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Abstract
New interactions with non-native species can alter selection pressures on native species.

Here, we examined the effect of the spatial distribution of a non-native species, a factor that

determines ecological and evolutionary outcomes but that is poorly understood, particularly

on a fine scale. Specifically, we explored a native butterfly population and a non-native plant

on which the butterfly oviposits despite the plant’s toxicity to larvae. We developed an indi-

vidual-based model to describe movement and oviposition behaviors of each butterfly,

which were determined by plant distribution and the butterfly's host preference genotype.

We estimated the parameter values of the model from rich field data. We simulated various

patterns of plant distributions and compared the rates of butterfly population growth and

changes in the allele frequency of oviposition preference. Neither the number nor mean

area of patches of non-native species affected the butterfly population, whereas plant abun-

dance, patch shape, and distance to the nearest native and non-native patches altered both

the population dynamics and genetics. Furthermore, we found a dramatic decrease in popu-

lation growth rates when we reduced the distance to the nearest native patch from 147 m to

136 m. Thus changes in the non-native resource distribution that are critical to the fate of

the native herbivore could only be detected at a fine-grained scale that matched the scale of

a female butterfly’s movement. In addition, we found that the native butterfly population was

unlikely to be rescued by the exclusion of the allele for acceptance of the non-native plant

as a host. This study thus highlights the importance of including both ecological and evolu-

tionary dynamics in analyses of the outcome of species interactions and provides insights

into habitat management for non-native species.
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Introduction
Biological invasions by non-native species are increasing world-wide as a result of the increas-
ing pace of global human movement [1, 2]. Many non-native species have radically changed
the structure of invaded communities (e.g., [3]). Several factors determine the ecological and
evolutionary outcome of interactions in invaded communities, including the local movement
patterns of native and invading species, the scale of spatial distributions relative to those move-
ment patterns, the spatial pattern of patch distribution, the extent to which the non-native spe-
cies is detrimental or beneficial to the native species, and the genetics underlying the
relationship between the two species. The effects of the spatial scale of movement relative to
that of distributions are important for understanding the role of individual movements in
determining population dynamics [4–6]. The effects of resource heterogeneity at coarser-
grained scales, e.g. the effects of habitat quality, size, and connectivity on animal migration,
metapopulation dynamics and gene flow, have been studied for decades. Likewise, analyses of
animal movements on finer-grained scales, such as foraging, mating and patrolling of territo-
ries, have provided important ecological information including insights into habitat use, social-
ity, and spatial dynamics of populations [7, 8]. Here, we combined these two approaches by
examining population and genetic dynamics with changing resource heterogeneity at the scale
of local, small animal movements.

We used a system comprising a native butterfly population and a non-native plant on which
the butterfly oviposits despite the fact that its larvae cannot develop on the plant. Patches of the
non-native plant thus are sink habitats for butterflies and can negatively impact butterfly fit-
ness [9]. Here, we modified plant abundance and distribution in a computer simulation in
order to investigate how the native butterflies react to various spatial patterns of the invasive
plants on a fine-grained scale. Specifically, we used an individual-based model (IBM) to
describe the movement and oviposition behavior of individual butterflies, which was deter-
mined by plant distribution. Each individual butterfly was characterized by various life history
parameters and a genotype for host preference. Movement and oviposition were also influ-
enced by the phenology of both the plant and the butterfly: the butterflies disregarded a host
plant with senescent leaves, and hosts with fresh leaves were only used during the butterfly’s
flight season. Detailed data on butterfly life histories and movements as well as distributions of
both plants and the butterfly are available to parameterize the model (described in Material
and Methods).

To examine how the spatial distribution of the non-native host plant affects the butterfly
population, we focused on several spatial attributes of plant distribution: plant abundance, the
shape, size and the number of patches and distance to the other patches. We intuitively expect
that the greater the density of the non-native plant, the greater the proportion of eggs laid on it,
and the greater the decrease in the butterfly’s population size. However, the increased number
of eggs on the detrimental host could also facilitate exclusion of the gene allowing acceptance
of the non-native host, and promote population size increase. Our IBM enabled us to explore
the dynamics of the relationship between the population growth rate and the change in fre-
quency for the allele for acceptance of the detrimental, non-native host plant. Previous studies
with coarser-grained scales suggested that patch shapes, sizes and distances between patches all
affect dispersal and search for a new patch [6, 10, 11]. We tested the effects of those spatial
attributes in a case where the sink and source patches were well mixed at a finer-grained scale.
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Materials and Methods

Study system
Our study site was located at the Rocky Mountain Biological Laboratory (RMBL) in Gothic,
Gunnison County, Colorado, USA (38° 57' 22.89” N, 106° 59' 18.23”W; elevation 2885 m
above sea level, 16.1 ha). The study system consisted of a native butterfly, Pieris macdunnoughii
(Pieridae; formerly P. napi macdunnoughii; see [12]), and its larval host plants, which include a
non-native crucifer (Brassicaceae), Thlaspi arvense L., and four other native crucifers, Boechera
spp. (formerly Arabis spp.), Cardamine cordifolia A. Gray, Draba aurea Vahl ex Hornem., and
Descurainia incana (Bernh. ex Fisch. & C.A. Mey.) Dorn. Unlike T. arvense, the four native
crucifers support P.macdunnoughii's larval development [9, 13]. Thlaspi arvense is a Eurasian
weed that arrived at RMBL in the mid to late 1800s [14]. It invades disturbed areas, which fre-
quently occur within RMBL. Hereafter, “host plants” refers to the four native plant species plus
T. arvense. The locations of all host plants that were visible were recorded in mid-July 2000
(Fig 1A, [9]). We refer to this plant distribution as the “observed” distribution. Habitat aridity,
which was correlated with butterfly occupancy, was also estimated in 2000 (Fig 1A, [9]).

Simulation flow
The IBM describes the movements of female P.macdunnoughii during their flight season,
which occurs from approximately June until mid-August (54 days; Figure A in S1 Appendix).
The host plant distribution at RMBL was represented by a series of fine grids (0.25 × 0.25 m
cell), each containing the host plant (or none) that was the dominant species in the focal cell in
the field survey (Fig 1A; [9]). Aridity levels (wet, intermediate, or dry) were also assigned to
each cell (see [9] for the details). Based on the observed phenology, some plants senesced dur-
ing the female butterfly flight season. All hosts were available in the first trimester of the flight
season, Boechera spp. and De. incana senesced in the second trimester, and only C. cordifolia
was available in the last trimester.

The simulation flow is summarized in Fig 2, and the parameter values are in Table 1. Each
individual butterfly was characterized by the genotype of oviposition preference (more details
about the genotype are given below). Each female also had a given lifespan, which was the num-
ber of days since adult emergence, obtained randomly from an estimated probability distribution
(Table 1; also see S1 Appendix for details of lifespan estimation). The lifespan included both
death and emigration from the habitat. A female was excluded from the simulation at the end of
her given lifespan. At the beginning of a flight season, we recorded the total number of emerging
female butterflies in that year that survived from eggs laid by the previous generation. We then
randomly selected emerging females for each day throughout the flying season based on the
number of emerging females on each day determined by a β-function (Table 1, also see S1
Appendix for details of the emergence estimation). Females emerged on the scheduled day, and
remaining females stayed inactive. An emerged female mated immediately with a male randomly
chosen from the surviving eggs laid by the previous generation. In the first generation, adult
females started in random cells occupied by native hosts. Adult females in subsequent genera-
tions started in the cell where they were oviposited and developed as larvae, because larvae have
lowmobility [13]. A mated female moves through a patchy habitat and oviposits if she stops at a
cell that contains a suitable host. While searching for a suitable host, the distance that a female
flies depends on whether she is currently on a host plant or not and on the aridity of the current
location (Table 1; also see S1 Appendix for the details of estimation). The turning angle was ran-
dom [15]. Host suitability depends on whether the host plant is native or not, whether the plant
is senescent or not and the female’s genotype and motivation to oviposit. Oviposition choice is
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Fig 1. Simulated plant distribution patterns. The simulation number in each panel corresponds to the
number in Fig 3. The patches of native plants were not modified from the observed data collected in 2000.
The total patch area of the non-native host plant, T. arvense, in each panel was almost the same and was
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increased to approximately 400% of the patch area observed in 2000. The center of the patches of T. arvense
in panel (a) were not moved from those observed in 2000. See the text for details of other distribution
modifications.

doi:10.1371/journal.pone.0143052.g001

Fig 2. Simulation flow chart for the IBM.

doi:10.1371/journal.pone.0143052.g002
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sex-linked (Boggs et al., unpublished manuscript), which in Lepidoptera means that it is deter-
mined by the paternal chromosome since females are heterogametic. Given that the details of the
genetic system of oviposition preference are unknown, we assumed a 1-locus-2-allele system for
simplicity. In the simulation, females oviposited on T. arvense in addition to the native hosts only
if they had the allele to accept the plant. The genotype was determined by the genotypes of the
fathers. We assumed that the adult genotypic distribution was at Hardy-Weinberg equilibrium.
For example, if the father was a dominant homozygote ZrejectZreject (where Zreject and Zaccept rep-
resent whether the allele codes for rejecting or accepting T. arvense, respectively), the offspring's
genotype was ZrejectW if female and ZrejectZreject or ZrejectZaccept if male, depending on the
mother's genotype. The sex of the oviposited egg was determined randomly with a probability of
0.5. Females had a limited number of available eggs to lay each day and over a lifespan (Table 1,
and see S1 Appendix for the details of estimation of daily egg load). The daily egg load depended
on the female’s age. Females oviposited a single egg at a time [13]. In the simulation, a female on
a suitable host oviposited there with a probability of 0.75. We set no limits for the number of eggs
in a cell. A female butterfly stopped moving on a given day when either the total distance of her
flight on that day reached the daily flight distance, which was chosen randomly from an esti-
mated probability (Table 1; also see S1 Appendix for details), or she laid all the eggs for the day.
Thus some eggs could be retained in the female and not oviposited. We assumed this had no
effects on the subsequent egg load. When all the females met either of the conditions for stop-
ping, the day was ended. At the start of the next day, females that reached their given lifespan
were excluded from the simulation. Remaining females started moving from the cell where they
stopped the previous day.

We assumed that the P.macdunnoughii population has one generation per year [15]. At the
end of the flight season, we counted the eggs laid, and from those eggs we randomly selected
the offspring that would survive until adult emergence, with the total number given by a proba-
bility including egg hatchability, larval survival, and pupation and adult emergence success
(Table 1 and S1 Appendix). Larval survival is host plant-dependent; i.e., none survive on T.
arvense [9, 13], while those on the native hosts survive with a given probability (see S1 Appen-
dix for details of estimation). We introduced female immigrants each year. Immigrants were
not defined as those who entered the habitat as adults, but rather those who emerged from eggs
oviposited by females who entered the habitat in the previous generation. The number of

Table 1. Parameters and values of the model.

Parameter Value

Adult lifespan –(lnx)–1, with x~N(0.86, 0.04)

Survival from egg to adulthood 0.00651 on native host, 0 on T. arvense

Immigration rate 0.07

Initial allele frequency 0.5

Step size (wet) 8 cells

(intermediate) 10 cells

(dry) 15 cells

(oviposition) 6 cells

Daily flight distance N(4134.54, 6.43×107)

Min/max. flight distance 16.38/28800 m

Oviposition probability 0.75

Daily egg load 483.7 × lnN(1.69, 0.66)

Daily emergence probability β-distribution with α = 1.75, β = 8.28

doi:10.1371/journal.pone.0143052.t001
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immigrants was proportional to the focal population size, and the immigration rate was set at
7%. Immigrants started from randomly chosen cells occupied by native host plants. As men-
tioned above, emigration was combined with death and its probability was included in lifespan.
There are no data separating death and emigration to our knowledge.

We started all the simulations with 150 females. We also explored how the intial population
size affected the simulation results (see “Sensitivity analysis”). We ran each simulation 50 times
for 100 generations each to obtain replicates. At the end of each simulation, we calculated the
population growth rate R, which is the geometric mean of Nt / Nt−1 (Nt denotes the population
size at generation t), and the rate of allele frequency change G, which is the geometric mean of
pt / pt−1 (pt denotes the frequency of allele Zaccept at generation t). Because the Z allele is on the
sex chromosome, pt in females is calculated as the frequency of genotype ZacceptW, and pt in
males is [the frequency of genotype ZacceptZaccept + the frequency of genotype ZrejectZaccept /2].
The frequency pt in the whole population is (2 pt,male + pt,female) /3. All simulations were done
using Mathematica 9.0 (Wolfram Research, Inc., IL, USA). The maps of plant distribution used
in the simulation are provided online (10.6084/m9.figshare.1592706).

Spatial pattern of T. arvense
We changed the abundance and spatial distribution of T. arvense to test how the following spa-
tial attributes of T. arvense affect the population and allele frequency dynamics of female but-
terflies: (1) total number of cells occupied by T. arvense (“cover”), (2) the number of patches
(“patchnum”), (3) mean area of each patch (“area”), (4) patch compactness (“shape”), (5) dis-
tance to the nearest native host patch (“dist”), and (6) distance to the nearest T. arvense patch
(“thdist”). These six attributes were changed as described below and simulations were run with
all possible combinations, resulting in 40 simulation scenarios (Fig 3; also see Fig 1). The
patches of native hosts were not changed throughout the simulations for simplicity.

(1) “Cover”. We enlarged each patch of T. arvense in the habitat without changing the cen-
tral location of each patch to make the total proportion of T. arvense cover to total host cover
as approximately 1.5, 4, and 8 times larger than the observed, which was 2.7%. When the
enlarged patches of T. arvense conflicted with native plants, the cells in conflict were occupied
by T. arvense. Note that when we enlarged the observed patches to increase the T. arvense
cover, some of the close patches merged. These merged patches were counted as one patch,
thus resulting in fewer patches in these simulations (i.e., 45, 26, and 22 patches when cover was
1.5-, 4- and 8-fold larger than the observed, respectively).

(2) Number of patches (“patchnum”) and (3) mean area of each patch (“area”). We
examined whether a single large or several small sink patches had a negative impact on the but-
terfly population. We constructed one and 10 square-shaped patches without changing the
total cover (e.g., Fig 1B VS Fig 1F). The observed distribution had 59 T. arvense patches. As an
extreme case of many patches, we assigned each T. arvense individual to a patch consisting of
one cell, and randomly allocated those patches in vacant cells throughout the habitat. These
distribution patterns are described as simulation number 2, 12, 22 and 32 in Fig 3, respectively.
The number of patches (“patchnum”) in the Table were categorized as “max” and the “area” as
“min” in Fig 3, because the cells occupied by T. arvense were randomly allocated one by one,
resulting in the maximum number of patches possible and the minimum size of patches possi-
ble. The actual numbers and sizes of patches are shown in S1 Table. We regarded adjacent cells
occupied by T. arvense as one patch.

(4) Patch compactness (“shape”). We changed the shape of T. arvense patches to compact
(e.g., Fig 1B) or elongated (e.g., Fig 1H). The shape algorithm, which measures compactness,
was as follows: Shape = (0.25 [patch perimeter,m]) /

p
[patch area, m2] [16].
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(5) distance to the nearest native host patch (“dist”) and (6) to the nearest T. arvense
patch (“thdist”). We located the T. arvense close to and far from the native patches (e.g., Fig
1B VS 1C) and to each other (e.g., Fig 1F VS 1H). “Close” and “far”meant that the butterfly
patches were closer to or farther, respectively, from the nearest patch on average than in the
observed distribution. The distance to the nearest patch (m) shown in S1 Table was measured
as the least distance between patch peripheries.

To maintain the same mean distance between the native and the non-native host patches
and also the same mean distance among T. arvense patches within the “close” and “far” simula-
tions, the simulated values were carefully selected. For example, a large single patch of T.
arvense in a “far” from the native hosts shown in Fig 1C could be located closer to the periphery
of the habitat to have a higher contrast to the simulation in Fig 1B. Instead, however, it was

Fig 3. Spatial patterns of Thlaspi arvense simulated by the IBM (left) and the population growth rate R and the rate of allele frequency changeG of
each simulation, shown in closed circle and open square, respectively (right). The right-end column of the table shows the corresponding panel in Fig
1.

doi:10.1371/journal.pone.0143052.g003
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located at approximately the same mean distance from the native hosts as where the T. arvense
patches shown in Fig 1E, 1G and 1I were located.

Once the spatial patterns were altered, we analyzed the correlation between the six map
attributes to avoid multicollinearity. We then constructed linear models to determine the attri-
butes that explain R and G using a t-test via the “glm” function in R (ver. 3.0.1, [17]).

We compared the relative speed of the changes of population size and the allele frequency
by comparing R and G for each simulation scenario. If G was smaller than R, the deleterious
allele should be excluded from the population before the butterfly went extinct.

Sensitivity analysis
We conducted sensitivity analyses to identify the parameters that were fixed in the model, but
whose value may have a disproportionate impact on the output. The parameters tested
included adult lifespan, immigration, oviposition probability on a host, survival until adult-
hood, initial population size, and initial allele frequency. We compared the observed relative
change in population growth rate resulting from a ±3% change in each parameter. For adult
lifespan, we changed the mean of the probability distribution. A large difference from the simu-
lation with observed parameter values indicated that the model had a high sensitivity to a
change in a particular parameter. Since our simulation includes stochasticity, population
growth rate comparisons are the means of 50 simulation replicates. We started the sensitivity
simulations with 50 individuals except for those testing the effects of initial population size,
which started with ±3% of 50 individuals. We ran the model for 30 generations to calculate the
population growth rate. The sensitivity of allele frequency was analyzed in the same manner.

Results

Spatial pattern of T. arvense
We first ran the model with the observed plant distribution. Butterflies visited both native
hosts and T. arvense. Female population size generally decreased. The average growth rate R to
generation 100 was 0.989 ± 0.005 SD. The growth rate of the simulation run with identical
parameters but lacking T. arvense (simulation #1 in Fig 3 and Fig 3) was 1.000 ± 0.003 SD. This
difference in R suggested that the population decrease in the simulation with the observed dis-
tribution was due to the mortality of eggs on T. arvense. The Zaccept allele was not excluded
from the population over 100 generations (average rate of allele frequency change
G = 0.997 ± 0.005; see also Fig 3). This result agrees with the ongoing oviposition on T. arvense
in the field [9]. Note that our simulation included immigration, which also occurs in the field.

Because there was a high correlation between patchnum and area (Spearman's ρ = −0.91,
p< 0.0001), we removed patchnum from the linear model. The ANOVA of the linear model
[R = cover + dist + area + thdist + shape] showed significant effects of all attributes (Table 2A).
Next, we conducted an ANOVA to see if there were any relationships between the rate of allele
frequency change G and the population growth rate R. Thus we analyzed the model [G = R]
and found a significantly positive effect of R (Table 2B).

The population growth R generally decreased with increased proportion of T. arvense, i.e,
“cover” (Table 2, Fig 4A). The same trend was observed with increasing “thdist”, i.e., the dis-
tance between T. arvense patches (Table 2, Fig 4C). Conversely, increasing the distance from a
T. arvense patch to the nearest native host (“dist”) raised the population growth rate (Table 2,
Fig 4B). The population growth rate showed sigmoidal increase with increased “dist”. All the
population growth rates became larger than 0.997 when “dist” was increased to 147 m or lon-
ger. This sharp change of population growth rate was observed particularly when the propor-
tion of T. arvense (“cover”) was 4 or 8 times higher than observed (shown by triangles and
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Table 2. Results of the t-test of the linear models.

Variable Coefficient (estimate ± SD) t p

(a) R = cover + dist + area + thdist + shape

cover −0.23 ± 6×10−3 −37.703 <10−15

dist 1.00×10−4 ± 4×10−6 22.772 <10−15

area 3.55×10−6 ± 5×10−7 7.871 <10−14

thdist −6.92×10−5 ± 9×10−6 −7.403 <10−12

shape −3.04×10−3 ± 3×10−4 −8.871 <10−15

(b) G = R

R 0.61 ± 0.047 13.204 <10−15

doi:10.1371/journal.pone.0143052.t002

Fig 4. Change of butterfly population growth rate with 4 spatial attributes of T. arvense distribution that significantly affected butterfly population
dynamics: “cover” (a), “dist” (b), “thdist” (c) and “shape” (d). Symbols represent different levels of “cover”, i.e., the proportion of habitat occupied by T.
arvense to the total habitat occupied by the host plants; closed circle: <3%, open circle: <5%, triangle: <10%, diamond: <20%.

doi:10.1371/journal.pone.0143052.g004
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diamonds in Fig 4B, respectively; also see S1 Fig). For example, when “cover” was 8 times
higher than observed, increasing the mean distance between T. arvense and the nearest native
host by 10.2 m (from 136.5 to 146.7 m) without changing other spatial attributes caused a dras-
tic increase of the population growth rate from 0.968 to 0.981 (simulations #37 and #35 in
Table 2 and S1 Table, also see Fig 4B and S1 Fig). The population of 150 becomes extinct at
generation 155 under R = 0.968 (because 150 × 0.968155 < 1) and at generation 262 under
R = 0.981. The population growth rate showed a U-shaped response to the shape index (Fig
4D), although that could be due to the small number of simulations at intermediate values.
Simulations with relatively compact patches (small shape index) generally had higher popula-
tion growth rates.

The mean R was larger than the mean rate of allele frequency change G in 1 simulation out of
40, and none of the mean Rs exceeded G + SD (Fig 3). Therefore the rate of population growth
was always smaller or almost equal to the rate of allele frequency change. The meanG ± SD of all
the simulations overlapped with the mean G ± SD of the “observed” simulation (Fig 3). The sim-
ulations were started with p = 0.5 in both sexes, which makes the Hardy-Weinberg equilibrium
of allele frequency in the population = (2pmale

2 + 2pmale (1−pmale) + pfemale) / 3 = 0.5. Thus, in all
simulations Zaccept frequency, p did not depart from equilibrium.

Sensitivity analysis
The population growth rate and the rate of allele frequency change showed the highest sensitiv-
ities to adult lifespan (Fig 5). Survival until adulthood had the second largest impact on the
population growth rate. The remaining simulation parameters did not greatly alter population
growth or allele frequency.

Discussion
The population growth rates of the native butterfly, R, obtained from our simulations with dif-
ferent spatial distributions of the detrimental, non-native plant generally decreased with
increases in the presence of the non-native, as we expected. The results generally agreed with
Ruckelshaus et al. [11]’s IBM done at a coarser-grained scale, which showed that the probabil-
ity of an ideal organism reaching a new suitable habitat was greatly affected by the amount of
suitable habitat and slightly affected by habitat size or shape. In their simulations, although the
effect was relatively small, the longer the habitats were, the higher the probability of reaching a
new habitat. Reaching a new, suitable habitat in Ruckelshaus et al [11]’s IBM likely results in
an increase of population size, whereas reaching a new T. arvense patch in our IBM reduces the
butterfly’s population size. Therefore smaller population growth rates with more elongated
patches in our IBM are consistent with Ruckelshaus et al. [11]’s result. They, as well as Fahrig
[10], also found that the probability of reaching a new habitat increased more with many
smaller habitats than a few larger habitats. In our case, reaching the non-native’s patches more
often should reduce the population growth rate. Our simulations showed that the sizes of the
non-native host plant patch on the native butterfly’s population dynamics had a positive effect,
therefore the number of non-native patches should have a negative effect (due to a strong nega-
tive correlation between the size and the number of the non-native’s patch), which was consis-
tent with the results of previous studies. Smaller patches also increased the probability of P.
rapae, a congeneric of P.macdunnoughii, leaving a patch [18]. The butterflies in our IBM were
able to leave a non-native’s patch and visit another one more often when there were smaller,
and therefore a larger number, of non-native patches.

Fahrig and Paloheimo [18] also showed that increasing the distance between patches
decreases the probability of finding new patches by female P. rapae. In our case, there was a
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Fig 5. Results of the sensitivity analysis. Bars show the (a) mean population growth rate and (b) mean rate
of allele frequency change of simulations with each of the following parameters increased or decreased by
3% (indicated by “+” and “−”, respectively) from the observed value shown in Table 1; “observed”: no
parameters were changed; “immig”: immigration rate; “oviprob”: oviposition probability; “alfreq”: initial allele
frequency; “juvsurvival”: survival until adult; “lifespan”: lifespan of adult females; “initial popl”: initial population
size. The parameters are shown in the order of largest to smallest difference between the means of “+” and
“−”except for “observed”. Error bars show SD.

doi:10.1371/journal.pone.0143052.g005
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sharp increase of population growth rate with increasing the distance between the detrimental,
non-native plant and the native host plants. Low probability of finding new patches of native
host plants might have promoted the quarantine and exclusion of the allele for accepting the
non-native host by keeping the female butterflies with the allele inside the non-native patches,
while the females without the allele occupied the native host patches.

This result also highlights the importance of considering resource distribution and animal
movement at the same, appropriate scale. We found a sharp change in the population growth
rate over a 10 m difference in the distance between native and non-native host patches, with a
threshold around 147 m. This change became obvious when the proportion of T. arvense
patches to the total host patches was 4 times or more than observed (i.e.,>10%), but was not
as clear when the percentage of T. arvense was 1.5 times higher than observed (i.e., 4.5%). Since
the total area occupied by the host plants (including T. arvense) observed in 2000 was 1.3 ha
[9], 4.5% of that corresponds to 0.06 ha, whereas 10% corresponds to 0.13 ha. Thus a difference
in the total area of T. arvense as small as 0.07 ha (i.e., 700 m2) made the effect of “dist” distinct
or not. These thresholds cannot be detected using a general, coarser-grained assessment. This
“functional grain” [19] scale may also depend on the species’ interactions with the habitat het-
erogeneity [20]. In our case of a butterfly with a relatively small home range and a patchy host
plant well mixed with other plants, a detailed investigation on the host plant distribution was
necessary to assess the effect of the invasive host. However, if another invasive species that
makes large, dense patches like C. cordifolia (see Fig 1A) comes into the system, a coarser-
grained census of the plant distribution may be adequate to match the size of the patches and
the spatial resolution [21].

The population growth rate, R, had a positive effect on the rate of the p allele frequency
change, G. That is, when the population shrank, the frequency of Zaccept declined. In addition,
all the simulations showed R almost equal to or smaller than G (Fig 3). The population went
extinct in some simulations even after the Zaccept allele was excluded, probably because the pop-
ulation was already too small to recover when Zaccept disappeared. Thus, in the race between
extinction and loss of the detrimental allele, extinction won. This resembles the case of race
between adaptation and extinction suggested by Maynard Smith [22], which plays an impor-
tant role in “evolutionary rescue” [23]. Evolutionary rescue refers to a situation where a
decreasing population recovers and escapes from extinction due to an increase of adaptive
allele frequency. If the population decreases too rapidly, it may cross below a threshold popula-
tion size where it is susceptible to extinction due to demographic stochasticity, and adaptation
cannot rescue it. To examine when the population can be rescued by evolution, Gomulkiewicz
and Holt [24] and Orr and Unckless [25] both analyzed mathematical models of a population
which experienced a sudden and severe environmental change, and whose fitness was affected
by a phenotype characterized by one locus, which was analogous to our simulation. They con-
cluded that the probability of evolutionary rescue was affected by the initial population size
and the initial level of maladaptation. In our case, the sensitivity analysis showed no remark-
able effect of the initial population size nor of the initial level of maladaptation (i.e., initial fre-
quency of p) on the population growth and allele frequency change (Fig 5). This result
indicates that the initial population size may not affect the fate of population, or that the initial
population might be too small to be rescued. Theoretical models of closed systems suggested a
threshold population size which can be rescued as 10–100 individuals [24]. Similarly, the initial
frequency of pmay have no effect on the fate of butterfly, or p = 0.5 could be too high to be
excluded. We should note, however, that our model described the simplest evolutionary sys-
tem, whereas discussions concerning evolutionary rescue, such as the theoretical models cited
above, include mutations, environmental fluctuations and other factors that may change the
speed of evolution in our case as well.
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Immigration can also play an important role in maintaining Zaccept. Immigration could res-
cue the population either through an increase in population size (demographic rescue) or
through an increase in the frequency of the adaptive allele (genetic rescue) [23]. However, field
data on our system suggested that gene flow between the focal population and neighbors may
be high, such that the immigrant source and focal populations may have similar allele frequen-
cies ([15], Boggs personal observation), as assumed in our simulation that resulted in popula-
tion decrease. Even when we ran simulations assuming that all immigrants were from a
population in which the Zaccept frequency was 0, the population growth rate increased from
that of the observed simulation scenario but Zaccept allele was not excluded within 150 genera-
tions (results not shown). Thus, the population is more likely to be rescued demographically
rather than genetically by immigrants.

Interestingly, extinction won the race with adaptation in our simulations even though the
locus for acceptance of the detrimental host plant was on the sex chromosome, which has been
shown to evolve more rapidly than loci on autosomes when the allele in question is lethal [26].
The complicated inheritance system of oviposition preference on the sex chromosome must
have contributed to slow the evolution in reality: the Zaccept allele is lethal not for the individual
who carries Zaccept but only for those of his/her offspring who were born on the non-native
host plant. The other, lucky offspring who were born on the native plant grow, reproduce and
pass Zaccept to future generations. This modification of the timing of lethality may well slow
elimination of the Zaccept allele from the population sufficiently to also result in decreases in
population size, which then lead to an eco-evolutionary spiral to extinction.

Indeed, these results were obtained with the simple assumption of 1-locus-2-allele system,
although a mathematical model suggests that similar results obtain for multiple loci system
[24]. We also lack information on survival from egg to adulthood except for larval survival. In
our IBM, this survival was set to maintain the butterfly population at a stable size when the
non-native plant was absent. If survival is higher in reality, the population can grow faster than
in our IBM and the maladaptive allele may be excluded. More details of the genetics, as well as
demography, are required to assess the speed of evolution in the field and gain additional
insight into this eco-evolutionary feedback. In addition, there is another possibility for evolu-
tionary rescue in real life: the butterfly could become able to utilize T. arvense as a host plant. A
population of the congeneric, P. oleracea, may have evolved to utilize a detrimental invasive
plant at least within 60–100 generations [27, 28]. Our simulation did not consider evolution of
larval utilization ability.

We used an IBM, which is stochastic, even though animal movements are often approxi-
mated by deterministic mathematical models such as time-dependent partial differential equa-
tions (PDEs). We also developed a PDE that assumed the simple diffusion of butterfly density
to compare butterfly movement with our IBM, and obtained almost identical results (see S2
Appendix for details). However, the results of the IBM were obtained faster than the numerical
solution of the PDE on a fine-grained scale. In addition, the IBM was able to incorporate phe-
nology, oviposition preference, and genetics in an intuitive manner, unlike a mathematically
complicated PDE. An IBM in general is a powerful tool that allows direct assessment of the
population-level impacts of variation among individuals [29, 30]. An IBM can include complex
rules both of movement determined by encounters with resources that are heterogeneously dis-
tributed (e.g., dispersal step size, frequency and direction) [31, 32]. In fact, incorporation of
spatial information into IBMs (Spatially Explicit Population Models, SEPMs; [33] has yielded
numerous insights into spatial ecology ([30] and references therein). In spite of the benefits, to
our knowledge this study is the first example of SEPMs which studied eco-evolutionary
dynamics affected by biological invasions.
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An IBM that simulates a realistic, non-ideal, idiosyncratic system can also be a powerful
tool for species conservation and landscape management [34]. Our study provided specific
thresholds for abundance and distribution of an invasive species that may cause severe popula-
tion declines. Given that T. arvense occupies disturbed areas, our simulations can help with the
development of a habitat management plan to preserve P.macdunnoughii. For example, given
that shape had a significantly negative effect on population growth, it might be advantageous to
reclaim or develop habitat in a compact shape rather than in an elongated shape when other
attributes such as total area are the same.

Overall, our results demonstrate the importance of analyzing habitat structure at the scale
experienced by an organism to understand population dynamics. The habitat structure
includes the distribution of resource, phenology and amount of immigration. This is true not
only for understanding the effects of invasive species, but also for effects of, e.g., climate change
[35]. Studies such as ours that integrate behavior, habitat use and individual and population
responses to realistic niche structures will give insights both into the fate of specific populations
and into the concepts that govern those fates.
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