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Activity in anterior sensorimotor regions is found in speech production and some
perception tasks. Yet, how sensorimotor integration supports these functions is unclear
due to a lack of data examining the timing of activity from these regions. Beta (∼20 Hz)
and alpha (∼10 Hz) spectral power within the EEG µ rhythm are considered indices of
motor and somatosensory activity, respectively. In the current study, perception conditions
required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and
noisy conditions. Production conditions required covert and overt syllable productions
and overt word production. Independent component analysis was performed on EEG
data obtained during these conditions to (1) identify clusters of µ components common
to all conditions and (2) examine real-time event-related spectral perturbations (ERSP)
within alpha and beta bands. 17 and 15 out of 20 participants produced left and right
µ-components, respectively, localized to precentral gyri. Discrimination conditions were
characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS)
prior to and during stimulus presentation and later alpha event-related desynchronization
(ERD) following stimulus offset. Beta ERD began early and gained strength across
time. Differences were found between quiet and noisy discrimination conditions. Both
overt syllable and word productions yielded similar alpha/beta ERD that began prior to
production and was strongest during muscle activity. Findings during covert production
were weaker than during overt production. One explanation for these findings is that
µ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert
attentional/motor processes. µ-alpha ERS may index inhibitory input to the premotor
cortex from sensory regions prior to and during discrimination, while µ-alpha ERD may
index sensory feedback during speech rehearsal and production.
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INTRODUCTION
It remains critical to disentangle the neural networks that allow an
infinite array of co-articulated vocal tract gestures to be produced
by a speaker and effortlessly sensed, recognized, and understood
by a listener. Though these two complimentary and highly inte-
grated processes often are examined independently, considerable
recent effort has focused upon understanding how classical pro-
duction mechanisms (e.g., the motor system) are involved in
speech perception (D’Ausilio et al., 2012; Mottonen and Watkins,
2012; Murakami et al., 2013) and classical perception regions (i.e.,
auditory and somatosensory systems) are involved in production
(Burnett et al., 1998; Stuart et al., 2002; Purcell and Munhall,
2006). Sensorimotor integration (SMI) provides an interface for
speech perception and production and is fundamental to efficient
verbal communication (e.g., Perrier et al., 1996; Rogalsky et al.,
2011; Tourville and Guenther, 2011; Guenther and Vladusich,

2012; Moulin-Frier and Arbib, 2013). However, questions regard-
ing the nature and timing of SMI prevail and relatively few studies
address SMI in both speech perception and production within
the same experiment (Wilson et al., 2004; Pickering and Garrod,
2007; Hickok et al., 2011; Adank, 2012).

Neuroimaging techniques have identified the auditory dorsal
pathway (posterior temporal lobe, inferior parietal lobe, premo-
tor cortex; PMC) as playing a role in both speech perception and
production. In production, there is clear evidence of coopera-
tion between feedforward and feedback systems for motor control
(Houde and Nagarajan, 2011). Within speech perception, SMI is
explained through independent yet convergent “dual streams” of
neural activity (Scott and Johnsrude, 2003; Hickok and Poeppel,
2004; Hickok, 2009, 2012; Rauschecker, 2012; Specht, 2013).
The ventral stream (predominantly within auditory regions) pro-
vides speech decoding and comprehension. The dorsal stream
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(including activity from sensorimotor regions) is thought to
provide an audio-motor interface linking auditory to articula-
tory goals in speech perception. Though dorsal stream activity
has been reported to be left-lateralized, there is recent evidence
of bilateral organization (Cogan et al., 2014; Simmonds et al.,
2014).

Despite evidence that the motor system is relatively inac-
tive in non-degraded passive listening conditions (Scott et al.,
2009; Szenkovits et al., 2012) and lesions demonstrating that
damage to motor regions has little effect on the ability to per-
ceive speech (Rogalsky et al., 2011), a number of perception
tasks have been identified in imaging studies in which motor
regions are recruited. These conditions typically have been those
in which task demands are increased and include categorical dis-
crimination of foreign phonemes (Callan et al., 2006), phoneme
segmentation (Burton et al., 2000; Locasto et al., 2004; Burton
and Small, 2006), and speech in noise (Osnes et al., 2011; Alho
et al., 2012; D’Ausilio et al., 2012). Thus, motor system activity in
speech perception may be context dependent, in addition to being
variable across individuals (Szenkovits et al., 2012).

Given equivocal findings, the role of the motor system in
speech perception is hotly debated. Perhaps a more pertinent
question is the extent to which dorsal stream motor activity func-
tionally enhances the perceptual process (Gallese et al., 2011).
Hickok et al. (2011) maintain that contributions of the motor sys-
tem are strictly modulatory and depend on the cognitive demands
associated with a particular task. Others support a more func-
tional role (Binder et al., 2004; Meister et al., 2007; D’Ausilio
et al., 2009; Sato et al., 2009; Osnes et al., 2011; Grabski et al.,
2013; Mottonen et al., 2013). In these studies, dorsal stream
articulatory-motor based speech representations are associated
with accurate speech perception in some tasks. However, to
bolster understanding of the functional contributions of dorsal
stream motor activity in speech perception, it is necessary to
address the time-course of activity relative to acoustic stimulation
in addition to task performance.

For example, Callan et al. (2010) used a combination of fMRI
and magnetoencephalography (MEG), measuring PMC activ-
ity in a forced-choice, syllable discrimination in noise task. For
correct discriminations, activity in the PMC preceded and imme-
diately followed acoustic stimulation. These findings were inter-
preted as PMC activity functionally aiding in speech perception
and were explained from a Constructivist perspective. That is,
previous sensorimotor experiences bestow the motor system with
the capacity to provide early top-down influences (in the form of
predictive internal models) to help constrain sensory analysis and
aid in perception (Sohoglu et al., 2012). In a manner that is also
consistent with earlier analysis-by-synthesis theories (Stevens and
Halle, 1967), these data suggest motor activity should be main-
tained while the internal model (i.e., hypothesis) is compared to
the sensory consequences. Had motor activity in this study been
found in a different time frame, other explanations might arise.
For example, if motor activity only coincided directly with the
occurrence of acoustic stimuli and was not related to functional
performance, it might be interpreted from a Direct Realist view-
point (Fowler, 1986), as a motor reflection of sensory stimulation.
Similarly, motor activity that followed acoustic offset by 200 ms or

more might be interpreted as covert rehearsal while the acoustic
stimuli are kept in working memory (Callan et al., 2010).

Oscillatory models offer a time-sensitive means of examin-
ing neural processing of speech. These models posit a strong
relation among phases of delta, theta, and gamma oscillations,
and the temporal envelope of speech with respect to the encod-
ing of discrete speech units (e.g., syllables). This relation reflects
further evidence of auditory-motor coupling grounded in evo-
lutionary adaptation for efficiency (Ghitza et al., 2012; Giraud
and Poeppel, 2012). Measuring changes in spectral power across
beta (15–25 Hz) and alpha (8–13 Hz) frequency bands may offer
an additional method for understanding sensorimotor process-
ing. Beta suppression is often associated with the anticipation
of performance (Gladwin et al., 2006; Arnal, 2012; Bickel et al.,
2012; Zaepffel et al., 2013) of motor activity and predictive (i.e.,
a priori) top-down coding for sensory analysis. Alpha bands
dominate the human brain and the enhancement or suppression
of alpha band power often is considered an indicator of cor-
tical activation/inhibition (Klimesch, 2012). Event-related alpha
desynchronization (ERD) is considered a release from inhibition
for sensory gating and may also contribute to predictive coding.
In addition, alpha power generally is suppressed with increased
attentional and cognitive demands. Weisz and colleagues provide
evidence of an independent auditory alpha generator, implicating
a link to speech perception (Weisz et al., 2011; Obleser and Weisz,
2012). Additionally, in support of alpha sensitivity to speech per-
ception, they found that magnitude of alpha suppression across a
broad (prefrontal, temporal, parietal) network corresponded with
reductions in speech stimulus intelligibility.

The rolandic mu (µ) rhythm is characterized by an arc-shape,
alpha and beta band peaks, and typically localized to sensorimo-
tor regions (Pineda, 2005; Hari, 2006). Spectral power within the
µ-rhythm is often considered a down-stream measure of motor
activity from the PMC (Pineda, 2005). Suppression of the power
in the alpha band of the µ-rhythm (µ-alpha) has been used to
measure sensorimotor activity in response to viewing biologi-
cally relevant (i.e., reproducible) vs. non-relevant visual stimuli
such as hand (Oberman et al., 2005; Perry and Bentin, 2010) and
face (Muthukumaraswamy and Johnson, 2004) movements, visu-
ally presented speech (Crawcour et al., 2009), and motor imagery
tasks (Tamura et al., 2012; Holler et al., 2013). µ-alpha also sup-
presses to action-based sounds (Pineda et al., 2013), speech stim-
uli in segmentation tasks, and when identifying speech in noise
(Cuellar et al., 2012). Additionally, Tamura et al. (2012) reported
µ-alpha suppression to overt and imagined speech production
under various types of auditory feedback. Their findings suggest
that µ-alpha suppression in speech provides an index of feed-
back in audio-vocal monitoring. This interpretation seems logical
considering that µ-alpha suppression is thought to arise from
somatosensory activity when guidance is needed for ongoing
movement (Hari, 2006). Considering also that µ-beta suppres-
sion is indicative of motor activity, identifying patterns of µ-alpha
and µ-beta ERS/ERD across speech tasks is likely to reveal further
important information about the timing of motor and sensory
contributions to SMI in speech processing.

To this end, Bowers et al. (2013) recently employed an EEG
technique to study SMI during speech perception, adapting a

Frontiers in Psychology | Language Sciences July 2014 | Volume 5 | Article 656 | 2

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


Jenson et al. Sensorimotor integration in speech perception and production

similar design from an fMRI and MEG study (Callan et al., 2010).
Specifically, participants passively listened to and actively discrim-
inated (i.e., forced choice, same or different) between pairs of
syllables (/ba/ and /da/) and tone sweeps presented in different
signal-to-noise ratios (SNRs). Raw data from 30 EEG record-
ing channels were analyzed via independent component analysis
(ICA). ICA is blind-source separation (i.e., linear decomposition)
tool that can be used both as a strong filter and a means of inde-
pendent and spatially fixed sources of neural activity (Delorme
and Makeig, 2004; Makeig et al., 2004; Onton et al., 2006). Left
and right µ-rhythm component clusters with characteristic spec-
tral peaks at ∼10 Hz and ∼20 Hz (Hari, 2006), maximally local-
ized to the sensorimotor cortex with activation extending into the
PMC, were identified in most participants. Time-frequency anal-
ysis of µ components using event-related spectral perturbation
(ERSP) analysis showed ERD in the beta band that was strongest
when speech was accurately (>95% correct) discriminated in
noise with a SNR of + 4 dB. Most importantly, in this condi-
tion only, µ-beta suppression (i.e., motor activity) began prior
to speech perception and peaked immediately following stimulus
offset. The findings were interpreted in accord with Callan et al.
(2010) and others, suggesting that PMC/sensorimotor regions
can readily contribute to speech perception (e.g., Skipper et al.,
2007). From an oscillatory perspective, they were interpreted
as evidence of early top-down influences from the motor sys-
tem (i.e., internal models), helping to constrain auditory analysis
in shared channels between sensorimotor and auditory regions
(Arnal and Giraud, 2012).

Bowers et al. (2013) demonstrated that this event-related EEG
technique with subsequent ICA/ERSP analysis is suitable for mea-
suring SMI in speech perception. However, it is important to note
that all their conditions employed background noise. Mottonen
et al. (2013) used rTMS to impair motor representations from the
lips and found impaired speech discrimination, suggesting that
auditory-motor dorsal stream activity is important for speech dis-
crimination in normal as well as degraded conditions. Alho et al.
(2012) reported similar findings using evoked potentials. More
generally, µ suppression has been found in anticipation of cor-
rectly predicted visual targets suggesting functional support in the
task from attentional/motor networks (Bidet-Caulet et al., 2012).
Hence, a salient question that remains pertains to the extent to
which patterns of beta suppression in noisy speech discrimina-
tion tasks can disassociate the influences of a degraded listening
environment from those functionally related to accurate cate-
gorical perception (Specht, 2014). To further understand how µ

rhythms respond in speech discrimination tasks, it is necessary to
examine the time-course of µ ERS/ERD in a quiet discrimination
condition.

Regions within the dorsal stream help mediate sensorimo-
tor control in speech production (Houde and Nagarajan, 2011;
Hickok, 2012; Rauschecker, 2012). Feed-forward motor plans are
generated that, once properly trained, allow for fluid genera-
tion of co-articulated speech gestures at an appropriate speaking
rate (Tourville and Guenther, 2011). In addition, inverse for-
ward models (i.e., efference copies) of predicted sensory con-
sequences are sent from motor regions (i.e., premotor/motor
cortex) to higher order auditory (e.g., superior temporal sulcus)

and somatosensory (e.g., inferior parietal lobe) sites for dynamic
comparisons with auditory and somatosensory production, pro-
viding the neurophysiological basis for an ongoing feedback loop.
As forward prediction is compared with the intended targets
and subsequently integrated with the true sensory (i.e., acous-
tic) and somatosensory consequences of production, corrective
feedback is returned to motor control centers in a manner so
efficient as to allow for online correction should a mismatch
occur between predicted consequence and the articulatory goal.
According to dynamic state feedback control (SFC) models,
across the time course of any given speech production, complex
dynamic interplay can exist between feedforward and feedback
control in response to ongoing changes in vocal tract configura-
tions and acoustic/somatosensory perturbations (Ventura et al.,
2009; Houde and Nagarajan, 2011; Golfinopoulos et al., 2011;
Hickok, 2012, 2014). Hence, as in speech perception, the addi-
tion of temporal data from regions within dorsal stream networks
is likely to help foster a better understanding of the feedforward
and feedback dynamics in speech production.

The largest obstacle to deploying imaging techniques with high
temporal resolution such as EEG and MEG to speech production
is signal contamination from muscle artifact. It is well known
that myogenic activity from eyes (e.g., blinking), lips, head, and
jaw produces robust electrical activity in frequency ranges broad
enough to spuriously influence most neural activity. In addition,
due to volume conduction, the effects of myogenic activity are
not focal and can influence recordings from all cranial electrodes
(McMenamin et al., 2011). Due to this limitation, EEG and MEG
studies targeting language production networks have employed
a variety of experimental designs intended to circumvent overt
speech production. These designs have typically involved delayed
or covert speech production. As evidence exists showing similar-
ities in neural activity in overt and covert production tasks, Tian
and Poeppel (2010, 2012) including the generation of internal
models (Sams et al., 2005; Tian and Poeppel, 2010), covert pro-
duction often provides a viable substitute for overt production
tasks. However, in terms of SMI, the two tasks are different and
may not share all the same neurophysiology (Ganushchak et al.,
2011), especially in some pathological conditions with compro-
mised sensorimotor control such as stuttering (Max et al., 2003;
Loucks and De Nil, 2006; Watkins et al., 2008; Hickok et al.,
2011; Cai et al., 2014; Connally et al., 2014). Other studies have
stopped short of measuring activity during production, instead
relying on oscillatory data from a time window prior to actual
production. In this vein, a number of ERP studies have measured
‘lexical’ access and morphological encoding strategies (Hirschfeld
et al., 2008; Costa et al., 2009; Dell’acqua et al., 2010; Strijkers
et al., 2010). Whole head MEG data have revealed patterns of
µ-alpha suppression in auditory regions with µ-beta suppres-
sion in auditory-motor (i.e., dorsal stream) integration regions
(Gehrig et al., 2012). Similarly, Herman et al. (2013) measured
real-time changes in oscillatory data from syllable encoding and
pre-production time periods to identify discrete input/output
operations within the dorsal stream phonological loop, again
highlighting the value of temporal information.

Improvements in source estimations and data analysis tech-
niques, along with continued widespread availability appear to
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be contributing to a resurgence of EEG. ICA has been suggested
as an effective technique for separating neural from myogenic
activity on the basis of the assumption of temporal and spatial
independence of components. Therefore, especially when stereo-
typical in nature, myogenic activity can be separated from neural
activity in the unmixing process following ICA training on suffi-
cient data (Delorme and Makeig, 2004; Onton et al., 2006; Gwin
et al., 2010). The use of ICA in this capacity has been demon-
strated to remove movement artifact while performing hand
movements (Shou et al., 2012), walking and running (Gwin et al.,
2010; Lau et al., 2014), and in distinguishing distinct patterns
of electro-cortical activity in knee vs. ankle movements (Gwin
and Ferris, 2011). However, its application to speech production
has been limited. Though seemingly daunting, Tran et al. (2004)
reported successfully using ICA to remove artifact from stuttered
speech in children. In addition, other studies have demonstrated
that ICA can be used to reveal neural activity not evident in
univariate analyses (Geranmayeh et al., 2012; Simmonds et al.,
2014).

Though there is reason for optimism regarding the potential
use of EEG with ICA for measuring neural activity in speech
production tasks (Ganushchak et al., 2011), concerns remain
regarding the potential for ICA to adequately remove all mus-
cle artifact. These include reduced validity for localization in
intracerebral space, the fact that muscle artifact is often non-
stereotypical and therefore not always suited for identification via
ICA, and that a substantial portion of the variance in the whole
EEG signal (i.e., up to 67% of components) can be accounted
for by pure myogenic activity, reducing spectral power in neu-
ral components of interest (McMenamin et al., 2009; Shackman
et al., 2009; McMenamin et al., 2010, 2011). It is clear that pre-
liminary investigations using ICA in speech production should
proceed cautiously using simple productions.

As a launching point, the current study focuses on activity
from µ components for the following reasons. First, they are
ubiquitously found in EEG recordings, particularly when iden-
tified via ICA. Thus, the possibility of yielding µ components
in ICA decomposition remains high even when muscle compo-
nents predominate. Second, µ rhythms typically are localized
to primary motor/PMC regions, which are key sites within the
dorsal stream. The PMC, in particular, is bi-directionally con-
nected to higher-level auditory and somatosensory regions via
the arcuate and longitudinal fasciculi. Its location and connectiv-
ity allow it to serve as an important intermediary for integrating
forward prediction (internal modeling) and sensory feedback in
both perception and production (Houde and Nagarajan, 2011;
Rauschecker, 2012). Third, µ-ERS/ERD already has revealed real-
time data interpreted as predictive coding in speech perception
(Bowers et al., 2013). Alpha and slow beta bands which are con-
tained within the µ rhythm are the only frequency domains that
display ERS/ERD sensitivity to stimulus and/or task (Klimesch,
2012). Therefore, further time-frequency analyses of µ rhythms
potentially may reveal important information about SMI in
production.

There are two main goals in this study. The first is to bol-
ster understanding of the timing and function of dorsal stream
activity in speech perception by examining ERS/ERD patterns

in quiet and noisy discrimination conditions. The second is to
provide initial evidence that, via the application of ICA/ERSP,
the use of EEG can be extended into the realm of speech pro-
duction. Collectively, the intention is to show that ICA can be
used accurately to identify dorsal stream sensorimotor µ com-
ponents common to both speech perception and production. It
is first hypothesized that right and left µ components, localized
to sensorimotor/PMC regions, will be found across perception
and production conditions. By placing EMG electrodes on the
upper and lower lip, it also is anticipated that ICA will iden-
tify prominent perilabial muscular activity. Once µ components
are identified, the second hypothesis is that ERSP analyses will
provide differential time-frequency measures of alpha and beta
ERS/ERD. Real-time oscillatory changes in the spectral power of
alpha and beta bands of the µ rhythm are expected to provide
novel information regarding the timing of SMI in speech percep-
tion and production that may be interpreted via dual stream/SFC
models. Additionally, significant activity from perilabial compo-
nents is expected only in overt production, allowing it to be
mapped in real-time to SMI activity.

MATERIALS AND METHODS
PARTICIPANTS
Twenty right-handed English-speaking adults (17 female and
3 males) with a mean age of 23.94 years (range 21–39 years)
were recruited from audiology and speech pathology classes at
the University of Tennessee Health Science Center. Participants
reported no diagnosed history of communicative, cognitive, or
attentional disorders. Handedness dominance was assessed using
the Edinburgh Handedness Inventory (Oldfield, 1971). This study
was approved by the Institutional Review Board of the University
of Tennessee Health Science Center. Prior to the experiment,
participants provided signed informed consent on a document
approved by the Institutional Review Board.

STIMULI
Perception
/ba/ and /da/ syllables were created using AT&T naturally speak-
ing text-to-speech software which employs synthetic analogs of a
human male speaker. Syllable pairs were generated such that half
of the stimuli were composed of different syllables (e.g., /ba/ and
/da/) and the other half were identical (e.g., /ba/ and /ba/). The
stimuli were low-pass filtered below 5 KHz and normalized for
root-mean-square (RMS) amplitude. Each syllable was 200 ms in
duration. Each syllable pair was also separated by 200 ms, result-
ing in a total of 600 ms from the first syllable onset to the second
syllable offset (Figure 1).

For one condition (discrimination in noise; Ndis), syllable
pairs to be discriminated were embedded in white noise with
a SNR of +4 dB. This SNR was chosen as it has been shown
previously (Bowers et al., 2013) to produce discrimination accu-
racies > 95% in a similar group of participants. In the other
discrimination condition (discrimination in quiet; Qdis), syllable
pairs were presented without background noise. To prevent dis-
crimination response bias (Venezia et al., 2012), in both Qdis and
Ndis stimuli sets, there were equal numbers of syllable pairs that
were identical as there were different.
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FIGURE 1 | Single-trial timelines for perception and production

conditions. Timelines for 5000 ms (−3000 to 2000 ms) in passive noise
condition (Pasn), discrimination conditions (Qdis & Ndis), and production
conditions (Img, SylP, and WorP).

Production
Speech targets were syllable pairs, similar to those used in the dis-
crimination tasks above, and tri-syllable nouns (initiated with /b/
or /d/ and followed by a vowel). They were displayed centered in
Microsoft PowerPoint slides with plain black backgrounds in large
white Arial font (size 56). Figure 1 shows the timelines for epochs
in both perception and production conditions.

DESIGN
A 6-condition within-subject design was employed. Based on
extant literature, the conditions were created to increase motoric
demands incrementally (i.e., from the perceiving of white
noise to overtly producing tri-syllable words). Participants were
required to:

(1) passively listen to white noise (Pasn).
(2) discriminate (same or different) between pairs of syllables in

a quiet background (Qdis).
(3) discriminate (same or different) between pairs of syllables in

a noisy background (Ndis).
(4) imagine producing a pair of syllables (Img).
(5) overtly produce (i.e., say) a pair of syllables (SylP).
(6) overtly produce (i.e., say) tri-syllable nouns initiated by /b/

or /d/ and followed by a vowel (WorP).

Thus, condition 1 (Pasn) required no discrimination and was
a control task for the two discrimination conditions (Qdis
and Ndis). Conditions 2–5 employed /ba/ and /da/ syllables.
Conditions 2 and 3 (Qdis and Ndis) required same/different
discriminations of random /ba/ and /da/ combinations, while
conditions 4 and 5 required covert (Img) and overt (SylP) produc-
tion of randomly selected /ba/ and /da/ combinations. Condition
6 (WorP) also required overt production, but in this condition

tri-syllable nouns were used as opposed to the 2-syllable combi-
nations employed in the SylP condition. In the WorP condition,
words meeting these criteria were selected from Blockcolsky et al.
(2008). Examples of these words include “dialog,” “butterscotch,”
“daffodil,” and “buffalo.”

PROCEDURE
The experiment was conducted in an electronically and magneti-
cally shielded, double-walled, sound-treated booth. Participants
sat in a comfortable reclining armchair with their heads and
necks well supported. Compumedics NeuroScan Stim 2 version
4.3.3 software was used to present stimuli to participants via
a PC computer and record button-press responses. A button-
press response was required for all three perception conditions
because anticipation of a button-press has previously been known
to elicit µ-rhythm ERD (Makeig et al., 2004; Graimann and
Pfurtscheller, 2006; Hari, 2006). Hence, in the Pasn condition,
the button-press was used as a control for the required button-
press response in the discrimination conditions and to ensure
that participants were paying attention in each trial. The cue to
respond was a 100 ms, 1000 Hz tone that was presented at the end
of the epoch (i.e., +2000 ms). In the Pasn condition, participants
were instructed simply to listen passively to the noise and press
the designated button after hearing a pure tone cue in each trial.
Designation of button-press responses (right or left hand) was
counterbalanced across all subjects and experimental conditions.
Performance in the discrimination conditions was evaluated by
calculating the percentage of correct trials.

In the production conditions, stimuli appeared on a 69.5 ×
39.0 cm display placed 132 cm in front of the reclining chair.
The stimuli appeared on the screen for 1 s. Participants were
instructed to begin their production response immediately when
the stimulus disappeared from the monitor. In the Img condition
participants were told to imagine saying (i.e., covertly produc-
ing) the pair of syllables while refraining from making any overt
articulatory movements or vocalization. In the SylP and WorP
condition, participants were instructed to speak the syllable pair
or word in their normal speaking voice. All overt speech produc-
tions were easily completed in the time window (2 s) following
the cue to speak. All conditions were presented in two blocks of
40 trials each. The order of the 12 blocks (6 conditions × 2 blocks)
was randomized for each participant.

EEG ACQUISITION
Sixty-eight electrode channels were used to acquire whole-head
EEG data. These included two electromyography (EMG) and
two electrocardiogram (ECG) electrodes. Electrode configura-
tion was based upon the extended international standard 10–20
(Jasper, 1958) method using an unlinked, sintered NeuroScan
Quik Cap (Towle et al., 1993). All recording electrodes were refer-
enced to the common linked left (M1) and right (M2) mastoids.
The electro-oculogram (EOG) was recorded by placing electrodes
on the left superior orbit and the left inferior orbit (VEOG) as
well as the lateral and medial canthi of the left eye (HEOG)
to monitor vertical and horizontal eye movements, respectively.
The two surface electromyography (EMG) electrodes were placed
at midline above the upper lip and below the lower lip for the
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purposes of collecting perilabial EMG data related to speech
production.

EEG data were collected using Compumedics NeuroScan Scan
4.3.3 software and the Synamps 2 system. The raw EEG data
were filtered (0.15–100 Hz) and digitized via a 24-bit analog-to-
digital converter at a sampling rate of 500 Hz. Data collection was
time-locked to time point zero at the onset of acoustic stimuli
delivery in speech perception trials and the cue to begin speak-
ing in production trials. Thus, in the perception conditions, time
zero referenced the acoustic onset of the first syllable. In the
production conditions, syllable and word stimuli were ortho-
graphically displayed on the monitor between times -1000 ms and
zero. Hence, disappearance of the text at time zero was the cue for
participants to begin speaking (Figure 1).

EEG DATA PROCESSING
EEGLAB 12 open source software (Delorme and Makeig, 2004)
was used to process all EEG data by performing the following
steps for individual and group processing/analysis.

(1) Individual processing/analysis:

(a) 12 raw EEG files (6 conditions x 2 blocks) were pre-
processed for each participant.

(b) Independent component analysis (ICA) was performed
on all concatenated files across all conditions for each
participant.

(c) All neural and non-neural dipoles were localized for each
independent component (IC) identified.

(2) Group analysis:

(a) Using the STUDY module of EEGLAB 12, two separate
analyses were performed using ‘in head’ only (neural)
and ‘all’ (neural and non-neural) ICs.

(b) Principal component analysis (PCA) subsequently was
used to identify and cluster common components across
participants.

(c) Left and right µ clusters were identified from the ‘in-
head’ STUDY, whereas the EMG cluster representing
perilabial muscle activity was identified from the ‘all’
STUDY.

(d) µ clusters were localized using equivalent current dipole
(ECD) and current source density (CSD) analyses.

(e) Time-frequency analyses (measuring changes in spec-
tral power across time) were performed by measur-
ing event-related spectral perturbations (ERSP) in the
left and right µ clusters as well as in the EMG
cluster.

Details of each step in the data processing / analyses are described
below.

Processing/analysis of EEG data from each participant
Data pre-processing. Raw data from both 40-trial blocks in
each condition were: (1) appended to make a single 80 trial
data set for each condition; (2) downsampled to 256 Hz to
decrease computational requirements for ICA processing; (3)

FIGURE 2 | Stereotypic muscle activity from perilabial EMG electrodes.

Example of filtered and epoched EEG data from the WorP condition
showing stereotypical EMG activity during speech production.

epoched into 5000 ms segments with individual epochs span-
ning from −3000 to +2000 ms around time zero; (4) band-
pass filtered (3–34 Hz) to ensure that alpha and beta could be
identified while filtering muscle movement from surrounding
frequencies; (5) re-referenced to mastoid electrodes; (6) visu-
ally inspected for gross artifact (> 200 µV), which was man-
ually removed; and (7) pruned to remove trials with incorrect
responses or response latencies greater than 2 s in the Qdis and
Ndis conditions, although few trials were removed (see below).
A minimum contribution of 40 epochs per participant per con-
dition was required for inclusion in the experiment. However,
the average number of usable trials across participants per con-
dition far exceeded the minimum of 40 required for inclusion.
Figure 2 shows an example of EEG activity from 5 trials in
one participant in the WorP condition following filtering and
epoching. Critically, the muscle activity from the EMG com-
ponent appears to be relatively stereotypical in nature (e.g.,
Figure 2), thereby facilitating ICA efforts to separate the neural
activity from the muscle activity in the subsequent ICA signal
decomposition.

Independent component analysis (ICA). Prior to ICA training,
pre-processed EEG data for each participant were concatenated
across all 6 conditions so that a single set of ICA weights could
be obtained. This allowed for a comparison of activity to be made
across conditons within spatially fixed ICs. An extended Infomax
algorithm (Lee et al., 1999) was used to decorrelate the data
matrix prior to ICA rotation. ICA training was provided using the
“extended runica” algorithm in EEGLAB 12 with an initial learn-
ing rate set to 0.001 and a stopping weight of 10–7. Following
decomposition, 66 ICs were yielded for each participant reflecting
the total number of recording electrodes (68 – 2 reference elec-
trodes, M1 and M2). Scalp maps for each IC were obtained by
projecting the inverse weight matrix (W−1) back onto the spatial
EEG channel configuration.

Following ICA decomposition, equivalent current dipole
(ECD) models for each component were computed using a
boundary element model (BEM) in the DIPFIT toolbox, freely
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available at sccn.ucsd.edu/eeglab/dipfit.html (Oostenveld and
Oostendorp, 2002). Standard 10–20 electrode coordinates were
warped to the head model followed by automated coarse-
fitting to a BEM, yielding a single dipole model for each
of 1320 ICs (66 ICs × 20 participants). Dipole localiza-
tion requires back-projecting the signal to a source that may
have generated the scalp potential distribution for a given
IC, and then computing the best forward model to explain
the highest percentage of scalp map variance (Delorme et al.,
2012). Residual variance (RV) in dipole localizations were
also computed, referring to the potential mismatch between
the initial scalp map and the forward projection of the ECD
model.

Group data analyses
EEGLAB STUDYs. Group data analyses were conducted via the
EEGLAB STUDY module. The STUDY module allows ICA data
from multiple participants across conditions to be analyzed using
specified designs. In the current study, the designs specified were
dictated by the within-subjects conditional differences of inter-
est. The STUDY module allows further filtering to be applied
with respect to the RV in dipole localization and inclusion vs.
exclusion of out-of head dipoles. Thus, ICA files with dipole
information from each individual (see above) were applied to
the two separate STUDY modules. For the purposes of measur-
ing neural activity, only “in-head” dipoles with RV< 20% were
analyzed.

For the purposes of identifying perilabial EMG activity, a sec-
ond STUDY was conducted that included “all” dipoles from in
head and outside the head. In this second STUDY, the RV crite-
rion was raised to 50% (Gramann et al., 2010) dipoles because
EMG activity emanates from outside the head and by nature,
muscular movement incurs higher unexplained RV.

Principal component clustering of ICs. In both the “in head”
and “all” STUDYs, component pre-clustering was performed on
the basis of common scalp maps, dipoles, and spectra. The K-
means statistical toolbox (implemented in EEGLAB; Delorme
and Makeig, 2004) then used these criteria to group similar
components from each participant via PCA. After removal of
outliers (3 SD from any cluster mean), components from the
“in head” STUDY were assigned to 20 possible neural clus-
ters, which included left and right sensorimotor µ clusters.
Components in the “all” STUDY were assigned to 66 possible
clusters and included one non-neural cluster depicting perilabial
EMG activity.

Final component designation to left and right µ clusters was
based primarily on the PCA followed by individual inspection
of spectra, scalp maps, and dipoles of all components within
those clusters and neighboring clusters. Final inclusion criteria
for membership to µ clusters included localization to BA 1–4,
and 6 (i.e., somatosensory regions, primary motor and premo-
tor regions) and characteristic µ spectra, though over 90% of
components emanated from BA 6.

Components in the “all” STUDY were assigned to 66 possible
clusters, most of which, as expected, depicted non-neural activity.
The cluster characterizing perilabial EMG activity was found on

the basis of dipole location and ERSP analysis showing activity
only in overt production tasks (see below).

µ cluster source localization. ECD source localization is sim-
ply from the average (x, y, z) coordinate of all the IC dipoles
(identified via the DIPFIT module) within a given cluster.
Alternatively, standardized low-resolution brain electromagnetic
tomography (sLORETA) uses current source density (CSD) dis-
tribution from electrical potential measures across the scalp to
address the inverse problem and provide an estimate of source
localization (Pascual-Marqui, 2002). The head model uses a
Talairach cortical probability brain atlas, digitized at the Montreal
Neurological Institute (MNI). EEG electrode locations are cross-
registered between spherical and realistic head geometry (Towle
et al., 1993). Spatial resolution of 5 mm is achieved by sampling
6239 voxels in 3-D brain space. For each IC that contributed to
the two µ clusters, the inverse weight projections on the origi-
nal EEG channels were exported to the sLORETA. Cross-spectra
were computed and mapped to the standard Taliarach brain atlas
cross-registered with the Montreal Neurological Institute (MNI)
coordinates, yielding sLORETA estimates of CSD for left and
right µ dipoles in the “in-head” STUDY. To evaluate the statis-
tical significance of dipole locations across participants, statistical
comparisons relative to zero (i.e., no activation) were computed
(Grin-Yatsenko et al., 2010). Paired (Student) t-tests were con-
ducted on frequencies between 4 and 33 Hz (1000 frames) with
the smoothing parameter set to 1 (single common variance for all
variables), using 5000 random permutations yielding corrected
t-value thresholds and statistical significance (p < 0.001) for all
6239 voxels.

While these two methods of EEG source localization were
expected to produce similar results (Bowers et al., 2013), for
reliability purposes it was deemed useful to use both techniques.

Time-frequency analysis (change in spectral power across time).
ERSP analyses were used to compute changes (scaled in normal-

ized dB units) in power across time (i.e., time-frequency analysis)
within the spectral range of interest (4–33 Hz). Time-frequency
transforms were derived using a Morlet sinusoidal wavelet set
at 3 cycles at 3 Hz, rising linearly to 20 cycles at 40 Hz. The
1000 ms pre-stimulus period was selected from the silent inter-
trial interval to serve as a baseline for each trial. These baselines
were constructed from a surrogate distribution based on esti-
mates of spectral power from 200 randomly selected latency
windows from within the 1000 ms inter-trial interval (Makeig
et al., 2004). Subsequent individual ERSP changes from baseline
over time were computed using a bootstrap resampling method
(p < 0.05 uncorrected). The single trial current for all exper-
imental conditions for frequencies between 7 and 30 Hz and
times from −500 to 1500 ms were entered in the time-frequency
analyses.

In the “in-head” STUDY, differences in cross-conditional
ERSPs in right and left µ clusters were computed using per-
mutation statistics (2000 permutations) with a 95% confidence
interval (p < 0.05). The random distribution represents the
null hypothesis that no condition differences exist. Type I error
was controlled by correcting conservatively for false discovery
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rates (pFDR; Benjamini and Hochberg, 2000). Statistical anal-
ysis in the perception conditions used a 1 × 3 (Pasn, Qdis,
Ndis) repeated measures ANOVA design. Post-hoc comparisons
examined differences between Pasn vs. Qdis and Pasn vs. Ndis
conditions. In the production conditions, a 1 × 3 repeated mea-
sure ANOVA design examined differences in ERSP activity across
the Img, SylP, and WorP conditions. A post-hoc paired compari-
son examined differences between SylP and WorP conditions. In
the “all” STUDY, cross-conditional ERSPs were computed in the
production conditions using a 1 × 3 repeated measure ANOVA
design.

RESULTS
DISCRIMINATION ACCURACY
In participants that contributed to µ clusters, the average num-
ber of useable trials (out of 80) across participants in each
condition were: Pasn = 73.8 (SD = 7.2); Qdis = 74.8 (SD =
4.6); Ndis = 69.0 (SD = 11.4); Img = 75.0 (SD = 5.8); SylP
= 71.1 (SD = 7.4); WorP = 69.9 (SD = 8.0). In the Qdis con-
dition, all participants discriminated with 91–100% accuracy.
In the Ndis condition, all except one participant discriminated
with 84–100% accuracy. The remaining participant discriminated
with 65% accuracy. The average discrimination accuracies in the
Qdis and Ndis conditions were 97.3 and 94.4%, respectively. A
paired t-test indicated that mean discrimination performance
was not significantly different (p > 0.05) in these conditions.
The average response latencies in the Qdis and Ndis conditions
were 504 and 545 ms, respectively. A paired t-test again indi-
cated that these latencies were not significantly different (p >

0.05). Together, these findings suggest that both discrimination

tasks were performed with similar high levels of accuracy and
efficiency. It should be noted again that trials with incorrect dis-
criminations were eliminated from the data so the EEG analysis
was limited to correct productions only.

µ AND EMG CLUSTER CHARACTERISTICS
As predicted by the first hypothesis, 17/20 and 15/20 partici-
pants produced components with< 20% unexplained RV that
contributed to left and right µ clusters, respectively. For the left
µ cluster, the average Talaraich ECD location was [−41, 4, 46],
while on the right it was [46, 0, 39]. The percentage of unex-
plained RV in these single dipole models was 10.1 and 8.7%
for the left and right hemispheres, respectively. sLORETA anal-
yses revealed significantly activated voxels (p < 0.001) associated
with µ clusters. Maximum current source densities were found at
Talairach [−45, −10, 45] on the left vs. [45, −5, 40] on the right.
In accord with findings by Bowers et al. (2013), the two localiza-
tion techniques produced similar results, here allowing sources
of µ activity to be maximally localized within the precentral gyri
with activity spreading across the PMC and sensorimotor regions.
Figures 3 and 4 respectively display the scalp maps (A), spectra
(B), ECD dipole clusters (C) and CSD maxima (D) for left and
right µ clusters, respectively. The EMG cluster was characterized
by non-neural ICs with an average of 21.3% unexplained RV.

TIME-FREQUENCY ANALYSES IN PERCEPTION (Pasn, Qdis AND, Ndis)
CONDITIONS
Figure 5 shows Van Essen maps (generated using sLORETA)
of significant voxels contributing to left (A) and right (B) µ

clusters, followed by time-frequency (ERSP) analyses within

FIGURE 3 | Cluster results for left µ component. (A) mean scalp potential
distribution (W−1) scaled to RMS microvolts, (B) mean spectra of the
components within the cluster for each condition, (C) distribution of

equivalent current dipoles within the cluster, and (D) maximum current source
density voxels (t-values) with greater values in darker colors and smaller
values in lighter colors (at p < 0.001 corrected for multiple comparisons).

FIGURE 4 | Cluster results for right µ component. (A) mean scalp potential
distribution (W−1) scaled to RMS microvolts, (B) mean spectra of the
components within the cluster for each condition, (C) distribution of

equivalent current dipoles within the cluster, and (D) maximum current source
density voxels (t-values) with greater values in darker colors and smaller
values in lighter colors (at p < 0.001 corrected for multiple comparisons).
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FIGURE 5 | Mean left and right ERSPs and sLORETA solutions for

perception conditions. Rows A and B show sLORETA solutions for
left and right µ clusters, respectively, depicted on a 3D Van Essen
average template, followed by mean time-frequency ERSPs
(event-related spectral perturbations) as a function of perception

conditions, before, during, and after stimulus offset for (A) left µ

clusters with (1) contrasts between Pasn and Qdis and (2) contrasts
between Pasn and Ndis; and (B) right µ clusters (red, ERS, blue,
ERD). The last frame in each row shows significant differences across
conditions (pFDR< 0.05).

the 7–30 Hz bandwidth. The ERSP analyses show significant
ERS/ERD changes from baseline in the Pasn, Qdis, and Ndis
conditions. The last frame in each row shows statistical ERSP dif-
ferences across conditions (pFDR < 0.05), thus supporting the
second hypothesis.

For the left µ cluster, relative to the Pasn, alpha ERS began
prior to acoustic stimulation and gradually gave way to alpha
ERD beginning in low alpha frequencies (8–11 Hz) following
acoustic offset in both discrimination conditions (Qdis and

Ndis). Beta ERD in both discrimination conditions began in
a narrow bandwidth (17–19 Hz), growing stronger and spread-
ing across beta frequencies during and immediately following
the acoustic stimulation condition. Post-hoc analyses (shown in
Figures 5A1,A2) show differential patterns of significant beta
ERD and alpha ERS/ERD in Pasn vs. Qdis comparisons and Pasn
vs. Ndis comparisons.

Patterns of alpha/beta ERS/ERD were similar yet weaker and
more diffuse in the right µ cluster compared to those on the left.
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It followed that post-hoc ERSP comparisons of Qdis and Ndis to
Pasn comparisons for right µ activity did not yield additional data
of interest.

TIME-FREQUENCY ANALYSES IN PRODUCTION (Img, SylP AND, WorP)
CONDITIONS
Figure 6 shows Van Essen maps (generated using sLORETA)
of significant voxels contributing to left (A) and right (C) µ

clusters, followed by time-frequency (ERSP) analyses within
the 7–30 Hz bandwidth. The ERSP analyses show significant
ERS/ERD changes from baseline in the Pasn, Qdis, and Ndis
conditions. The last frame in each row shows statistical ERSP dif-
ferences across conditions (pFDR < 0.05), again supporting the
second hypothesis. Figure 6B shows the average ECD dipole loca-
tion for the EMG components followed by ERSP analyses with
statistical differences across conditions.

Significant EMG ERS (i.e., activity indicative of lip movement)
in the SylP and WorP conditions began ∼300 ms after the cue
to initiate speech. In both left and right µ clusters, alpha/beta
ERD relative to baseline began in all production conditions up
to 500 ms before the cue to speak. However, alpha/beta ERD in
SylP and WorP conditions was significantly stronger (pFDR <

0.05) than in the Img condition during overt speech production

(i.e., coinciding with EMG activity). Post-hoc analyses in both left
and right µ clusters showed no ERSP differences in SylP vs. WorP
conditions.

As µ-ERD was significantly weaker in Img relative to overt pro-
duction (SylP and WorP) conditions, ERSPs for all components
contributing to left and right µ clusters were examined in the
Img condition. On the left, only 8 of 17 participants displayed µ-
ERD in this condition. The others either showed ERS or negligible
change. On the right, 6 of 15 showed µ-ERD, 2 showed patterns
of alpha ERS with beta ERD, and the others showed either ERS or
negligible change.

DISCUSSION
In accord with the aims and hypotheses of this study, left
and right µ components were identified across perception and
production tasks. 85 and 75% of participants submitted com-
ponents with ∼10% unexplained RV in left and right µ com-
ponents, respectively. This proportion of useable µ components
is similar to that found in other studies (e.g., Nystrom, 2008;
Bowers et al., 2013), though the proportion of unexplained RV
is slightly higher, possibly due to the inclusion of motor tasks.
Bilateral localization of µ rhythm source maxima to the pre-
central gyrus with activity spreading across the premotor and

FIGURE 6 | Mean left and right ERSPs and sLORETA solutions for

production conditions. Rows A and C show sLORETA solutions for left and
right µ clusters, respectively, depicted on a 3D Van Essen average template,
followed by mean time-frequency ERSPs (event-related spectral

perturbations) as a function of production conditions, before, during, and after
stimulus offset. The last frame in each row shows significant differences
across conditions (pFDR < 0.05). Row B shows activity within the EMG
component from perilabial myogenic activity.
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sensorimotor cortices is consistent with accepted sources of the
rhythm (Pineda, 2005; Hari, 2006) and important roles in speech
perception/production (Skipper et al., 2007; Sato et al., 2009;
Callan et al., 2010; Houde and Nagarajan, 2011; Tourville and
Guenther, 2011). As these cortical sites are known to play impor-
tant roles in SMI for both speech perception and production and
µ rhythms are comprised of frequency bands that are sensitive
to the demands of speech processing, this finding supports the
subsequent examination of real-time activity within these clus-
ters for better understanding the temporal dynamics of activity in
the dorsal speech stream.

TIME-FREQUENCY ANALYSES IN PERCEPTION CONDITIONS
Similar to previous investigations (Makeig et al., 2004; Graimann
and Pfurtscheller, 2006; Hari, 2006), anticipation of a button-
press response in the Pasn condition yielded low-level increases
from baseline in bilateral µ-ERD that gained slightly in strength
with temporal proximity to the response. Discrimination con-
ditions herein (Qdis and Ndis) also employed button-press
responses, hence controlling for this effect in the statistical anal-
ysis. The Qdis and Ndis conditions produced similar highly
accurate syllable discriminations and response reaction latencies
such that differences between µ ERS/ERD in these conditions are
attributable to the presence or absence of noise. Both conditions
produced similar bilateral patterns of µ ERS/ERD that were gen-
erally stronger in the left hemisphere than the right, supporting
left hemisphere dominance for SMI in speech perception (Hickok
et al., 2011).

µ-alpha
Activity in the alpha band was characterized initially by ERS
occurring prior to stimulus onset. ERS gradually gave way to
ERD (Figure 5), with suppression first in low alpha (i.e., 8–10 Hz)
and then high alpha (11–13 Hz). Alpha ERS was stronger and
the transition occurred later in the Ndis condition than in the
Qdis condition. Alpha rhythms are found globally across the cor-
tex and their power can vary with numerous cognitive states and
processes (Klimesch, 2012). Therefore, it is necessary to interpret
alpha ERS/ERD relative to the tasks that induced them. Enhanced
alpha (i.e., ERS) often is associated with cognitive load in work-
ing memory and attention tasks (Leiberg et al., 2006; Jensen et al.,
2007; Haegens et al., 2010). It is thought to be an index of corti-
cal inhibition of sensory information irrelevant to a given task,
functioning to help sharpen attention to relevant information
(Klimesch, 2012; Wilsch et al., 2014). In speech perception, this
type of “active sensing” has been described in phenomena such as
in the “cocktail party” effect, where specific attention to relevant
speech cues helps filter similar competing background speech
(Schroeder et al., 2010; Zion Golumbic et al., 2012).

Weisz et al. (2011) provide compelling evidence for an inde-
pendently generated auditory alpha that is responsive to speech
perception. Parsimonious with notions of increased cognitive
load and consistent with the current findings, signal degradation
of speech by noise vocoding has also been shown to enhance alpha
activity (Obleser and Weisz, 2012). The observed differences in
early alpha ERS between the Qdis and Ndis conditions support
these notions. On the other hand, in speech perception tasks,

alpha ERD has been found while evaluating speech (Shahin et al.,
2009). Late occurring posterior alpha ERD has been related to
increased speech intelligibility (Obleser and Weisz, 2012). Both of
these findings are consistent with the notion of alpha ERD during
accurate performance of perceptual and memory tasks (Klimesch
et al., 2006). In addition, µ-alpha is suppressed in auditory speech
perception tasks (Cuellar et al., 2012; Pineda et al., 2013). Hence,
the current findings of late alpha ERD suggest that following stim-
ulus offset, the two syllables were being evaluated by participants
in the decision-making process.

µ-beta
In both discrimination conditions, significant beta ERD (rela-
tive to Pasn) was found across the time course of trials, prior to,
during, and after acoustic stimulation. Beta ERD spread from nar-
row (17–19 Hz) to wide (15–30 Hz) beta bands while gaining in
strength in both discrimination conditions. However, beta ERD
occurred earlier in the Qdis than the Ndis condition. Bowers et al.
(2013) previously showed that early beta ERD occurred when dis-
criminating speech but not tones. They suggested that in speech
perception tasks, early beta ERD also can be explained as a func-
tion of predictive coding. That is, internal models are posited to
be generated in motor regions that are delivered to higher order
auditory regions (i.e., superior temporal sulcus) to help constrain
analysis and functionally improve speech discrimination accuracy
(Callan et al., 2010; Bowers et al., 2013). These findings are also
consistent with those of Mottonen et al. (2013), in that degraded
conditions do no appear necessary to induce motor activity in
speech discrimination. These models are thought to be available
because of the considerable experience of humans generating the
movements that produce these sounds. In addition, this predic-
tive coding may have been fine tuned within the experiment. That
is, requiring participants to accurately discriminate syllables 160
times (80 per condition) may have elicited anticipatory attention
to speech processing.

µ-alpha and beta in discrimination conditions
The patterns of alpha and beta µ ERS/ERD found in quiet and
noisy accurate speech discrimination need to be considered in
combination. While similar patterns were observed in Qdis and
Ndis conditions, stronger early alpha ERS was observed in the
Ndis condition, which is consistent with the requirement of dis-
criminating in noise. That is, it is speculated that the inhibitory
mechanism was stronger when background noise was present.
Conversely, early beta suppression appeared to be stronger in the
Qdis than the Ndis condition. Though it is likely that internal
models were generated in both conditions since they both used
speech and were discriminated accurately (Bowers et al., 2013),
it appears that in this study, the strong alpha ERS may have
dominated the µ rhythm, extended into the low beta frequen-
cies in the Ndis condition, and perhaps negated some early beta
ERD. Together, these data suggest that alpha ERS and beta ERD
within the sensorimotor µ rhythms work in unison, co-operating
to functionally support accurate speech discrimination. This is
further evidence that examination of the µ-rhythm provides a
rich, time-sensitive, and relatively unique view of SMI in speech
discrimination from an oscillatory perspective.
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Dorsal stream motor activity in speech perception
The source location of µ clusters and their alpha and beta
ERS/ERD suggest that they provide important information
regarding sensorimotor dorsal stream activity in speech percep-
tion. The current findings suggest that beta activity may provide
a measure of predictive coding via internal models (Bowers et al.,
2013) generated in the PMC (Skipper et al., 2007; Houde and
Nagarajan, 2011; Tourville and Guenther, 2011; Rauschecker,
2012). Tamura et al. (2012) investigated µ rhythm activity in
various speech tasks, including covert production and produc-
tion under different types of auditory feedback. They found
differential activity within the alpha band and concluded that
the µ-alpha was an index of auditory monitoring for speech.
In line with this notion, it is speculated that µ-alpha might
index sensory feedback into the PMC. Thus, stronger alpha
ERS in the Ndis condition was observed, possibly due to a
stronger inhibition of auditory feedback to the PMC when speech
was presented in background noise. Furthermore, in the time
period following stimulus offset and prior to the button press
response, it seems likely that the two syllables were held in
working memory, while being compared and covertly replayed
during the decision-making process. These processes may require
the generation of internal speech models and the disinhibi-
tion of feedback to the PMC, which would support the current
findings of alpha and beta ERD in this time period within
trials.

TIME-FREQUENCY ANALYSES IN PRODUCTION CONDITIONS
The covert (Img) and overt (SylP and WorP) production condi-
tions yielded similar general patterns of alpha/beta ERD relative
to baseline across trials. However, both alpha and beta ERD were
significantly stronger in the overt production conditions than the
Img condition, with significant differences in ERD following the
cue to speak in both conditions. Across production conditions,
there appeared to be little difference between right and left µ ERD.
This is consistent with others that have found movement-induced
bilateral decreases in beta suppression across the sensorimotor
cortex (e.g., Salmelin and Hari, 1994; Pfurtscheller et al., 1996;
Stančák and Pfurtscheller, 1996; Leocani et al., 1997, 2001; Alegre
et al., 2003; Rau et al., 2003; Bai et al., 2005; Doyle et al., 2005;
Erbil and Ungan, 2007). No differences between SylP and WorP
conditions were observed. As expected, ERSP time-frequency
analysis of perilabial EMG activity showed little activity in the
Img condition, confirming that participants did not articulate the
target syllables. In the SylP and WorP conditions, EMG activity
following the “go” cue to speak was characterized predominantly
by strong ERS beginning ∼300 ms in both conditions. This time
lag from the “go” cue is consistent with a normal movement reac-
tion time. Hence, µ-alpha and µ-beta ERD showed temporal
alignment to lip muscle movements.

µ-alpha during production
µ-alpha ERD in speech production is again interpreted as an
index of feedback to the PMC while speech is being produced. By
only measuring activity in the sensorimotor µ, it is not possible
to differentiate between auditory and somatosensory feedback. µ-
alpha suppression is traditionally localized to the somatosensory

cortex and considered to reflect somatosensory activity (Hari,
2006). However, in light of recent findings in perception (Cuellar
et al., 2012; Tamura et al., 2012; Pineda et al., 2013), there is
mounting evidence that it also may reflect auditory feedback.
In speech production, this makes sense considering how both
auditory and somatosensory integration regions provide feed-
back to the PMC during speech production. Furthermore, the
feedback from the auditory system and somatosensory system
are generally consistent during speech production such that,
barring perturbation to either modality, SFC models allow for
them to often be considered unitarily (Houde and Nagarajan,
2011).

µ-beta during production
During overt production (SylP and WorP), beta µ-ERD is eas-
ily explained as a consequence of motor activity. Sensorimotor
beta power has been ubiquitously found to suppress to motor
activity from effectors including the fingers (Gaetz et al., 2010),
wrist (Alegre et al., 2003), shoulder (Stančák et al., 2000), foot
(Pfurtscheller and Lopes Da Silva, 1999), and tongue (Crone et al.,
1998). However, if SFC models are applied, beta ERD can be cau-
tiously interpreted as an index of PMC activity in the generation
of feedforward control to motor effectors and forward internal
models (efference copies) to the feedback loop. This interpreta-
tion is supported in a recent review (Engel and Fries, 2010; Kilavik
et al., 2013), suggesting the difficulty in determining a clear func-
tional role of sensorimotor beta suppression during movement,
but that it may reflect sensory and cognitive aspects (e.g., for-
ward modeling) in addition to pure motor processes. That said,
one limitation of the current interpretation is the inability of
beta ERD to distinguish between motor activity in feedforward
(i.e., muscle movements) and feedback (i.e., internal modeling)
mechanisms.

Covert speech production
The Img (covert production) produced significantly weaker
alpha/beta ERD than the overt production conditions. This
condition was incorporated into the design as previous work
examining motor imagery and covert speech production had
shown patterns of µ suppression and sensorimotor activity sim-
ilar to overt productions (Pfurtscheller and Lopes Da Silva,
1999; Neuper et al., 2006). However, there is also evidence that
responses in these covert conditions have been weaker than in
actual overt productions (Neuper et al., 2006). In a recent study,
Holler et al. (2013) investigated µ activity to real and imagined
hand movements and showed that only 11 of 18 participants pro-
duced differences in µ- alpha/beta power when imagining hand
movements. Of these 11, two showed µ enhancement rather than
the suppression that was shown in the real movement condi-
tions, suggesting variable responses to covert production tasks.
The results in the current Img condition showed similar vari-
ability, perhaps contraindicating future use of covert production
over a large number of repeated trials. This was the only condi-
tion in the experiment that required no overt response (either
button-press or speech production) and hence, it was impossi-
ble to monitor the extent of covert syllable productions that was
asked of participants 80 times in this condition.
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Early µ-ERD in overt production
Significantly strong µ-ERD (relative to Img) was found as speech
was being produced. Weaker µ-ERD was observed in SylP and
WorP conditions prior to production and even before the cue
to speak. This time period coincided with the preparation of the
speech network, during which similar oscillatory activity has been
reported (Gehrig et al., 2012; Herman et al., 2013). µ-ERD during
this time period prior to production was weaker than expected,
especially in light of the findings in the speech perception tasks,
and predictions from SFC models (Houde and Nagarajan, 2011).
This reduced neural ERD was most likely due to the influence of
EMG on overall EEG variance.

THE UTILITY OF ICA IN SPEECH PERCEPTION AND PRODUCTION
µ components were successfully identified from band-pass fil-
tered concatenated EEG data from perception and production
conditions. Though the unexplained RV of the average µ ECD
was slightly higher than has been found in other studies (e.g.,
Bowers et al., 2013), the combination of ECD/sLORETA CSD
techniques produced a reliable and valid estimate of µ sources
within the standard head model that was applied to all ICA data.

In the perception conditions, time-frequency analyses revealed
differential contributions from alpha and beta bands of the
µ rhythm that contributed to accurate syllable discrimination.
µ-alpha/beta ERD was also revealed in speech production syn-
chronized to muscle activity. This pattern of activity had not
been described previously and can be interpreted as being con-
sistent with “normal” sensorimotor control in speech production.
Future investigations involving auditory or somatosensory speech
perturbations (e.g., Bauer et al., 2006; Reilly and Dougherty,
2013) might be expected to reveal differences in alpha/beta ERD
in speech production. Similarly, different relative patterns of µ

ERS/ERD might be observed in clinical populations with com-
promised sensorimotor control such as in stuttering (Max et al.,
2003; Loucks and De Nil, 2006; Watkins et al., 2008; Hickok et al.,
2011; Cai et al., 2014; Connally et al., 2014).

In addition to the positive findings, there was also evidence
of drawbacks to using EEG/ICA in production tasks. It was
clear that ICA adequately separated neural from non-neural (e.g.,
myogenic) activity. Had this not been successfully accomplished,
µ-ERD/ERS during production would likely have been over-
whelmed by the EMG activity. However, it also appears that
overall spectral power in µ components was reduced in the pro-
duction tasks due to a greater proportion of the overall EEG vari-
ance that had to be accounted for by EMG activity. Considering
motor requirements, strongest µ-ERD (especially beta) would
have been expected in production conditions. However, even
when at their strongest, spectral powers during production did
not exceed those in perception. In addition, only weak µ-ERD
was noted in the time period prior to overt production, which
was expected to be stronger as the speech networks prepared to
articulate. Together, these findings indicate that overall spectral
power in production conditions was attenuated. As such, though
interesting general patterns of µ-ERD were revealed in speech
production, they should be interpreted with caution with respect
to their sensitivity and without making reference to function in
conditions without motor requirements.

Another limitation in the current methods was the inability to
observe µ activity following speech production. Though produc-
tion targets (i.e., syllables and words) were produced within the
time course of trials, EMG activity (e.g., lip movement) persisted
past production, such that the epoch length that did not allow
for the measurement of beta rebound (i.e., ERS), which is com-
monly observed following termination of a movement (Kilavik
et al., 2013).

CONCLUSIONS AND FUTURE DIRECTIONS
ICA successfully identified µ components in speech perception
and production. Time-frequency analyses using ERSP showed
real-time changes in alpha/beta power that provided indicators of
PMC/sensorimotor contributions to speech-based dorsal stream
activity. Localization of µ clusters and ERSP activity in percep-
tion and production are in agreement with Rauschecker’s (2011)
observation that, based on connections to the inferior parietal
lobe and posterior auditory cortex, the PMC provides “optimal
state estimation” for speech.

Sensitivity of the findings was somewhat reduced in produc-
tion conditions, most likely due to concomitant myogenic activ-
ity. Further applications in speech production might consider
additional filtering techniques in addition to ICA. Exquisite tem-
poral resolution combined with economy and availability warrant
further use of ICA particularly to understand speech processing
in normal and clinical populations. While measuring the tempo-
ral dynamics of the µ-rhythm provide rich information about
sensorimotor processing, future ICA studies may also investi-
gate multiple components within the speech processing network
in addition to measuring connectivity (i.e., coherence) between
components.
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