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Abstract: Proteins are indispensable to cellular communication and metabolism. The structure on
which cells and tissues are developed is deciphered from proteins. To perform functions, proteins
fold into a three-dimensional structural design, which is specific and fundamentally determined by
their characteristic sequence of amino acids. Few of them have structural versatility, allowing them
to adapt their shape to the task at hand. The intermediate states appear momentarily, while protein
folds from denatured (D)⇔ native (N), which plays significant roles in cellular functions. Prolific
effort needs to be taken in characterizing these intermediate species if detected during the folding
process. Protein folds into its native structure through definite pathways, which involve a limited
number of transitory intermediates. Intermediates may be essential in protein folding pathways and
assembly in some cases, as well as misfolding and aggregation folding pathways. These intermediate
states help to understand the machinery of proper folding in proteins. In this review article, we
highlight the various intermediate states observed and characterized so far under in vitro conditions.
Moreover, the role and significance of intermediates in regulating the biological function of cells are
discussed clearly.

Keywords: protein folding; intermediate states; biological functions; cellular conditions

1. Introduction

The regulatory functions of proteins under in vitro complex systems and within the
cell are well known. However, proteins that are unfolded or partially folded (intermediates)
also play a significant role in different cellular processes and signaling events [1–5]. The
role of such intermediates of protein folding has not been discussed in detail until now,
and new findings are evolving to provide a fertile ground for considering the molecular
mechanisms of biological processes [3,6]. The intermediate state of the protein with a
native-like secondary structure but with an unstable or molten tertiary structure can be
helpful in understanding pathways of protein folding [7,8]. Such intermediates offer new
insights into the role of structural change in proteins within the cell, where transitional
states of proteins can be imported and exported more efficiently via membranes than native
forms of proteins [5,9]. The translocation of phospholipids between the two monolayers of
a lipid bilayer of a cell membrane is carried out by a class of proteins called scramblases.
It has been observed by researchers that scramblases are in a fully open state while they
assume intermediate states and assist in the transport of ions [10]. These proteins that
began as scramblases and were developed into pure ion channels, as a result of mutations,
favor the intermediate type [10,11]. Such folding intermediates in amyloid disorders can
help in understanding the protein folding and assembly routes, as well as those of mis-
folding and protein aggregation [12–14]. Folding intermediates help in the amyloid fibril
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formations, and these are resistant structures against dissociation and degradation and
are long-lasting [15]. The amyloids are made up of β-strands arranged into sheets that lie
perpendicular to the long fiber axis and have a central cross β-structure [16]. Exploring the
protein folding research, one should know the phases that drive this protein folding. The
first phase is spotlighted to understand the protein folding mechanisms and reveal the basic
principles that govern transitions in folding processes. The general answers are provided
to questions raised in protein folding in the primary phase. With evolution, innovative
and significant questions arise, such as how proteins fold. What are the mechanisms of
protein folding in the highly crowded condition of the cell, where proteins are surrounded
by various biological molecules? These evolutionary questions on protein folding raised
are answered by the second stage of the folding procedure. The primary phase is nearest
and dearest to a romantic stage of the research; however, the secondary and final goal may
not be directly valid to exploit and understand. This second stage is a more practical step
of research, where the research field drives the purpose and allows the engineering of tools
for progression to create significant science [17,18]. Understanding the functional interme-
diates that accompany the transitory protein’s journey to its native state could allow valid
protein structure manipulation through protein design, which is an appropriate example of
such engineering. There are so many studies where mutation in one amino acid [19–22],
pH change, temperature disturbance, and cosolute (salts, polyols, crowders, etc.) presence
lead native proteins to intermediate states [23–34]. This review addresses the elements for
understanding the biologically significant mechanism of conformational changes, such as
harmonic vibrations, structural distributions, and structural fluctuations.

2. Intermediate States of Proteins and Their Types

Almost all proteins fold via several partially structured intermediates. To comprehend
the structure and structural characteristics of intermediates at the atomic level is often
an argumentative content since these are characterized and monitored under an extreme
environment of temperature, pH, and chemical denaturants. Besides, chemical modifica-
tions, site-directed mutagenesis (or point mutation), and cleavage of the covalent bond of
natural proteins are several other routes that often lead to native and/or denatured-like
intermediate structures include molten globule (MG) and premolten globule (PMG) states,
respectively [20–22,31,35].

The molten globule (MG) states are partially unfolded structured forms enfolded
with a prominent amount of a secondary structure but a largely chaotic tertiary
structure [20,30,36–38]. These are compact and native-like structures of the protein con-
sidered to be general intermediate states in protein folding [20,39,40]. Because of their
similarity to early kinetic intermediate states [36,41], MGs have been proposed as models
for transient intermediates in protein folding. The first report of MG state was observed
in 1981 [42], while the term MG state was coined in 1983 [41]. Furthermore, the MG states
are classified into dry MGs (DMGs) and wet MGs (WMGs). In comparison with the native
protein, the former state has slightly extended forms and dry interiors with more confor-
mational flexibility [20,35,43], and the latter possesses hydrated cores with significantly
reduced packing in similarity to the folded state [20,43]. Understanding protein folding
problems necessitates a comprehensive insight into the characteristics of intermediate
species and provides a clear proof of the importance of maintaining proper stoichiometry
(as defined by the experimentally observed relative frequencies of amino acids) [44,45].
The following are the common structural features of MGs [30,46]: (i) the presence of a
substantial amount of secondary structure (very comparable with that of the protein in
native condition) is confirmed by far-UV circular dichroism (CD) and IR spectroscopy, but
generally reduced stability of the constitutive hydrogen bonds as represented by proton
exchange using 1H NMR [26,47]; (ii) the majority of the particular tertiary structure created
by the close packing of side chains is missing as determined by near-UV CD and 2D nuclear
magnetic resonance (NMR) [48]; (iii) the protein molecule compactness is with a radius
of gyration 10–30% greater than that of the native state [49,50] or a hydrodynamic radius
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15–16% greater than that of the native state [41,51]; and (iv) the solvent-exposed loosely
packed hydrophobic patches (hydrophobic surface areas) are present due to which it acts
sticky [52] and binds to the hydrophobic molecules, such as 8-anilino-1-naphthalenesulfonic
acid (ANS) [27] and the Nile red [53].

The premolten globule (PMG) state is less condensed than the MG and native states, but
it is far more compacted than the unfolded state (random coil) [54]. Jeng and Englander [54]
coined the term PMG in 1991. It is a partially unfolded form of the protein that is believed
to be a general protein folding intermediate [36]. PMG states were discovered in several
proteins during equilibrium intermediate studies, and are thus considered a fundamental
thermodynamic state of the hierarchical protein folding processes [19,54–56]. For the past
two decades, protein scientists have been intrigued by the PMG, not just because it pro-
vides insights into the classic three-stage unfolding process seen in many proteins, but also
because it is comparable to the partly folded intermediate temporarily accumulating in the
initial stages of folding. Many proteins’ PMG states have been successfully characterized
under salt-induced denaturing conditions, such as LiCl and LiClO3 [19,57], by the inter-
action of many other divalent and trivalent metal ions, including Zn2+ [58], SDS-induced
denaturing circumstances, and acidic pH [59,60], and more studies are there where PMG
states of different proteins were successfully characterized (see Table 1) [28,33,54,56,59,61].
The PMG state is an equilibrium counterpart of the first kinetic folding intermediate formed
within a few milliseconds (referred to as the burst-phase intermediate) and accumulates
momentarily during refolding from a fully unfolded state [51,60]. The common structural
characteristics of PMGs [62–64] are: (i) about 50% of the native secondary structure is
present, which is revealed from far-UV CD and IR spectroscopy; (ii) no rigid tertiary struc-
ture is present as determined by near-UV CD; (iii) compactness (in terms of hydrodynamic
volume) is roughly three times greater than that of the N state; and (iv) it shows almost
five times weaker ANS binding than for the MG state. It is also widely understood that
the protein molecule in the PMG state lacks a globular form, hinting that the PMG is
most probably a squeezed, partially structured, and partially disordered conformation of
a coil [61,65]. Finally, an all-or-none transition separates the PMG from the MG, which is
an intramolecular analog of the first-order step transition [19,28,50,63]. These observations
disclosed that both intermediate states (MG and PMG) characterize diverse thermodynamic
states of globular proteins. A model has been proposed based on the above knowledge
about folded, MG, PMG, and unfolded forms of proteins [35](see Figure 1). Recently,
both the computational and spectroscopic approaches were exploited for the successful
characterization of two intermediate states (MG and PMG) in myoglobin (Mb) induced by
two different concentrations of PEG 4 kDa [66].

This study demonstrated that protein folding does not follow a single and unique
pathway, but rather proceeds by various pathways through a folding funnel, similar to rain
falling down a funnel, and there by foresees the energy landscape concept [66].

Recently, the metastable state of the protein was observed and characterized with
unique structural properties that position the protein in the energy landscape’s local
free energy minimum state [67]. The energy barrier that separates the energy minima
of different conformations determines the brief, though finite, duration of a metastable
state. The native-to-metastable structural transitions are driven by temporary or long-lived
thermodynamic and kinetic variations of the protein molecules’ intrinsic connections. The
representation of the structural and functional features of such metastable proteins is seen to
be essential not only to understand the complexity of folding patterns, but also to explain the
mechanisms of anomalous protein aggregation [67]. Consequently, identifying any periodic
transient state of protein as a metastable state would be misleading. This conformation
may be caused by inherent protein properties, such as heterogeneity of complexity areas,
mutation, and folding anomaly, as well as environmental fluctuations, such as pH, ion
concentrations, temperature, and pressure changes [67]. Proteins’ biological function
depends on their structural dynamics [68,69]. To establish a coherent picture of the physics
of intramolecular fluctuations and conformational changes, results from novel experimental
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methods should indeed be juxtaposed with those from previous studies. This review
also addresses the elements for understanding the biologically significant mechanism
of conformational changes, such as harmonic vibrations, structural distributions, and
structural fluctuation.
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2.1. Intermediate States Characterized under In Vitro Conditions

The intermediate states have been exerting a pull in recent times on scientists who put
forth research on protein folding mechanisms to present hints for understanding the classi-
cal two-state and/or three-state unfolding methods. The first report on the MG state was
observed in 1981, where the heat capacity function in the MG state of apo-α-lactalbumin
was examined by a scanning microcalorimeter under physiological pH [42]. Observations
of this study showed an enthalpy variation between the MG state and unfolded state
(assumed) at neutral pH, which was observed to be almost zero, signifying that the MG
state does not show sign any co-operative transition upon heating [42]. Preceding two
decades, another third state, measured as a new thermodynamic state of the hierarchi-
cal protein folding process called the PMG, has drawn interest among scientists in the
protein folding research field because it presents intimations to comprehend the classical
three-phase mechanism in unfolding, observed in many proteins [19,28,31,33,54–56,59,61].
In vitro experiments have revealed that proteins can be guided to the MG state at acidic
pH or high temperatures or in moderate doses of chemical denaturants [70,71]. Many
proteins belonging to the structural class of all α or α + β have the majority of MG states
characterized and classified in their folding/unfolding routes [72]. Interestingly, only a few
studies of proteins found to be fit into all β-sheet categories, which were recognized as an
MG state(s) [73–75]. Downhill folding mechanisms were intended to exist effectively for
proteins with highly optimized native interactions under extremely stable conditions [76,77]
or when constructive mutations take place [78]. Their study concluded that at least in
metalloproteins, downhill folding can occur under a much greater choice of conditions
and can be associated with a variety of other transitions [21]. According to the study, the
bacterial zinc finger protein Ros87 has a bipartite folding/unfolding process in which a
metal-binding intermediate converts to the native structure via a sensitive barrierless down-
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hill transition. These intermediates were examined using DSC, CD, and NMR in a range of
pH, temperature, and ionic strength parameters, showing that the downhill mechanism
can be discovered under a considerably broader range of conditions and can be related
to a variety of other transitions [21]. Table 1 provides details of the various intermediate
state (PMG and MG) formations in various proteins under variable conditions, charac-
terized by various types of techniques. The improvement in qualitative and quantitative
understanding of the MG state can lead to a better understanding of the folding pathways
and, as a result, could help solve the protein folding problem. Judy et al. [79] described
in their recent review that the majority of investigations into protein MG states have been
qualitative [79], and also showed that investigators utilize high-sensitivity calorimetry
(differential scanning calorimetry and isothermal titration calorimetry) in endeavors to
acquire quantitative understanding regarding MG states [79]. The computational findings
on human α-lactalbumin carried out by Paci et al. [80] confirms that MG state unfolding is
not a cooperative process, on account of the suggestion that the structural elements of the
protein do not unfold simultaneously [80].

Table 1. List of various intermediate states of proteins characterized under in vitro conditions using
various techniques.

S. No. Protein State Type Conditions Techniques Exploited Ref.

1. Apo-α-lactalbumin MG At neutral pH (7.6) and low
ionic strength Scanning microcalorimeter [42]

2. Apo-α-lactalbumin MG

The transition around
25–30 ◦C at pH 8.1 in the
presence of 10 mM borate

and 1 mM EGTA

Intrinsic protein fluorescence,
circular dichroism (CD), and

differential scanning
microcalorimetry (DSC)

[7]

3. α-Lactalbumin MG

Guanidinium chloride
(GdmCl)-induced (1.8 M) and
1 mM Ca2+ at 4.5 ◦C, pH 7.0 in

the presence of 0.05 M
sodium chloride (NaCl) and
0.05 M sodium cacodylate

Circular dichroism (CD)
spectroscopy and nuclear

magnetic resonance
[81]

4. Myoglobin MG PEG 10 (300 mg mL−1) at
pH 7.0 and 25 ◦C

Absorption, fluorescence and CD
spectroscopy, ANS binding,

dynamic light scattering (DLS),
FTIR, isothermal titration

calorimetry (ITC)

[30]

5. Myoglobin MG Ficoll 70 (300 mg mL−1)
at pH 7.0 and 25 ◦C

CD spectroscopy, intrinsic and ANS
fluorescence, DLS, and

ITC measurements
[29]

6. Myoglobin PMG PEG 400 (320 mg mL−1)
at pH 7.0 and 25 ◦C

CD spectroscopy, intrinsic and ANS
fluorescence, DLS, and

ITC measurements
[33]

6. Myoglobin MG

Around 300 K (26.85◦C)
−500 K (226.85 ◦C), apo-Mb

like intermediate state for
2–9 ns (nanoseconds)

at pH 7.0

In silico method (i.e., molecular
dynamic (MD) simulations) [82]

5. Myoglobin MG

Cobalt(III) induced (10 µM) in
0.01 M sodium phosphate

buffer solution at pH 6.5 and
25 ◦C

UV–VIS absorption and
CD spectroscopy [83]
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Table 1. Cont.

S. No. Protein State Type Conditions Techniques Exploited Ref.

7. Myoglobin MG
4% (/v) HFIP (aqueous
hexafluoroisopropanol)

at pH 4.0
CD spectroscopy [84]

9. Apo-myoglobin
(Apo-Mb) MG Site mutagenesis studies

at pH 7.0 and pH 3.0 Fluorescence and CD spectroscopy [85]

10. Apo-myoglobin
(mutants) MG

Mutation in apo-Mb (S108L,
F123W, F123G, and A130S) in

the presence of 10 mM
sodium acetate buffer at 0 ◦C

around acidic pH

Circular dichroism (CD)
spectroscopy, nuclear
magnetic resonance

[26]

11. Apo-myoglobin MG

Acid-induced unfolding
at 0 ◦C, 2 mM sodium citrate

in the presence of various
urea concentrations

Circular dichroism (CD)
spectroscopy,

nuclear magnetic resonance
[86]

12. Apo-myoglobin PMG

In the presence of
different anions

(100 mM trifluoroacetate)
at pH 2.0 and 25 ◦C

Tryptophan and ANS binding
fluorescence, CD spectroscopy,

FTIR, small-angle X-ray scattering,
and DLS

[87]

16. Cytochrome c MG PEG 400 induced at pH 7.0
and 25 ◦C

Absorption, fluorescence and CD
spectroscopy, DLS, and

ITC measurements
[88]

17. Cytochrome c MG
Induced by LiClO4

(1.85–3.3 M) at
pH 6.0 and 25 ◦C

CD spectroscopy, intrinsic and ANS
fluorescence, and DLS and intrinsic

viscosity measurements
[32]

18.
Yeast

iso-1-cytochrome c
and its deletants

PMG Induced by LiCl at pH 6.5
at 25 ◦C

Absorption, fluorescence, and CD
spectroscopy and DLS

measurements
[55]

19. Cytochrome c
(mutant Leu94Gly) PMG Induced by LiCl at pH 6.5

at 25 ◦C

Tryptophan fluorescence, ANS
binding, CD spectroscopy, and DLS

measurements
[57]

20. Cytochrome c PMG NaCl-induced L94G mutation
at pH 2 and 25 ◦C

CD spectroscopy, intrinsic and ANS
fluorescence, and DLS

measurements
[19]

13. Cytochrome c MG Mutation of Leu94Gly at
pH 6.0 and 25 ◦C

CD spectroscopy, intrinsic and ANS
fluorescence, and DLS

measurements
[19]

14. Cytochrome c MG Leu94 by Val and Ile, at
pH 6.0 and 25 ◦C

Intrinsic fluorescence and CD
spectroscopy and differential

scanning microcalorimetry (DSC)
[22]

15. Cytochrome c MG Leu94 by Phe at pH 6.0
and 25 ◦C

Intrinsic fluorescence and CD
spectroscopy, ANS binding, and

DSC measurements
[89]

20. Cytochrome c PMG NaCl-induced L94G mutation
at pH 2 and 25 ◦C

CD spectroscopy, intrinsic and ANS
fluorescence, and DLS

measurements
[19]

21. Cytochrome c MG

Polyol-induced (ethylene
glycol, glycerol, erythritol,

xylitol, sorbitol, and inositol)
at pH 2.0

Circular dichroism (CD)
spectroscopy, partial specific

volume, adiabatic compressibility,
and DSC

[90]
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Table 1. Cont.

S. No. Protein State Type Conditions Techniques Exploited Ref.

22.
Yeast

iso-1-cytochrome c
and its deletants

MG In the presence of
0.33 M Na2SO4 at pH 2.1

Absorption, fluorescence, and CD
spectroscopy and DLS

measurements
[55]

23. Cytochrome c MG Sodium perchlorate stabilized
at pH 1.8

Isothermal titration calorimetry, CD
spectroscopy and DSC [91]

24. Sheep serum
albumin MG

GdmCl (2.38 M)-induced
denaturation and urea

(4.2–4.7 M)-induced
denaturationin10 mM

Tris-HCl buffer at pH 7.4
and 25 ◦C

Intrinsic and ANS binding
fluorescence, CD spectroscopy, and

DLS measurements
[92]

25. Bovine carbonic
anhydrase B PMG

At 4 ◦C in 0.1 M sodium
phosphate buffer (pH 6.8) in

the presence of
GdmCl concentrations

Tryptophan and ANS binding
fluorescence, CD spectroscopy,
size-exclusion chromatography

(SEC-FPLC)

[28]

26. GlutaminyltRNA
synthetase (GlnRS) PMG

Induced by 0.25 M potassium
L-glutamate (natural

osmolyte) in the presence of
urea, 0.1 M Tris-HCl buffer of

pH 7.5 at 25 ◦C

Tryptophan and ANS binding
fluorescence, CD spectroscopy, and

DLS measurements
[93]

27. Recombinant
human Stefan B

MG-states (G,
A, and T)

G-state:in the presence of
1.7 M GdmCl (pH 8, 25 ◦C),

A-state: at pH 4
(0.6 M GdmHCl, 25 ◦C), and
T-state: formed above 68 ◦C

UV–VIS absorption and
CD spectroscopy [94]

28. Pancreatic trypsin
inhibitor (BPTI) MG

Five MD simulations (lasting
up to 550 ps) were performed:
native BPTI at 298 K (25 ◦C)
and 423 K (150 ◦C); reduced
BPTI at 298 K (25 ◦C), 423 K
(150 ◦C), and 498 K (225 ◦C);
all simulations were carried

out in a bath of water
molecules with mobile

counter ions

MD simulations [95]

29. Casein PMG and MG Physiological conditions
(around pH 7)

Raman spectroscopy, FTIR, DLS
measurements, and
molecular kinetics

[96]

30. Lysozyme MG At pH 2.0
Hydrogen exchange measurements,

NMR, molecular graphics by
MolScript

[97]

31. Ribonuclease A MG At low pH (1.5—3.8)
and 65 ◦C

Quenched flow methods, CD
spectroscopy, pulsed

H/D-exchange, and 2 D 1H NMR
spectroscopy

[98]

32. Ubiquitin MG
At pH 2.0 and 25 ◦C in the

presence of 60% methanol and
40% water

Pulsed H/D-exchange, NMR [99]

33. Zinc finger
protein Ros87

Metal-binding
intermediate

At pH 6.5 and temperature
range of 25—99 ◦C (observed

at 70 ◦C by NMR)
CD, DSC, NMR [21]
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Table 1. Cont.

S. No. Protein State Type Conditions Techniques Exploited Ref.

34. Apoflavodoxin Thermal
intermediate

At pH 7.0
and 95 ◦C

Atomistic multi-microsecond-scale
molecular dynamics (MD)

simulations, small-angle X-ray
scattering, near-UV
absorbance spectra

[100]

35. Bovine serum
albumin (BSA) MG In the presence of ANS and

pyrene at pH 4.2

ANS fluorescence (supplemented
by CD spectroscopy, light scattering,

and analytical centrifugation)
[101]

36. Staphylococcal
nuclease (SNase)

Three different
partially folded
intermediates
(A states: A1,
A2, and A3)

Induced by anions:
A states are stabilized by:

(1) A1: induced by chloride
(600 mM) or sulfate (100 mM):

50% native-like structure
(2) A2: Induced by

trifluoroacetate (300 mM): 70%
native-like structure

(3) A3: trichloroacetate (50
mM): fully native-like

structure

CD and small-angle X-ray
scattering (SAXS) [102]

2.2. Significance of Intermediary States under In Vivo Conditions

Taking benefits from the protein folding (new wing) (i.e., intermediate states in the
cellular conditions) upholds cellular protein homeostasis (proteostasis), which is critical for
cell function and development [103,104]. Besides, the folding process—these intermediates
assist in many genetic illnesses [8,105,106]. Proteostasis is governed in cellular condi-
tions by networks of protein complexes that include the translation machinery [107,108],
proteases [109,110], ubiquitin–proteasome system (UPS) [111], secretory pathways [112,113],
autophagic machinery [114], and molecular chaperones [3], which have a significant role
in protein homeostasis. To illustrate, a non-native compact type of cyt c is implicated in
programmed cell death (induces apoptosis), after which the protein is released from the
mitochondrion; non-native forms of the protein are also associated in several of the amyloid-
related illnesses [8]. Characterizing the heterogeneity present within the process of folding
and unfolding proteins, intermediate states are vital to understanding intermediates and
defining their boundaries. The cell intermediate states can be defined as attractors on a
potential landscape [1,34,115].

The intermediates not only help to decipher the enormously complex troubles in
protein folding, although this also reveals new insight into the importance of structural
changes in proteins within cells, whereas protein intermediates can be imported and ex-
ported more easily through membranes than native proteins [2,3,116]. The native⇔molten
globule transition is also considered because the conversion of a protein’s native state
to a condensed intermediate structure might occasionally allow it to perform different
physiological activities inside the cell [8]. A non-native compact conformation of cyt c,
for example, is linked to programmed cell death (apoptosis), whereupon the protein is
released from the mitochondrion; non-native forms of the protein are also linked to various
amyloid-related diseases [8]. Nuclear genes code for the majority of mitochondrial proteins,
which are formed on cytoplasmic ribosomes and transferred into mitochondrial subcom-
partments [2,117]. To preserve the integrity of protein function in cellular compartments,
protein sorting and transport through the lipid membrane of the mitochondrion is desired
without intervening with the organelle’s integrity or functions. To understand this to a
greater extent, molecular specificity and targeting of mitochondrial preprotein mechanisms
and postproteins after import–export via an inner membrane and outer membrane facil-
itates recognition or identification and is characterized by cellular signaling [2,117]. The
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presence of these intermediate structures of protein has a significant role in transport via
membranes in cellular conditions. The purpose of a set of proteins identified as heat-shock
proteins or molecular chaperones located both outside and within the mitochondrion are
intimately connected to the unfolding and folding of proteins during transmembrane
movement. Investigating the folding of polypeptides in the mitochondrial matrix has
provided new and unique findings into general protein folding pathways supported by
folding factors [2,117]. Folding and misfolding of proteins in the human membrane help
in the resolution of problems related to health and diseases [118]. The new perspective
that links membrane protein folding energetics with the degree of complexity of biological
systems is recognized via intermediates that play an essential role in the import–export
of native protein via membranes and can easily interact with the drug to cure diseases.
These advancements in the production of therapeutics and precision medicine are influ-
enced by these intermediate structures in cells [118,119]. We know that from Anfinsen’s
experiments [120], which provided how proteins choose their structural elements from de-
natured conformations and each fraction competes for renaturation to native state [118,121].
The complexity of protein folding makes it difficult to comprehend and even describe the
process. Much of this heterogeneity can be described and understood using a statistical ap-
proach to the energetics of protein structure (i.e., the energy landscape) [76]. The statistical
energy landscape strategy describes why and when particular folding pathways emerge in
some proteins, and also how to spot the difference between folding mechanisms that are
universal to all sequences and those that are specific to individual sequences. This method
also provides fresh quantitative ideas in understanding protein folding thermodynamics
and kinetic studies and simulations [68,76].

In the past, intermediates were thought to be necessary stepping stones that helped
a protein go through the folding process to its native state. However, the discovery of
multiple tiny proteins that fold rapidly without intermediates, as well as the introduction
of new conceptual frameworks from computational research, led to the notion that interme-
diates can operate as energy sinks or dynamical traps, resulting in less efficient folding [5].
Proteins’ biological function depends on their structural dynamics [68]. To establish a
coherent picture of the physics of intramolecular fluctuations and conformational changes,
results from novel experimental methods should indeed be juxtaposed with those from
previous studies [68]. Besides nuclear magnetic resonance (NMR) and spectroscopy studies,
computational methods have all been used to uncover the activation route of proteins to
study protein folding and intermediates [5,52,66,95,108,122–125]. MD simulations of MG
and native states of pancreatic trypsin inhibitor (BPTI) were observed lasting up to 550
picoseconds (ps), at 298 K (25 ◦C) and 423 K (150 ◦C), and its reduced form was also studied
at 298 K (25 ◦C), 423 K (150 ◦C), and 498 K (225 ◦C). The polypeptide segments that were
determined to be the most flexible in the MD simulations were closely related to those that
showed variations between the crystal and solution structures of BPTI [95]. Additionally,
the G protein-coupled receptor activation pathway reveals conformational intermediates
as potential targets for allosteric drug design [123,126]. To investigate the conformational
landscape of the angiotensin II (AngII) type 1 receptor (AT1 receptor),a prototypical class
A GPCR activation, the researchers used a cumulative computational and experimental
framework that included comprehensive molecular dynamics simulations, Markov state
models, site-directed mutagenesis, and conformational biosensors [123,126]. The evidence
points to a synergistic AT1 receptor activation transition mechanism. The activation path-
way has a critical intermediate state that has a cryptic binding site within the intracellular
area of the receptor [123]. Mechanistic and structural insights into the conformational shifts
that underpin the Ras deactivation pathway could lead to the development of specific
treatments for Ras-driven cancers [125]. However, atomistic molecular dynamics (MD)
simulations have yet to perfectly represent a large-scale conformational shift. For revealing
the conformational landscape of the Ras deactivation route, a computational strategy that
incorporates a transition pathway creation tool, extensive MD simulations, and Markov
state model analysis was used by researchers [125]. From the study, they suggested that a
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gradual (stepwise) deactivation process for Ras hydrolysis, as well as the identification of
numerous critical conformational substrates along the way, occurs [125]. Using an atomic
force microscope to fold single ubiquitin molecules revealed a dynamic long-lived inter-
mediate with nanometer-scale end-to-end distance fluctuations throughout a surprisingly
extensive folding pathway [69]. Molecular dynamics refolding simulations of unfolded
ubiquitin under constant tension were used to investigate the structure of this intermediate
at the atomic level, as well as the driving forces that cause the observed fluctuations [69].
The researchers observed a very dynamic, broad ensemble of conformations with a partial
and continuously changing secondary structure and side chain interactions after an initial
rapid collapse and found this ensemble with features like that of a molten globule [69].
The pieces of evidence have also shown that conformational changes between active and
inactive states of biomolecules can reveal two types of binding sites (cryptic or hidden) in
protein kinases, such c-src [127], PKA [128], and PKB/AKT1 [129] structural substrates.

To know the mechanism of aggregation in the proteins in cellular conditions where the
role of intermediate state(s) also exists, it needs best examples of proteins, such as the fibril
formation observed in α-synuclein and other related proteins in the earlier stages involving
partial folding of the protein(s) [5,104,130–133]. These partially folded structures change
into the highly fibrillation-prone structure, which has no tertiary structure present, and half
of the secondary structure is lost. These intermediates represent a key in the fibrillation
pathway and have characteristics and conformation like that of PMG [51,132,134]. Few
factors which includes non-polar molecules (preferentially bound to these partially interme-
diates), point mutations, high proton concentration cations, and oxidative damages leads
these partially folded conformations into fibril development [78,131]. The presence of defi-
nite aggregates of α-synuclein enhances toxicity in different ways in cellular processes [130].
The structural mechanisms, by which intermediates promote fibrillar aggregation, have
remained largely unexplored. Protein-folding intermediates linked to the development
of amyloid fibrils are involved in neurodegenerative diseases [132,135,136]. The structure
of a low-populated, on-pathway folding intermediate of the A39V/N53P/V55L (A, Ala;
V, Val; N, Asn; P, Pro; L, Leu) Fyn SH3 domain was determined using relaxation dispersion
nuclear magnetic resonance spectroscopy [132]. In this intermediate, the carboxyl terminus
remained unstructured, exposing the aggregation-prone amino-terminal β-strand. The
structures elaborate the non-native interactions that maintain an aggregation-prone inter-
mediate under native conditions, as well as how such an intermediate can disrupt folding
and induce fibrillation [132].

Advances in the protein chemistry research field develop an understanding that in-
termediates may occur during protein folding and unfolding to help in understanding
proteins that occur in a variety of structure forms (α, β,and γ). Therefore, many proteins
turn up natively unfolded, intrinsically disordered, or unstructured under physiological
conditions. Casein proteins present in the milk are a diverse group of proteins exhibiting
a strong tendency to associate with themselves and with each other. These features help
in generating the protein’s different structures and oligomeric species [137]. The casein
proteins are not random coils but are present in different newly described intermediate
states with variable properties. Because of this fact, the casein structure is still being
disputed and has been explanatory on how these intermediate structures fit the definite
protein. These new research systems have strengthened our understanding of its properties,
allowing us to explore new possibilities. The protein is more than just a dietary protein; its
structural intermediates and properties promise different and novel uses in research, phar-
maceuticals, and functional foods. If these concepts are applied to casein fractions, it may
be feasible to produce effective food products having nutraceutical or nanotechnological
utilization [119,138,139].

The point mutations in several proteins lead to genetic diseases [140,141]. These muta-
tions have caused proteins to be misplaced in a cell, resulting in their loss of function [116],
therefore influencing protein trafficking associated with some human genetic diseases. It is
interesting as a point of view to be considered that the MG or comparable structural states
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of protein molecules may be involved there [70,108,119,142]. In vitro studies have shown
that site-directed mutagenesis leads to the formation of protein intermediates [22,89]. Some
physiological processes, such as protein recognition by chaperones, secretion of protein
ligands, and protein translocation through bio-membranes, have already been suggested
to involve the MG states [70,143]. There are very strong facts and shreds of evidence
that confirm that non-native or denatured conformational states of the proteins help in
their translocation via membranes. These states are internally mobile and compact but
adequately extended to include water. These molten globule states are thought to be good
runners for protein translocation through biological membranes [144].

The ribulose-bis-phosphate carboxylase/oxygenase, Rubisco (an abundant protein
on earth), has greater kinetic facets in plants to enhance photosynthesis quality, resulting
in species with high nitrogen and water-use efficiencies. This protein improves crop im-
provement and can provide relief from the CO2 increase caused by anthropogenic activities
that lead to global climate changes. Type I Rubisco is a highly conserved hexa-decameric
complex found in cyanobacteria, algae, and plants. It consists of eight large subunits
with ~50 kDa molecular mass and eight small subunits with ~15 kDa molecular mass.
Another kind of bacterial Rubisco (Type II) is a dimer of large subunits that folds and
assembles spontaneously in a GroEL-mediated reaction [145,146]. Whether GroEL/GroES
was co-overexpressed or not, the expression of Type I Rubisco (from cyanobacteria) in
E. coli did not result in the formation of soluble protein, in comparison with the bacte-
rial process. The investigations noticed that in cyanobacteria, the Rubisco operon holds
an ORF (open reading frame) for a protein called RbcX. Apart from the genes for the
Rubisco subunits, there are genes for the small and large Rubisco subunits (RbcS and
RbcL, correspondingly). The existence of the protein (RbcX) was very less renowned
before, but researchers have developed methods in E. coli and express Rubisco upon coex-
pression of RbcX. A Rubisco-specific chaperone could thus be a crucial step in allowing
efficient folding of imported Rubiscos in both prokaryotic and plant systems [105,147].
Figure 2 shows the significant role of intermediate assembly in the folding and assembly
of L8S8 Rubisco mediated by GroEL/GroES and RbcX. The study showed that folding
process includes steps, (i) the substrate bound (primary state) to the chaperonin com-
plex, (ii) structural characterization of intermediate states kinetically trapped and accu-
mulated throughout the folding route, and (iii) kinetic measurements during the process
(unfolded⇔ intermediate⇔ native state conversion) [145].

In addition, the researchers observed that folding intermediates provide approaches
to differences in immunoglobulin amyloidogenicity and thus can shape the folding land-
scape positively to favor either folding or misfolding [3,111,134,148]. The researchers used
an antibody domain’s intrinsically slow folding process to define its essential folding
intermediate [134]. They were able to trap the intermediate in equilibrium and identify
it at atomic resolution using a single-point mutation. It is also worth noting that inter-
mediate has the simple β-barrel topology; however, a few strands were observed to be
distorted [134]. Unexpectedly, the presence of two short-strand-connecting helices in the
constant region of antibody domains suggests that a native structure is fully present in the
intermediate, which was then used as a framework for subsequent strands [134]. Trans-
planting these conserved stands of helices into β 2-microglobulin (homologous member of
the same superfamily) considerably showed a reduction in its amyloidogenicity [134]. As a
result, a high level of local structuring intermediates through protein folding can have a
considerable effect on the folding landscape which favored vigorous folding against nega-
tive misfolding. In addition, throughout evolution, the small differences acquired amid
members of the identical protein superfamily can evade pathogenic misfolding reaction
and identical protein topology conservation [134].
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As it is a known fact that transferable agents called prions cause spongiform
encephalopathies (TSEs) in animals as well as humans. They are made up of PrPSc,
the infectious isomer of PrPC, and the cellular prion protein [149]. The conversion
and propensity of the protein commence alternative folds, which are liable for the
species-specific transmission of the disease. Kachel et al. defined and confirmed the
structural stages of the human prion protein (hu PrP) [149] by using a hydrostatic
pressure (up to 200 MPa) and two-dimensional NMR spectroscopy in combination.
They recognized folding intermediates that were stabilized by pressure of the human
prion protein. They observed that the β1/α1-loopand the solvent-exposed side of α3
are the strongest regions reflecting the transition to the intermediate states [149]. Their
findings showed that the loop between β-strand 1 and α-helix 1 (residues 139–141) was
the most pressure-sensitive region (intermediate I1), and may be the first gateway for
the infectious moiety to transform the cellular protein [149].

Therefore, folding intermediates are essential in determining protein folding parame-
ters, understanding protein folding mechanisms, conservation of protein topology, cellular
transport regulation, structural maintenance, and avoidance of protein misfolding. These
elements are also better for understanding the biologically significant mechanism of con-
formational changes, such as structural distributions, harmonic vibrations, and structural
fluctuations [68,69]. Therefore, it may not be wrong to say that intermediates are vibrant
and vigorous elements of cellular architecture.

3. Conclusions

An intermediate state of proteins is a transitory state in the protein folding that exists
inside the living organism. These intermediate states can be induced by changing the
environment ofthe native protein (pH change, chemical induced, temperature induced,
and so on) and can be characterized under an in vitro system. These intermediates are
significant with their roles including cellular transport, structural maintenance, the preven-
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tion of protein misfolding, and conservation of protein topology. They are transient and
perform their regulation and maintain the integrity of cellular functions. Therefore, folding
intermediates play a central role in determining protein folding and comprehending the
protein folding mechanisms that help to understand the structural conformation of proteins
under an in vivo system.
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