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Abstract

Despite new insights in molecular features of leukemic cells and the availability of

novel treatment approaches and drugs, acute myeloid leukemia (AML) remains a

major clinical challenge. In fact, many patients with AML relapse after standard

therapy and eventually die from progressive disease. The basic concept of leukemic

stem cells (LSC) has been coined with the goal to decipher clonal architectures in

various leukemia-models and to develop curative drug therapies by eliminating LSC.

Indeed, during the past few years, various immunotherapies have been tested in

AML, and several of these therapies follow the strategy to eliminate relevant leuke-

mic subclones by introducing LSC-targeting antibodies or LSC-targeting immune

cells. These therapies include, among others, new generations of LSC-eliminating

antibody-constructs, checkpoint-targeting antibodies, bi-specific antibodies, and

CAR-T or CAR-NK cell-based strategies. However, responses are often limited

and/or transient which may be due to LSC resistance. Indeed, AML LSC exhibit mul-

tiple forms of resistance against various drugs and immunotherapies. An additional

problems are treatment-induced myelotoxicity and other side effects. The current

article provides a short overview of immunological targets expressed on LSC in

AML. Moreover, cell-based therapies and immunotherapies tested in AML are dis-

cussed. Finally, the article provides an overview about LSC resistance and strategies

to overcome resistance.
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1 | INTRODUCTION

Acute myeloid leukemia (AML) is a life-threatening malignancy charac-

terized by an uncontrolled expansion of myeloid blast cells in the bone

marrow (BM) and peripheral blood. Clinical presentation and courses

in AML vary among patients, depending on the type of AML, molecu-

lar and immunological features of clonal cells, patient-related variables

such as age or comorbidities, and response to treatment.1-8 In most

patients with de novo AML, induction poly-chemotherapy produces

complete remission (CR), and many of these CR-patients can be kept

in continuous CR by introducing consolidation therapy. Notably, con-

solidation therapy is applied with the aim to eliminate most or all of

the remaining leukemic (stem) cells after remission-induction ther-

apy.1,7 The most effective consolidation-therapy is allogeneic hemato-

poietic stem cell transplantation (HSCT).1,7 This form of consolidation

is typically offered to high-risk AML patients and those who relapse.

However, not all patients are fit enough for HSCT, and elderly

patients may not even tolerate multiple cycles of intensive chemo-

therapy. In patients who fail to respond to initial induction chemother-

apy or relapse after therapy, the prognosis is grave.

In the past 20 years, treatment of several AML variants has sub-

stantially improved which is mainly due to the availability of new

(targeted) drugs, improved diagnostics, better selection of patients for

various therapies (personalized medicine), and advances in HSCT

strategies.3-8 Still, however, many patients relapse or have resistant

disease. As a result, AML research is still moving and seeking new

ways to improve interventional therapies.

One strategy is to involve the immune system and to use targeted

drugs and/or specific lymphoid killer cells that can attack and elimi-

nate all AML cells (all subclones). Another related strategy is to kill all

AML cells that have a particular ability to propagate the malignancy

for longer or even unlimited time-periods.

The concept of leukemic stem cells (LSC) has been established to

explain subclonal architectures and hierarchies in acute and chronic

leukemias.9-14 In fact, leukemias are considered to be organized in cel-

lular hierarchies that include (a) more mature stages of leukemic cells

that have only a limited ability to divide and then disappear and

(b) LSC that have an unlimited capacity to divide and to self-renew,

thereby propagating the malignancy for unlimited time-periods.9-14

The LSC concept predicts that any type of targeted therapy or other

treatment approach can only be curative when (a) the approach does

not only attack the bulk of AML cells but also LSC, (b) all LSC in all

subclones of the disease exhibit the target(s), and (c) treatment is

independent of or overcomes LSC resistance.14-19 Initial studies

suggested that AML LSC reside primarily in a phenotypically more

immature, CD34+/CD38−/Lin− subset of the AML clones.9-11 How-

ever, depending on molecular features, aberration profiles, and the

diagnostic subvariant of AML, LSC are also detectable in a (phenotypi-

cally) more mature CD34+/CD38+ subset or even in CD34-negative

AML cell subsets.20,21

In the past few years, the LSC concept has attracted more and

more attention, and a rapidly expanding number of studies have dis-

covered and validated distinct molecular targets and target-pathways

in these cells.9-19 With regard to specific cell therapies and immuno-

therapies, surface membrane targets are of great interest. In fact, such

molecules are increasingly used to establish AML-eradicating

approaches. However, thus far, only a very few cell membrane antigens

expressed specifically on LSC, but not on normal lymphohematopoietic

stem cells, have been identified.

In this article, target expression profiles of AML LSC are reviewed,

and possibilities to design specific LSC-eradicating therapies in AML

are discussed, with special focus on antibody-based and cell-based

therapy. In addition, the article reviews the multiple forms and mecha-

nisms of LSC resistance and ways to overcome resistance.

2 | CELL SURFACE MEMBRANE
PHENOTYPE OF AML LSC

The three classic “stem cell features” of AML LSC are (a) their archaic

self-renewal capacity, (b) their long-term disease-propagating capabil-

ity in vivo, and (c) their capacity to survive well in extreme situations,

toxic exposures, and total quiescence.15,16 To document the first two

stem cell features, (a) + (b), it is standard to inject LSC into immuno-

compromised mice and to measure long-term engraftment. In initial

xenotransplant experiments, severe combined immunodeficient

(SCID) mice or nonobese SCID (NOD/SCID) mice were used.9-11 In

these studies, leukemic engraftment was only produced by CD34+/

CD38− AML cells but not by CD34+/CD38+ cells.9-11 Based on these

data, AML LSC were believed to reside selectively in a CD34+/CD38−

fraction of AML cells. Later, it was found that the residual immune

system of NOD/SCID mice can destroy CD38+ AML cells and that

after blocking the residual immune system, also CD38+ AML LSC frac-

tions can produce leukemic engraftment in the BM of NOD/SCID

mice.20 As a consequence, highly immunodeficient (and thus more

permissive) mouse subsets were used and were soon accepted as a

new standard to study AML LSC. One such standard-strain is NSG, a

NOD/SCID mouse model lacking a functional interleukin-2 receptor

Significance statement

Antibody-based and cell-based immunotherapies are emerg-

ing therapeutic approaches in applied hematology. How-

ever, although several attempts were made and several

molecular markers have been identified, no curative immu-

notherapy is available in acute myeloid leukemia (AML). One

explanation is that leukemic stem cells (LSC) are often resis-

tant and are residing in several different fractions of the

AML-clone. This article discusses novel markers and targets

expressed on LSC in AML, with emphasis on the potential

value of these antigens in the context of antibody-based

and/or cell-based therapies. Moreover, the article discusses

various limitations and possible pitfalls of such therapies.
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gamma-chain. In most AML subsets, NSG-engrafting AML LSC are

detectable in both, the CD34+/CD38− and CD34+/CD38+ subsets of

the malignant clone.20 In the blast phase (blast crisis) of chronic mye-

loid leukemia and in acute lymphoblastic leukemia, NSG-engrafting

stem cells are also found in both, the CD34+/CD38− and CD34+/

CD38+ subfraction of leukemic cells.22,23 By contrast, normal hemato-

poietic stem cells are CD34+/CD38− cells. The fact that AML LSC

reside in multiple fractions of CD34+ cells, and sometimes (rarely)

even in CD34-negative cell populations in some AML variants,21 is an

important issue when considering effective cell therapies and immu-

notherapies. Another important point is the molecular complexity and

the related subclone formation in AML.15-19

So far, little is known about phenotypic properties of AML LSC.

Based on LSC features described above, a surface marker or target can

only be considered as being “expressed on AML LSC,” when it is

detected on most or all CD34+/CD38− and most or all CD34+/CD38+

cells. Cell surface membrane structures that fulfill these criteria in most

major AML variants and in most (but not all) patients are Siglec-3

(CD33), Hermes (CD44), CD96, KIT (CD117), the interleukin-3 receptor

alpha-chain (CD123), AC133 (CD133), FLT3 (CD135), and CXCR4

(CD184) (Table 1).24-33 In approximately 50% of all patients with

de novo AML, both the CD34+/CD38+ and the CD34+/CD38− cell sub-

sets express the C-type lectin protein-1, CLL-1 (CD371).34 By contrast,

normal hematopoietic (CD34+/CD38−) stem cells do not express

CLL-1.34 Normal hematopoietic stem cells also lack or express only low

amounts of CD25, CD26, CD33, and IL-1RAP.35-37

Additional surface membrane antigens expressed on CD34+ or

CD34+/CD38− stem cells in AML (in subsets of patients) include,

among others, CD93 and CD96.30,38,39 In a smaller subset of patients,

AML LSC exhibit CD25, CD26, and/or IL-1RAP.36,37 AML stem cells

also display Campath-1 (CD52).40 However, this antigen is also

expressed on normal hematopoietic stem cells (Table 1).

Finally, AML LSC display various immune checkpoint antigens,

including CD47, PD-L1 (CD274), and the CTLA4 ligands CD80 and

CD86 (Table 2).41,42 Whereas CD47 is abundantly and almost invariably

expressed on LSC (and on normal stem cells), expression of PD-L1 is

commonly weak or lacking on AML LSC (Table 2). However, expression

of PD-L1 can be induced or augmented on AML cells (including LSC) by

exposure to certain cytokines, such as interferon-gamma (IFN-G)

and/or tumor necrosis factor-alpha (TNF-A). Depending on the cell

type, and culture condition, both cytokines are required to induce a

substantial upregulation of PD-L1 on AML cells (Figure S1).

TABLE 1 Expression of cell surface targets on CD34+/CD38− and CD34+/CD38+ stem and progenitor cells in AML and comparison to
normal hematopoietic stem cells (HSCs)

Antigena CD

Expression on stem/progenitor cellsb

Therapeutic concepts tested / developed in
preclinical studies or in clinical trials in AML

HSC AML LSC and progenitor cells

CD34+/CD38− CD34+/CD38− CD34+/CD38+

IL-2RA CD25 − +/− +/− Toxin-ligand

Siglec-3 CD33 + + + AbC, BiTE/TriKE, DART, CAR

Hermes CD44 + + + Ab, CAR

IAP CD47 + + + Ab, CARd

Campath1 CD52 +/− +/− +/− Ab

KIT CD117 + + + Ab, TKI, CAR

IL-3RA CD123 + + + Ab, Ligand-C, BiTE, DART, CAR

PROM1 CD133 + + + Ab, AbC, CAR

FLT3 CD135 +/− + + TKI, BiTE, CAR

CXCR4 CD184 + + + Ab

PD-L1 CD274 +/− +/−c +/−c Ab

CLL-1 CD371 − +/− + Ab, CAR

IL-1RAP n.c. − +/− + Ab

aData refer to the available literature and/or data obtained by multicolor flow cytometry in the labs of the authors.
bScore: +, strongly expressed on most or all cells; +/− weak expression on most cells or expressed on subsets of cells (10%-50%); −/+, weak expression on

cells or expressed on cells in a small subset of donors; −, not expressed on stem cells.
cPD-L1 expression can be induced or enhanced by exposure of AML cells to IFN-G and/or TNF-A.
dSo far developed mainly in solid tumors.

Abbreviations: Ab, (blocking or attacking) antibody; AbC, antibody-toxin/cytostatic-conjugate; AML, acute myeloid leukemia; BiTE, bi-specific T cell engager; CAR,

chimeric antigen receptor; CLL-1, C-type lectin-like molecule-1; CXCR4, C-X-C chemokine receptor type 4; DART, dual affinity retargeting agent; HSCs, hematopoi-

etic stem cells; IAP, integrin associated protein; IFN, interferon; IL-1RAP, interleukin-1 receptor accessory protein; IL-2RA, interleukin-2 receptor alpha chain; IL-

3RA, interleukin-3 receptor alpha chain; Ligand-C, ligand-toxin-conjugate; n.c., not yet clustered; PD-L1, programmed cell death-ligand 1; PROM1, prominin-1; TKI,

tyrosine kinase inhibitor; TNF, tumor necrosis factor; TriKE, tri-specific killer engager.
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3 | TARGETING AML LSC WITH
ANTIBODY-BASED DRUGS

So far, only a few antibody-based compounds have been developed

and evaluated clinically for their application and efficacy in patients

with AML.43-45 This can be explained by the fact that it is difficult to

identify cell surface membrane antigens that are expressed selectively

on AML LSC but not on normal hematopoietic stem cells. Indeed,

most targets are expressed on normal BM stem cells as well, but

expression levels are often lower compared to LSC, providing (hope

for) a clinically sufficient or even robust therapeutic window.25,29,45-47

Such antigens include, among others, CD25, CD26, CD33, CD93,

CD96, CD123, IL-1RAP, and CLL-1. However, of all these targets,

only a few have been developed clinically. Siglec-3 (CD33) was identi-

fied quite early as a potentially valuable surface target that is

expressed on AML cells and on AML LSC in excess over normal stem

cells.25,29,45

Gemtuzumab ozogamicin (GO) is a fully humanized CD33 anti-

body that is conjugated to the toxic drug calicheamicin through a

chemical linker.43-45 Initial studies have shown that GO can induce

remission in chemotherapy-refractory or relapsed AML and in the

year 2000, the drug was approved by the FDA. However, in subse-

quent clinical trials, the benefit of GO in relapsed/refractory AML

could not be confirmed.46 In addition, GO was found to produce long-

lasting cytopenias as well as veno-occlusive liver disease. More recent

studies have demonstrated that therapy with (less toxic doses of) GO

in combination with chemotherapy can indeed improve the overall

survival (OS) in AML patients with favorable cytogenetics but is less

efficacious in those with poor cytogenetic features.47-49 Moreover,

GO has recently been reported to improve the outcome in elderly

patients with AML.50 The clinical benefit was especially demonstrable

in AML patients in whom blast cells (CD34+ cells) exhibited CD33.51

Although GO was transiently removed from the market (since 2010),

the FDA has (re)approved GO for treatment of newly diagnosed AML

as adjunct to standard chemotherapy in 2017.52 Whereas a certain

therapeutic window is demonstrable with GO, the dose applied is

important, especially when combined with induction poly-chemother-

apy. Notably, lower doses of GO can in part reduce myelotoxicity

(prolonged cytopenia).

In recent years, substantial efforts have been made to develop

more potent CD33-targeting antibody-based drugs. Vadastuximab

talirine (SGN-CD33A) is a drug-conjugate that contains a humanized

anti-CD33 antibody and a DNA-targeting cytotoxic compound.53,54

SGN-CD33A has been described to be more potent in killing AML

blasts in chemotherapy-resistant disease compared to GO.54-56 How-

ever, the therapeutic window is relatively small, and when combined

with chemotherapy, hematologic toxicity is substantial.54-56 The phase

3 study of SGN-CD33A was prematurely closed because of toxicity

in 2017.

In the recent past, several attempts have been made to develop

drugs attacking AML LSC through the IL-3RA (CD123). An interesting

approach is to conjugate the ligand, IL-3, with a cytotoxic drug. The

diphtheria toxin DT388/IL-3 fusion-protein is such an agent.57-59 A

derivative of this compound, DT388 IL-3[K116W], was developed by

conjugating the toxin to a modified IL-3 protein, resulting in increased

binding-affinity.60 Subsequent studies have shown that DT388 IL-3

[K116W] is more effective than DT388 IL-3 in killing AML blasts.60

Whether this difference is relevant in vivo in patients with AML

remains uncertain. Efficacy of these agents presumably depends on

expression of the IL-3R on AML LSC. For both agents, however, the

therapeutic window is small as normal stem cells also display (low

amounts of) CD123. Another IL-3-toxin fusion protein is SL-401

TABLE 2 Expression of checkpoint
molecules on CD34+/CD38− and
CD34+/CD38+ stem and progenitor cells
in AMLa

Antigen CD

Antigen expression on stem/progenitor cells in AML

CD34+/CD38− CD34+/CD38+

T44 CD28 − −

IAP CD47 +++ +++

B7-1 CD80 +/− +/−

BL11 CD83 +/− +/−

B7-2 CD86 +/− +/−

MDR-1 CD243 − −

PD-L2 CD273 − −

PD-L1 CD274 + +

PD-1 CD279 − −

TIM-3 CD366 +/− +/−

aData refer to results obtained by multicolor flow cytometry in the lab of the authors. Scoring system:

staining index (SI) was calculated (ratio of median fluorescence intensities obtained with specific antibody

and isotype-matched control antibody) and scored according to the following grading system: −,
SI < 1.30; +/−, SI 1.31-3.00; +, SI 3.01-10.00; ++, SI 10.01-100; +++, SI > 100.

Abbreviations: AML, acute myeloid leukemia; IAP, integrin-associated protein; MDR-1, multidrug resis-

tance protein-1; PD-1, programmed cell death-1; PD-L1, programmed cell death-ligand 1; PD-L2,

programmed cell death-ligand 2; TIM-3, T cell immunoglobulin and mucin domain-containing protein-3.
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(tagraxofusp). In initial trials, this drug produced clinically meaningful

responses in a smaller subset of patients with heavily pretreated

AML.61,62 However, the clinical value of tagraxofusp in AML remains

uncertain. On the other hand, tagraxofusp has recently been reported

to be a most effective targeted agent in the treatment of patients with

plasmacytoid dendritic cell neoplasms.63 The drug received an

approval for this new indication by the FDA in 2018.

Another approach to target the alpha chain of the human IL-3R

(CD123) is to develop antibodies that can bind to CD123 with high

affinity and can thereby inhibit the binding and the effects of IL-3 on

AML cells.64,65 The CD123 antibody 7G3 identifies the N-terminal

domains of CD123, and acts as potent IL-3R-antagonist.64 This anti-

body, 7G3, can produce substantial growth-inhibitory effects in vitro

and in vivo on AML cells and AML LSC, while exerting less toxic

effects on normal hematopoietic stem cells.64 In subsequent studies,

7G3 was humanized and further engineered for optimal antibody-

dependent cytotoxicity, which resulted in the development of the

targeted antibodies CSL360 and CSL362.65,66 Both agents were

found to be effective in blocking the growth of AML blasts. However,

when evaluating efficacy of CSL360 in a clinical phase I trial in

chemotherapy-refractory AML, no major antileukemic activity was

observed in most patients enrolled.66 In a recent trial, talacotuzumab,

a humanized anti-CD123 antibody, was administered in combination

with decitabine in older AML patients not eligible for poly-chemother-

apy.67 However, the drug combination did not result in a better out-

come compared to decitabine alone.67

Other surface targets that have been considered in the context of

AML and antibody-mediated elimination of LSC include CD44, CD45,

CD47, CD93, CD96, CD157, CD330f, and CLL-1.8,30-34,38,43,68-70

However, so far, no major AML-eradicating activity was obtained in

clinical trials.

There are also a number of radiolabeled antibodies that have

been considered for application in AML. Among these agents are
131I-, 213Bi-, or 225Ac-conjugated anti-CD33 or CD45 antibodies, and
188Rhe-labeled CD66 antibody.71-74 Unfortunately, these antibodies

usually produce substantial hematologic toxicities, including prolonged

cytopenia (long-term aplasia) which is due to the accumulation of

these agents in various hematopoietic tissues thereby affecting also

normal hematopoietic stem and progenitor cells by cross-radiation. As

a result, such antibodies have to be applied in conjunction with a sub-

sequent HSCT.71-74 However, so far, it remains unknown whether

conditioning regimens with radiolabeled cytotoxic antibodies can

eliminate more LSC and can thus improve post-HSCT outcomes in

patients with chemotherapy-refractory AML.

4 | TARGETING AML LSC BY AGENTS
DIRECTED AGAINST IMMUNE CHECKPOINT
TARGETS

Several immune checkpoint molecules, such as CD28, CD47, PD-L1,

PD-L2, or TIM3, have been implicated in the resistance of malignant/

leukemic (stem) cells in diverse hematopoietic malignancies.

Moreover, it has been described that AML cells and AML LSC can

express one or more of these immune checkpoint antigens (Table 2,

Figure S1).31,41,42 As a result, several treatment concepts have been

proposed with the aim to overcome immunological resistance by

blocking these checkpoint molecules in AML.75-78 However,

responses to these antibody-based therapies appear to be variable

and are often transient. It has also been described that certain anti-

leukemic drugs, such as the hypomethylating agents, can promote

PD-L1 expression in neoplastic cells.79,80 Therefore, antibodies

targeting PD-L1 have been combined with these therapeutics in clini-

cal trials in patients with myelodysplastic syndrome (MDS) and

AML.81

Overall, little is known about mechanisms contributing to the

expression of PD-L1 in AML LSC. Three principle mechanisms may be

responsible: first, cytokines, especially IFN-G and TNF-A, are consid-

ered to induce/promote expression of this checkpoint antigen

(Figure S1).41,78,79,82 A second mechanism is oncoprotein-dependent

expression of PD-L1: in particular, various oncoproteins and related

signaling cascades, such as the JAK-STAT pathway or the MYC-path-

way, can contribute to PD-L1 expression on malignant (stem)

cells.41,83 Finally, as mentioned, some of the anti-AML drugs applied,

like the hypomethylating agents, can promote expression of PD-L1 on

AML cells.79,80 Subsequently, demethylating drugs, such as

azacytidine, were combined with PD-L1-targeting antibodies, with the

hope to increase antileukemic effects. However, a trial combining

azacytidine with nivolumab showed only modest results.81

In the recent past, molecular mechanisms contributing to

cytokine-induced expression of PD-L1 on AML (stem) cells have been

examined. In these investigations, the BRD4-MYC axis and the JAK-

STAT pathway were described as major drivers of PD-L1 expres-

sion.41,82,83 Correspondingly, the BRD4/MYC-targeting compound

JQ1 was found to block IFN-G-induced expression of PD-L1 on

LSC.41,82 However, it remains unknown whether targeting of PD-L1

expression on AML LSC by BRD4/MYC inhibitors is relevant in clinical

contexts. It is noteworthy here that these inhibitors also exert strong

direct antineoplastic effects on AML LSC.84,85

Other interesting checkpoint molecules in the AML context are

CD47, the CTLA4 ligands CD80 and CD86 and TIM-3.31,82,86 In

almost all patients with AML, LSC express CD47, and in many cases

these cells also display CD80, CD86, and TIM3 (Figure S2). CD47 is of

special interest, because it is a “do not eat me antigen” that mediates

the escape of AML (stem) cells from phagocytosis by macro-

phages.31,87 As a result, blocking of CD47 on LSC enhances their

uptake and elimination by macropahages.31,87 First clinical data with

CD47 antibody Hu5F9-G4 (Phase 1b trial) are also available and sug-

gest that such therapy is well tolerated and is effective alone or when

combined with azacytidine in AML patients.88

Another interesting checkpoint is TIM-3. This antigen and its ligand,

Galectin-9, act in a constitute autocrine loop that appears to be essential

for LSC survival in AML.86 The clinical implication of this observation

remains unknown. Overall, the clinical perspectives of checkpoint inhibi-

tors in AML remain unclear. Whereas combination strategies may be

promising, the real problem may be LSC resistance in AML.

CELL THERAPY AND IMMUNOTHERAPY IN AML 1335



5 | TARGETING OF AML LSC BY APPLYING
BI- OR TRI-SPECIFIC ANTIBODIES

The so-called bi-specific antibodies are engineered compounds that

consist of antigen recognition sites from two or more antibodies, thus

providing binding-interactions with two or multiple target antigens.

These antibodies have certain advantages compared to conventional

antibodies or monospecific toxin-conjugates. For example, several of

these bi-specific antibody-type drugs are able to recruit lymphoid

killer cells onto the malignant target cells.82,89,90 Bi-specific antibodies

can also be directed against key checkpoint molecules, such as PD-L1,

PD-1, or CD47. A clinically important point is that in most instances,

bi-specific antibodies do not need to internalize for therapeutic effi-

cacy as their major task is to recruit immune cells for killing LSC.89,90

There are several types of bi-specific antibodies applied in clinical

hematology.82,89-93 A detailed discussion of these compounds is

beyond the scope of this article. Classic bi-specific T cell-engagers

(BiTEs) are recombinant fusion-antibodies constructed to contain two

single-chain variable fragments arranged on a polypeptide-linker. By

contrast, dual affinity retargeting (DART) antibodies are diabodies con-

sisting of heavy- and light-chain variable domains of two antigen-

specificities linked to two polypeptide chains. The first successful bi-

specific antibody applied broadly in clinical hematology was

blinatumomab, a BiTE that binds CD3 and CD19 and thereby promotes

T cell-induced killing of (normal and neoplastic) B lymphocytes.91

In the past few years, several efforts have been made to develop

effective bi-specific antibodies for the treatment of AML.92-102 Such

antibodies are usually designed to recruit T cells and to recognizing

one of the following surface target antigens on AML (stem) cells:

CD33, CD123, and CD371 (CLL-1).91-101

Currently, the efficacy of these agents is evaluated in clinical tri-

als: CD33-directed bi-specific antibodies examined in the AML con-

text, are, among others, the CD33/CD3 antibody constructs AMG330

and AMG673, the tetravalent CD33/CD3 tandem-diabody AMV564,

and the humanized single-chain bi-specific CD33/CD3 construct

GEM333.48,82,103-105

Bi-specific antibodies directed against CD123 on AML LSC

include, among others, the CD123/CD3 DART flotetuzumab, the

CD123/CD3 bi-specific IgG1 antibody JNJ-63709178, and the

CD123-targeting bi-specific antibody XmAb14045.82 Flotetuzumab

was found to induce measurable antileukemic effects in 8/14 patients

with treatment-refractory AML, and in two of these cases a CR was

obtained.106 The human IgG1 bi-specific antibody-construct MCLA-

117 recognizing CLL-1 is also currently tested in AML patients in clini-

cal studies. So far, however, little is known about clinical efficacy and

toxicities of these BiTEs, DARTs, and other immune-cell-recruiting

agents in AML.48,82 One recurrent problem seems to be a cytokine

release syndrome (CRS). Additional side effects are, among others,

cytopenia and liver toxicity. However, in general, the BiTEs and

DARTs currently tested in the AML context, appear to be rather well

tolerated with acceptable adverse event profiles, although long-term

safety data are not yet available.

6 | TARGETING AML LSC WITH CHIMERIC
ANTIGEN RECEPTOR BASED THERAPEUTICS

During the past 5 years, several brave attempts have been made to

establish anti-AML therapies by infusing immune cells expressing

genetically adapted chimeric antigen receptors (CARs) (CAR-T or

CAR-NK).107-115 In general, CARs can be constructed against various

leukemia-related molecules for which an antibody is available, and the

introduced CAR-based modification of T or NK cells can redirect

these cells against leukemic (stem) cells in a HLA-independent man-

ner. Several different cell surface membrane antigens, displayed by

AML LSC, may serve as potential CAR-T or NK-cell targets. These

antigens are (among others) CD33, CD44, CD123, CD135 (FLT3),

CD371 (CLL-1), and Lewis Y (LeY).48,82,107-116 So far, however, only a

few CAR-based approaches have been translated from preclinical

studies into clinical trials in AML. In one report, a patient with a

heavily pretreated (therapy-resistant) AML was infused with anti-

CD33 CAR-T cells in a phase I trial.107 After having received CAR-T

cells, this patient developed a CRS as well as prolonged cytopenia,

and despite blast cell clearance, a relapse of AML was reported sev-

eral weeks after the start of therapy.107 In 2013, Ritchie et al reported

on a phase I trial using CAR-anti-LeY-T cells in AML.115 After infusion,

these CAR-T cells were detectable for several months. In this study,

the CAR-T cells were relatively well tolerated without major toxicity,

except cytopenia. However, only three patients responded, and after

a couple of months (1-23 months) all patients relapsed. Other CAR-T

cell-based therapies are currently being prepared in AML in preclinical

studies or are tested in phase I clinical trials.82,107-117 Based on the

observation that AML LSC display aberrantly expressed cell surface

target antigens and the encouraging preclinical data with CAR-T cells

recognizing CD123, CLL-1, FLT3, and other surface molecules, there

is hope that more specific and more effective CAR-T cell based

approaches will be developed for AML patients in the future.82,107-117

However, several issues and limitations have to be taken into

consideration when developing novel CAR-T cell-based therapies in

AML. In particular, apart from cost-related and logistic hurdles, CAR-T

cell treatment requires an extensive knowledge about the technique

of CAR and about various practical and technical details. As a result,

CAR-T or CAR-NK cell approaches can only be developed in highly

specialized centers where AML is in focus of preclinical and clinical

research. Second, a number of clinically relevant adverse events can

occur during CAR-T or CAR-NK cell therapy in AML, such as a leuke-

mia cell-lysis syndrome, a CRS, sustained cytopenia (aplasia), and addi-

tional “on-target but off-leukemia” toxicities. One major problem is

prolonged myelotoxicity especially when the CAR-T approach will also

eliminate normal stem cells.82,107-117 This problem may occur with

CAR-T cells directed against diverse stem cell antigens, including

CD33. Several strategies have been proposed to overcome this form

of toxicity. One is to combine the CAR-T cell approach with HSCT.117

A futuristic idea is to genetically inactivate CD33 in hematopoietic

stem cells to enable application of CD33-directed CAR-T cell

therapy.118
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Another important issue in CAR-based AML therapy is that cur-

rent approaches are not addressing the diversity and the related clonal

complexity of AML LSC, but rather focus on only one or two cell sur-

face targets.107-117 In this regard, it is important to recognize that

AML LSC are heterogeneous cells with varying combinations of cell

surface antigens and target structures.14-16,82 Since all of these sub-

clones can theoretically cause a relapse, it might be of utmost impor-

tance to develop poly-targeted CAR-T or CAR-NK cell strategies. A

related problem is that AML LSC exhibit multiple forms of LSC resis-

tance.13-19,82 In line with this notion, AML patients relapse quite fre-

quently after CAR-T or CAR-NK cell therapy. Therefore, one strategy

for the future could be to direct the CAR-T or CAR-NK approach

against multiple LSC-related cell surface targets on AML LSC, with the

aim to attack most or all AML LSC-subsets and thus most or all sub-

clones. An important question that remains here is whether such strat-

egy would still spare normal stem cells, even if all the targets that have

been selected are largely LSC-specific. Another open question is when

the CAR-T or CAR-NK cells should be applied in patients with AML.

Based on the toxicity-profile and the ability of CAR-T and CAR-NK cells

to eliminate even residual dormant LSC, one strategy may be to apply

CAR cells in AML patients at the stage of minimal residual disease.

Another strategy would be to apply CAR cells early in AML or even in

patients with pre-AML conditions (myelodysplastic or myeloprolifera-

tive neoplasms) with the hope that LSC are more responsive in these

patients than in patients with progressed, secondary, or relapsed AML.

7 | MOBILIZING NK CELLS OR T CELLS
AGAINST AML (STEM) CELLS

In a majority of the patients with AML, the production and activity of

T and NK cells are substantially impaired compared to T/NK cells in

healthy individuals. Based on this notion, a number of therapeutic

strategies have been coined with the idea to promote or even restore

T cell and/or NK cell production and T/NK cell activity in AML

patients and to mobilize these cells specifically against leukemic (stem)

cells.119-125 One such strategy is to expand allogeneic NK cell subsets

in vitro and to infuse these cells in AML patients together with donor

stem cells during HSCT.120-123 In fact, alloreactive NK cells are well

known to attack leukemic blasts, to improve engraftment, and to pro-

mote the graft-vs-leukemia effects of the immune system in AML

patients undergoing allogeneic HSCT.122-125 A number of different

studies using haplo-identical NK cell infusions have been reported in

patients with refractory/relapsed AML. In one of these trials, eight

patients with AML or MDS following prior HSCT underwent lympho-

depletion and received donor NK cell infusions and interleukin

(IL)-2.122 Although one patient achieved a CR, no benefit concerning

OS was reported and the donor NK cells were not detected after infu-

sion in these patients.122 All in all, the antileukemic effects of NK cells

in patients with AML are well documented, but there is still a debate

about the optimal approach to activate these cells against AML LSC.

In addition, it remains open how and when NK cell infusions should

be applied in these patients to obtain optimal results. An interesting

strategy is to induce antibody-mediated NK cell activity against AML

(stem) cells. Indeed, NK cells exhibit antibody-dependent cellular cyto-

toxicity, and various antibodies (eg, CD133 or anti-NKG2A) have been

described to mobilize NK cells against AML cells.126-129

As mentioned above, a number of attempts have been made to

develop CAR-NK cells against AML and AML LSC. However, it

remains unknown whether CAR-NK cells can better eliminate AML

(stem) cells compared to CAR-T cells.130 Another idea is to apply or to

boost both, NK cells and T cells, with the idea to augment antileuke-

mic effects by cooperative NK/T cell effects. Whether such an

approach would produce synergistic antileukemic effects remains at

present unknown.

In recent years, a number of efforts have been performed to acti-

vate (prime) NK cells with stimulating cytokines and to transform

these cells into optimized killer cells capable of attacking and eliminat-

ing AML LSC. Cytokine-induced killer cells (CIK) are in general gener-

ated by exposing blood lymphocytes to IL-1, IL-2 and/or IL-15.

Usually CIK are heterogeneous populations of killer cells exhibiting

both T-cell (CD3) and NK (CD56) cell markers. These CIK have strong

antileukemic effects and are able to introduce cytotoxicity against leu-

kemic (stem) cells in an MHC-restricted and an MHC-unrestricted

manner. A number of preclinical studies have been conducted with

CIK in AML and several clinical phase I trials using CIK in refractory/

relapsed AML patients have been performed.131-134 In most studies,

application of CIK was found to be a feasibility approach with accept-

able toxicity. In addition, the efficacy and antileukemic effects of CIK

could be demonstrated in some of the patients with relapsed/refrac-

tory AML.131,132 However, the CIK approach is not efficacious in all

patients with AML. Therefore, novel strategies around CIK are cur-

rently being explored. One strategy is to combine the CIK approach

with a CAR-T cell strategy.134 Whether such combined CIK-CAR-T

cell therapies are indeed able to kill and eliminate AML LSC remains

to be examined in clinical studies.

A more conventional and historical way to boost antileukemic

effects of immune cells is to induce NK- and T-cell expansion and acti-

vation by infusing IL-2. In earlier studies, however, no clinically mean-

ingful effects of IL-2 were observed in patients with AML. This may

be due to the fact that immune cell responses against IL-2 were

suppressed by radical oxygen species (ROS) produced by accessory

cells or immune cells. To overcome the ROS-mediated suppression of

immune cells, IL-2 infusions were combined with histamine injections

to block production of ROS.135-137 Such clinical studies with IL-2 plus

histamine were conducted in AML patients in CR as maintenance

approach. Although the protocol has practical issues, the approach

showed convincing results with an improved OS seen in CR patients

treated with IL-2 + histamine.136,137 As a result, this drug combination

(IL-2 plus histamine) was approved as maintenance therapy in AML

patients in CR by the European Medicines Agency (EMA) in 2008.

More recent data suggest that this maintenance therapy is mostly

effective in AML patients with normal karyotype.138 However, indi-

vidual patients with core binding factor mutated AML or FLT3-

mutated AML in CR may also benefit from this therapy.82 It has also

been described that IL-2 and histamine can mobilize the NK- and
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T-cell system in these patients.139,140 However, it remains unknown

whether such maintenance approach is in general efficacious and

whether during this therapy minimal residual disease in AML can dis-

appear. Moreover, patients and doctors have to be trained in detail

for this therapy to avoid adverse reactions to IL-2 and/or histamine.

In fact, both agents, when injected too quickly, can induce serious

adverse events, including hypotension, tachycardia, and shock.

Another related issue is that this therapy has to be performed over a

certain time-period. As a result, IL-2 + histamine is not broadly used

as maintenance therapy in AML patients although some efficacy has

been demonstrated.

8 | RESISTANCE OF AML LSC AGAINST
IMMUNOTHERAPIES

One of the major problems in the treatment of AML is resistance of

immature progenitor cells and stem cells against various therapies.14-18,82

In fact, AML LSC are considered to exhibit multiple forms of resistance

and several of these resistance mechanisms may play a role in the failure

to respond to immunotherapies.82 Moreover, AML LSC are heteroge-

neous populations of cells with varying molecular aberration profiles and

multiple, independent (subclone-specific) resistance mechanisms in indi-

vidual patients.15-17 An overview of resistance mechanism relevant to

AML LSC is shown in Table 3. In general, resistance-types in AML LSC

can be divided into: (a) intrinsic stem cell resistance common to LSC in all

AML subclones, (b) acquired (secondary) resistance mediated by addi-

tional (acquired) somatic mutations, loss of tumor suppressor antigens, or

loss of target-antigens, (c) niche-induced resistance, and (d) immunologic

resistance induced by expression of certain checkpoint molecules, like

PD-L1, on AML LSC (Table 3). Intrinsic resistance is commonly related to

LSC quiescence and the expression or lack of certain drug-transporter

antigens. This type of resistance often applies to treatment with conven-

tional antileukemic drugs. A promising approach to overcome the

intrinsic form of LSC resistance is to use antibodies, antibody-toxin-

conjugates, or CAR-T/CAR-NK cell strategies directed against surface

TABLE 3 Resistance of AML LSC against immunotherapies: mechanisms and strategies

Type of resistance and mechanism Strategies proposed to overcome resistance

Intrinsic stem cell resistance Antibody-based therapies; HSCT; CAR

LSC dormancy Antibody-mediated targeting of dormant LSC; activating LSC with cytokines to induce cell cycling

(cytokine-priming)—and combination with chemotherapy or TKIa; CAR; HSCT

Expression of efflux-transports like MDR1 MDR1-targeting drugs; HSCT; TKIa; CAR antibody-based therapies; HSCT; TKIa; CAR

Lack of drug transporters (lack of drug

uptake)

Antibody-based therapies; HSCT; TKIa; CAR

Niche-mediated resistance Niche cell-targeting drugs, drug combinations, antibody-based therapies; HSCT; CAR; TKIa

Osteoblastic LSC niche Osteoblast cell-targeting drugs and/or BET/MYC-targeting drugsb

Vascular LSC niche Endothelial cell-targeting (anti-angiogenic) drugs

LSC-retention in niche Mobilizing drugs (plerixafor); HSCT; CAR; TKIa

LSC-hypermobilization (eg,

CD26-mediated)

Mobilization blocker (eg, gliptins or CD26 Ab); antibody-based therapies; HSCT; CAR; TKIa

Acquired resistance of LSC mutations in

subclones

Drug combinations; antibody-based therapies; HSCT; CAR; TKIa

Immune checkpoint-induced Checkpoint-targeting antibodies

resistance of LSC Checkpoint-targeting CAR cells or BiTE BET/MYC-targeting drugsb; antibody-based therapies;

HSCT; CAR; TKIa

Loss of cell surface targets Mixtures of antibodies; HSCT; CAR directed against 2 or more surface targets; drug combinations +

HSCT or CAR

General immunosuppression Repeated T/NK cell infusion

Blocked immune cells Bi-specific antibodies against LSC and immune effector cells; HSCT; CAR; TKIa

Loss of CAR-T cells or CAR-NK cells Repeated infusions of CAR cells; cytokine-induced expansion of CAR cells; drug combinations;

HSCT; TKIa

Development of blocking antibodies against

CARs

Use of single domain scFvs humanize the scFvs; HSCT; TKIa

aSo far, a few TKIs have been approved for treatment of FLT3-mutated AML: these drugs are FLT3-targeting drugs, including midostaurin and gilteritinib.

Midostaurin also acts on KIT D816V, which is frequently detected in patients with CBF+ AML.
bSeveral BET/MYC-targeting drugs reportedly suppress the cytokine-dependent and oncogene-mediated PD-L1 expression in AML LSC as well as

osteoblast-induced resistance.

Abbreviations: AML, acute myeloid leukemia; BiTE, bi-specific T cell-engager; CAR, chimeric antigen receptor; HSCT, hematopoietic stem cell transplanta-

tion; LSC, leukemic stem cells; MDR1, multidrug resistance gene product 1; NK cells, natural killer cells; scFvs, single chain variable fragments; TKI, tyrosine

kinase inhibitor.
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molecules expressed on dormant LSC. However, not all of the quiescent

LSC may express these target antigens, and the target-negative sub-

clones and their LSC survive such immunotherapies. One possibility

to overcome this form of “subclone-related resistance” would be to

administer combinations of targeted drugs, combinations of targeted

antibodies with a CAR-approach, or to combine antibody-based or CAR-

based therapy with conventional drugs or chemotherapy or a stem cell

transplantation approach (Table 3).

The acquired form of resistance of AML LSC may or may not be

responsive to various forms of immunotherapy or cell-based thera-

pies. For example, it may well be that antibody-based or cell-based

immunotherapies can overcome mutation-induced (acquired) resis-

tance of AML LSC against tyrosine kinase inhibitors. However, it may

also happen that mutation-induced (acquired) resistance of AML LSC

is associated with a “loss” of a certain surface target, such as CD33.

Moreover, treatment of AML patients with CD33-targeted antibodies

or CAR-T cells may well lead to a selection of CD33-negative sub-

clones and thus resistance (Table 3).

The immunologic type of resistance of AML LSC is often associ-

ated with expression of immune checkpoint molecules, such as PD-L1,

CD47, TIM3, or other checkpoint molecules.75-82 Multiple factors and

mechanisms may be responsible for expression of such checkpoint mol-

ecules on AML LSC. For example, PD-L1 expression on AML LSC can

be induced by oncoproteins, certain cytokines (like IFN-G and TNF-A)

or by a combination of both. In addition, certain drugs, like the hyp-

omethylating agents, can promote PD-L1 expression.79,82 There are

also other, therapy-related, forms of resistance in AML patients receiv-

ing CAR cells that have to be considered. For example, a decrease or

loss of CAR-T or CAR-NK cells and/or the development of auto-

antibodies against these cells may contribute to resistance (Table 3).

Finally, recent data suggest that niche cell-mediated resistance of

LSC against chemotherapy and targeted drugs plays an important role

in AML.82 Niche cells contributing to LSC resistance are stromal cells,

endothelial cells, and osteoblasts. However, so far, it remains

unknown whether niche-mediated resistance of LSC against immuno-

therapies may also occur and may play a functional role.

Together, multiple forms of LSC resistance may be relevant in

AML and several of these resistance mechanisms may act together to

induce overt resistance of an AML patient against immunotherapies

(Table 3).82 As a result, current research is focusing on novel treat-

ment approaches with the goal to overcome resistance of LSC against

therapy. One promising approach is to combine various therapies

directed against LSC, including antibody-based therapies, CAR cells,

HSCT, and targeted drugs. With regard to niche-mediated resistance,

a number of strategies targeting niche cells (eg, endothelial cells) or

targeting LSC-niche interactions have been proposed. One approach

is to mobilize LSC out of the niche using antibodies against CXRC4 or

CD44, with the hope to make LSC more sensitive against certain

drugs.33,68,141 Another concept is to target LSC and niche cells in a

combined approach by applying drugs or drug combinations that can

suppress or even kill both cell types. However, so far, no curative con-

cept could be established with such approach, although several anti-

bodies and drug combinations have been tested in clinical trials.

One general problem with drug combinations in AML therapy is

toxicity, especially myelotoxicity. In fact, when normal stem cells also

express the same cell surface targets, long-term cytopenia may occur.

One approach to solve this problem is to select LSC-specific surface

targets that are not expressed (or only expressed in trace amounts) on

normal stem cells. Another approach is to combine immunotherapy

with stem cell transplanation. Finally, drugs with different mechanisms

of actions and different target pathways can be selected, which often

reduces (instead of enhancing) toxicity, especially when these drugs

produce synergistic antineoplastic effects on AML cells, so that the

concentration of the individual drugs can be reduced.

9 | CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

During the past 10 years, our knowledge about LSC, their target

expression profiles, and their interactions with the stem cell niche

and with certain immune cells, has increased substantially. At the

same time, several new forms of cell therapy and other immunother-

apies have been developed, and have recently been tested in

patients with refractory or relapsed AML in clinical studies. These

treatment approaches include new antibody-based cytotoxic drug-

conjugates, administration of IL-2 and histamine, application of

CAR-T or CAR-NK cells, checkpoint-specific therapies, and bi- or tri-

specific antibodies that recruit immune cells and/or cytokines to

their target cells (LSC). In many instances, combinations of immuno-

therapies and intensive therapy are applied, and sometimes, drugs

are multitargeted agents with the aim to achieve a broad effect on

many or even most LSC subclones in AML. A similar combination

effect is obtained when high-dose chemotherapy and HSCT are

combined with donor lymphocyte infusions, which is typically

offered to patients with relapsed or refractory AML. However, in

many cases, not all LSC can be eradicated, which is due to the multi-

ple forms of LSC resistance. Another major problem is toxicity pro-

duced by stem cell-directed immunotherapies in AML which is often

due to the fact that normal stem cells display the same or almost the

same targets compared to AML LSC. Therefore, current research is

focusing on the development of new approaches to overcome LSC

resistance and the toxicity issues with immunotherapy in AML.

Whether these approaches will improve outcomes in AML therapy

remains at present unknown.
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