2001), while co-
administration of quinpirole with WT TAT-STEP exacerbated
excitotoxicity in both WT and R6/1 mice (Saavedra et al., 2011).
These findings suggest that STEP increases the vulnerability of
striatal neurons to excitotoxity and that the decreased STEP in
HD mouse models may confer to these mice their resistance to
excitotoxicity. In support of this, a decrease in the mRNA levels of
STEP was previously reported in the caudate nucleus and cortex
of HD patients (Hodges et al., 2006) as well as in the striatum of
R6/1 mice (Desplats et al., 2006).

On the other hand, a recent study revealed that genetic
deletion of STEP delayed both the onset of motor dysfunction
and the decrease of striatal DARPP-32 levels, and prevented
the appearance of cognitive deficits in R6/1 mice (García-Forn
et al., 2018). Importantly, this was associated with an increase in
pERK1/2 levels and a reduction in the size of mHTT aggregates,
in both the striatum and CA1 hippocampal region. Moreover,
pharmacological inhibition of STEP with TC-2153 improved
cognitive function in these mice (García-Forn et al., 2018). In
addition, another study also reported a significantly increased
synaptic STEP activity in the striatum of YAC128, a mouse
model of HD, compared to WT mice, and this correlated
with decreased GluN2B Y1472 phosphorylation (Gladding et al.,
2012). Moreover, calpain activation leads to GluN2B cleavage at
both synaptic and extra-synaptic sites, thereby further decreasing
surface expression of GluN2B. These authors also showed that
in striatal neuron cultures C-S mutant TAT-STEP (non-active
STEP) significantly increased VGLUT1-GluN2B colocalization,
as well as increasing Try1472 phosphorylation and synaptic
GluN2B expression, while in vivo STEP inhibition also increased
synaptic GluN2B expression in the YAC128 striatum (Gladding
et al., 2012). Of interest is the fact that combined inhibition of
STEP and calpain reduced extra-synaptic, but increases synaptic
expression of GluN2B in the YAC128 striatum (Gladding et al.,
2012). These results together suggest that upregulated activity
of both STEP and calpain could be responsible for the mis-
localization of NMDAR from synaptic to extra-synaptic site in
YAC128 mouse model of HD.

The discrepancies reported in the dysregulation of the level
of STEP in these HD animal models could be attributed
to the differential mechanisms involved. Whereas Saavedra
et al., focused on the dopaminergic activation of PKA, García-
Forn et al., highlighted the role of DARPP-32 pathway.
However, further investigations are needed to clarify the
existing differences. Another potential reason could be the HD
animal model used.
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Fragile-X Syndrome
Fragile-X syndrome (FXS) is another neurological disorder,
the leading cause of inherited intellectual disability, with core
symptoms including cognitive deficits, anxiety and seizures. This
condition is mainly due to a genetic alteration that suppresses the
transcription of Fmr1 gene. Interestingly, this gene was shown
to be related to learning and memory functions as suggested by
the fact that Fmr1 KO mice have decreased surface expression
of NMDA and AMPA receptors (Suvrathan et al., 2010; Eadie
et al., 2012). FMRP, the product of Fmr1 expression, normally
binds to and suppresses dendritic translation of a myriad of
mRNAs following mGlu5 stimulation (Antar and Bassell, 2003;
Bear et al., 2004). Therefore, due to the absence of FMRP in
FXS, the translation of many of these mRNAs is upregulated
including STEP mRNA (Huber et al., 2002; Hou et al., 2006;
Gross et al., 2010; Darnell et al., 2011; Chatterjee et al., 2018). It
was found that STEP mRNA can associate with FMRP (Darnell
et al., 2011; Goebel-Goody et al., 2012a), and upregulation
of STEP translation was demonstrated in Fmr1 KO (Goebel-
Goody et al., 2012b; Chatterjee et al., 2018). Moreover, the
mGlu5 agonist, DHPG, leads to a rapid and dose-dependent
increase in STEP translation (Zhang et al., 2008), while STEP
inhibition was found to be beneficial in maintaining synaptic
homeostasis in the hippocampal neurons in mouse models of
FXS (Chatterjee et al., 2018). Interestingly, a decrease in both
audiogenic seizures and seizure-induced c-Fos-positive neurons
in the periaqueductal gray matter were observed in STEP/Fmr1
double KO mice compared to Fmr1 KO (Goebel-Goody et al.,
2012b). In addition, the STEP inhibitor TC-2153 was found
to reverse audiogenic seizure incidences, hyperactivity, mGlu5-
mediated exaggerated LTD, ameliorated behavioral alterations
like anxiety, and sociability in Fmr1 KO mice, as well as improved
synaptic aberrations both in vivo and in Fmr1 KO neuronal
cultures (Chatterjee et al., 2018). These results imply that the
translation of STEP is increased in FXS model as a result of
Fmr1 gene downregulation, and decreased STEP expression is
associated with improvement of the cognitive impairments.

Schizophrenia
Alterations in STEP are also observed in schizophrenia (SZ),
a neurological disease with complex etiology, where neuronal
dysfunction, genetics, and environment come together (Tsuang
et al., 2001; van de Leemput et al., 2016). Cognitive deficits are
some of the symptoms of patients with SZ, and one proposed
mechanism involved in the behavioral alterations in SZ is
decreased NMDAR function and/or decreased surface expression
of NMDARs (Xu et al., 2018). Several studies have provided
results that are consistent with this hypothesis. For instance,
a study reported abnormalities in glutamate receptor density
in postmortem SZ brains in the prefrontal cortex, temporal
lobe, and thalamus (Goebel-Goody et al., 2012a). In addition,
a decrease in the mRNA level of GluN1 was reported in
postmortem SZ brain, and it was correlated with antemortem
severity of cognitive impairment (Humphries et al., 1996; Catts
et al., 2016), while d-serine and glycine (facilitators of NMDRs
activation) administration improved symptoms in medicated

SZ patients (Kantrowitz et al., 2010; Balu and Coyle, 2015).
Moreover, SZ-like behaviors were reported in mice with reduced
expression of NMDAR (Belforte et al., 2010), and in persons
taking non-competitive NMDAR antagonists like phencyclidine
(PCP) or ketamine (Goebel-Goody et al., 2012a). In line with
this, it was found that NRG1, a growth factor that promotes
phosphorylation and surface retention of NMDARs was mutated
in patients with SZ (Stefansson et al., 2004; Loh et al., 2013).
Upon binding to its receptor (ErbB4), NRG1 normally activates
Fyn leading to Tyr1472 phosphorylation and surface expression
of GluN2B (Bjarnadottir et al., 2007). This finding is supported
by a study where NRG1/ErbB4 signaling was revealed to promote
synaptic incorporation of NMDARs via NRG1/ErbB4-stimulated
binding of PSD-95 to Erbin (Barros et al., 2009). Moreover,
Tyr1472 phosphorylation of GluN2B was found to be decreased
in NRG1 heterozygous mice (Bjarnadottir et al., 2007; Xu et al.,
2018). Also, the locomotor and cognitive deficits induced by the
NMDA receptor antagonist MK801 and PCP were attenuated
in STEP KO mice (Carty et al., 2012). All these suggest that
increase in STEP might be responsible for the SZ symptoms
via decreasing surface NMDA receptors. However, an opposite
result was reported by Pitcher et al., where stimulation of NRG1
was reported to attenuate NMDAR activity via suppressing
Src-mediated phosphorylation of GluN2B and potentiation of
NMDARs (Pitcher et al., 2011). This evidence, therefore, suggests
that NRG1 hyperactivation in SZ leads to NMDAR hypofunction
(Hahn et al., 2006). The above-mentioned discrepancy could
be attributed to differential effect of the two different kinases
Fyn and Src evaluated in these two studies, even though these
are both SFKs, and thus further investigation is needed to
explore the pathways involved. It is clear that NMDA receptors’
hypofunction is implicated in SZ, and STEP can decrease both
surface expression and activity of these receptors. Thus, STEP
might also be involved in SZ. Interestingly, it was recently found
that the protein levels of STEP are significantly upregulated
in heterozygous NRG1 and CNS-specific ErbB2/4 KO mouse
models of SZ, hiPSC neurons from forebrain of SZ patients
(Xu et al., 2018), and in the cortex of postmortem SZ patients
(Carty et al., 2012). Also, genetically eliminating STEP in mice
decreased their susceptibility to PCP-induced locomotor activity
and cognitive deficits when compared with WT mice (Carty et al.,
2012; Xu et al., 2018). Moreover, treatment of WT mice with
neuroleptics (haloperidol, clozapine, and risperidone), used to
treat SZ, increased the PKA-mediated Ser221 phosphorylation
of STEP via DARPP-32/PP1 pathway, along with increased
phosphorylation of GluN2B, Pyk2, and ERK1/2, and surface
expression of GluN2B (Carty et al., 2012). Additionally, both
pharmacological and genetic inhibition of STEP increased the
phosphorylation of NRG1, GluN2B and ERK1/2 (Xu et al.,
2018). Together, the data summarized here clearly indicate the
implication of STEP in the etiopathogenesis of SZ.

STEP AS THERAPEUTIC TARGET

Several studies have documented the involvement of STEP in
several neuropsychiatric disorders, including Alzheimer’s disease
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(Kurup et al., 2010; Zhang et al., 2010), Parkinson’s disease
(Kurup et al., 2015), Huntington’s disease (Gladding et al., 2012),
Schizophrenia (Xu et al., 2018), Fragile X syndrome (Chatterjee
et al., 2018), age-related memory decline (Castonguay et al.,
2018) and depressive disorders (Elizabeth and Alexander, 2017;
Table 2). Most of these disorders have reported an increase
in the STEP protein level and/or activity, thus making STEP
an important therapeutic target leading to the search and
development of STEP inhibitors. The level of STEP has been
reported to be elevated in AD, including in post-mortem AD
patients and several AD mice models (Chin et al., 2005; Kurup
et al., 2010; Zhang et al., 2010, 2013). This increase in STEP
is believed to be the consequence of the accumulation of Aβ

that leads to the dysregulation of the UPS and activation of
α7nAChRs, both of which eventually lead to increased levels
of activated STEP (Kurup et al., 2010; Zhang et al., 2013).
Interestingly, it was found that pharmacological (TC-2153) as
well as genetic inhibition of STEP were able to ameliorate
cognitive function and hippocampal memory in the 3×Tg-AD
mouse model (Zhang et al., 2010; Xu et al., 2014). Moreover, it
was reported that STEP inhibition not only improved cognitive
functions, but also increased synaptic connectivity in both
cell cultures and 3×Tg-AD mouse model (Chatterjee et al.,
2021). Similar results were also reported in SZ models, where
inhibition of STEP was sufficient to improve both biochemical
and behavioral deficits in these SZ mice models (Xu et al.,
2018). Also, in mice model of FXS, pharmacological inhibition
of STEP with TC-2153 was able to reverse mGlu5-mediated
exaggerated LTD, audiogenic seizure incidences, hyperactivity,
ameliorated behavioral alterations like anxiety and sociability
in Fmr1 KO mice, as well as improved synaptic aberrations
both in vivo and in Fmr1 KO neuronal cultures (Chatterjee
et al., 2018). TC-2153 was also reported to have antidepressant-
like effect via decreasing both activity and protein level of
the serotoninergic 5-HT2A receptor in the hippocampus and
frontal cortex, but not in the striatum (Kulikova et al., 2018),
and increasing BNDF in brains of mice genetically predisposed
to depressive-like behavior (Kulikov et al., 2012). As reported
earlier, BDNF was found to induce rapid STEP ubiquitination
pathways (Saavedra et al., 2016; Xu et al., 2016). Therefore,
the inhibition of STEP might be responsible for the increase
in BDNF, which can further induce rapid degradation of STEP
resulting in decreased STEP activity, and might consequently
increase the phosphorylation of STEP substrates. In line with
this, it was revealed that treatment of cortical neurons with TC-
2153 as well as TC-2153 injection of mice induced a significant
improvement in the Tyr phosphorylation of STEP substrates
GluN2B, Pyk2, and ERK1/2, and behavioral deficits (Xu et al.,
2014). In addition, crossing STEP KO mice with 3×Tg-AD
mice improved cognitive alterations (Kurup et al., 2010; Zhang
et al., 2010), and the STEP KO mice have facilitated learning
abilities in hippocampal-dependent (Venkitaramani et al., 2011)
as well as amygdala-dependent learning (Olausson et al., 2012).
Overall, these findings indicate that STEP regulates learning
and memory signaling pathways, and that elevated levels of
STEP might disrupt synaptic plasticity and thus learning and
memory formation.

TC-2153 is the currently most experimentally used STEP
inhibitor. Interestingly, phosphatase assay following TC-2153
treatment showed selectivity toward STEP inhibition among an
array of PTPs, including He-PTP and PTP-SL (Xu et al., 2014).
Moreover, following injection with TC-2153, WT and STEP KO
mice showed a significant increase in Tyr phosphorylation of
ERK1/2 and Pyk2, only in the frontal cortex and hippocampus,
but not in tissues outside of the brain or in the cerebellum which
lack STEP (Xu et al., 2014). These together, indicate the selectivity
of TC-2153 toward STEP, as compared to other phosphatases.
The inhibitory effect of TC-2153 on STEP was speculated to
probably be through the formation of a covalent bond within
the catalytic domain of STEP involving a cysteine residue (Boivin
et al., 2010). In line with this, mutation of the active cysteine to
sulfur (C-S TAT-STEP) was found to produce an inactive form of
STEP (Gladding et al., 2012).

Other STEP inhibitors are also under investigation and
development. For instance, a substrate-based method called
substrate activity screening (SAS) was also used to develop a
low molecular weight STEP inhibitor 12t, which resulted in
significant levels of STEP inhibition in rat cortical neurons
(Baguley et al., 2013). The X-ray crystal structures of some
of these STEP inhibitors were disclosed and these inhibitors
showed a 15-60-fold selectivity toward STEP across a series
of phosphatases (Witten et al., 2017). Using machine learning
based computational models, another study also predicted two
major compounds as candidate STEP inhibitors that could
be potentially used for AD treatment (Jamal et al., 2015).
Recently, a group of researchers combined molecular dynamics
simulations and fragment-centric topographical mapping to
identify transiently open cryptic pockets based on which
they identified 12 new STEP inhibitors. Furthermore, they
showed that the two most potent compounds ST2-5 and
ST3-5 (analogs of ST2 and ST3) could reversibly bind and
competitively inhibit STEP with selectivity for STEP against a
panel of protein phosphatases. Moreover, these potent inhibitors
were found to modulate the Tyr phosphorylation of both
ERK1/2 and Pyk2, have relatively no toxicity in PC12 cell
cultures, and also favor cell differentiation and migration
functions (Hou et al., 2020). However, most of these STEP
inhibitors are at their embryonic developmental level and
further rigorous studies are needed to evaluate their therapeutic
efficacy, selectivity, specificity and safety. It is unfortunate
to note that some still lack enough drug availabilities for
further development.

Although nearly all discussed diseases reported increase in
STEP activity leading to STEP inhibitor development, a decreased
activity of STEP has also been reported and STEP activator
could also be beneficial. Recently, the discovery of the first small
molecule allosteric activator of STEP (BI-0314) that binds to
the phosphatase domain has been reported (Tautermann et al.,
2019). BI-0314 is a hSTEP specific positive allosteric modulator
which, due to the low conservation of the residues in the
allosteric site, has been shown to be inactive when tested on two
other related tyrosine phosphatases (Tautermann et al., 2019).
However, further studies are warranted before in vivo testing of
this molecule is carried out.
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SUMMARY AND CONCLUDING
REMARKS

From the data reviewed in this study, it is evident that
increased STEP as a result of alteration of UPS, increased
translation, as well as decreased phosphorylation (PKA and PP1)
has been implicated in many neuropsychiatric diseases. This
increase in STEP generally leads to a decreased phosphorylation
of the STEP substrates which are basically found to be
synapse related proteins. They include, but are not limited
to, GluN2B, GluA2, GluA3, ERK1/2, p38, Fyn, Pyk2 and
SPIN90. These alterations lead to internalization of NMDA
and AMPA receptors, collapse and loss of dendritic spines
together culminating into synaptic plasticity and learning
and memory impairments, which are expressed in human
patients and animal models of these diseases as cognitive
deficits. In light of these observations, numerous studies have
provided evidence of cognitive improvements following STEP
inhibition. These improvements might be the reflection of
improvements of healthy synaptic markers and morphology,
reinforcing the role of STEP in AD and other neuropsychiatric
pathologies. The observations that STEP is implicated in
many neurological disorders, and the fact that modulating
STEP level and activity have some beneficial effects in these
disorders, make STEP a potential therapeutic target and led
to the development of STEP inhibitors. These inhibitors are
at their early developmental stage and, therefore, there is a
long way to go before their clinical application. Although STEP
inhibition has been reported, to be beneficial in improving
both biochemical and behavioral parameters, it should be
noted that, a study had reported that both genetic deletion
and pharmacological inhibition of STEP were associated with
thermal hyperalgesia and mechanical allodynia, accompanying
the increased GluN2B Tyr1472 and ERK1/2 Thr202/Tyr204
phosphorylation in the lumbar spinal cord (Azkona et al., 2016).
Moreover, a protective role of increased STEP activity has been
reported, whereby a transient NMDA receptors stimulation
increases STEP activity and appears to limit the duration of
activation of the excitotoxicity and death related p38 MAPK
and thus improving neuronal survival (Poddar et al., 2010).
These findings suggest that the side effects of STEP inhibitors
and the degree to which STEP should be inhibited have to be
meticulously considered.

It has been over three decades since STEP was discovered to
be involved in neurological diseases, however, there is still a lot

to explore in the molecular mechanisms of STEP. For example,
it will be interesting to investigate the molecular mechanisms
responsible for initiating STEP ubiquitination which will further
lead to a strategy in reducing STEP function. Moreover,
discovering more STEP substrates and upstream modulators
will also pave more opportunities in STEP therapeutics. Also,
it was recently found that the activity of STEP is modulated
by adenosine A2A receptor (A2AR) in neuronal cells. A2AR is
a G protein-coupled receptor which is widely expressed in the
brain where it regulates important functions, such as motor
behavior and cognition (Chen et al., 2014; Pinna et al., 2018), and
plays a key role in cell survival and neurodegeneration (Cunha,
2016). Interestingly, A2AR stimulation was found to result in
PKA activation (Fresco et al., 2004; Borea et al., 2018), and
was involved in cocaine-induced stimulation of STEP (Chiodi
et al., 2014). Moreover, A2AR is considered as a promising target
in the treatment of neuropsychiatric disorders, and so is STEP
(Zhang et al., 2010; Xu et al., 2014, 2018; García-Forn et al.,
2018). Recently, it was found that STEP activity was increased
in NSEA2A (a transgenic rats overexpressing A2ARs in the CNS)
compared to WT rats (Mallozzi et al., 2020). STEP was also
reported to mediate the cocaine-induced synaptic transmission
depression probably via reducing AMPA- and NMDA-mediated
excitatory post-synaptic currents (Chiodi et al., 2014).
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