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Abstract: Halitosis is a common ailment concerning 15% to 60% of the human population. Halitosis can
be divided into extra-oral halitosis (EOH) and intra-oral halitosis (IOH). The IOH is formed by volatile
compounds, which are produced mainly by anaerobic bacteria. To these odorous substances
belong volatile sulfur compounds (VSCs), aromatic compounds, amines, short-chain fatty or organic
acids, alcohols, aliphatic compounds, aldehydes, and ketones. The most important VSCs are
hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl mercaptan. VSCs can be
toxic for human cells even at low concentrations. The oral bacteria most related to halitosis are
Actinomyces spp., Bacteroides spp., Dialister spp., Eubacterium spp., Fusobacterium spp., Leptotrichia spp.,
Peptostreptococcus spp., Porphyromonas spp., Prevotella spp., Selenomonas spp., Solobacterium spp.,
Tannerella forsythia, and Veillonella spp. Most bacteria that cause halitosis are responsible for
periodontitis, but they can also affect the development of oral and digestive tract cancers. Malodorous
agents responsible for carcinogenesis are hydrogen sulfide and acetaldehyde.

Keywords: halitosis; malodor; volatile sulfur compounds; hydrogen sulfide; microbiota;
Fusobacterium; Porphyromonas; Prevotella; periodontitis; carcinogenesis

1. Introduction

Halitosis is a common problem that manifests as an unpleasant and disgusting odor emanating
from the mouth [1]. Malodor is mainly caused by putrefactive actions of microorganisms on endogenous
or exogenous proteins and peptides. Oral malodor is an embarrassing condition that affects a large
percentage of the human population. This condition often results in nervousness, humiliation, and social
difficulties, such as the inability to approach people and speak to them [2–6]. Halitosis experiences
from about 15% to 60% of the human population worldwide [7–12]. Halitosis can be divided into
extra-oral halitosis (EOH) and intra-oral halitosis (IOH) [2,3,5].

The factors that increase the likelihood of halitosis include periodontal diseases, dry mouth,
smoking, alcohol consumption, dietary habits, diabetes, and obesity. Halitosis can also be affected by
the general hygiene of the body (i.e., dehydration, starvation, and high physical exertion), advanced
age, bleeding gums, decreased brushing frequency, but also by stress [3,13–16]. Produced during
stress, catecholamines and cortisol increased hydrogen sulfide production by sub-gingival anaerobic
bacteria [17]. The medications which can cause extra-oral halitosis were categorized into 10 groups:
acid reducers, aminothiols, anticholinergics, antidepressants, antifungals, antihistamines and steroids,
antispasmodics, chemotherapeutic agents, dietary supplements, and organosulfur substances [18].
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More and more patients are struggling with bad breath and report this problem to their primary care
practitioner for diagnosis and management [19,20]. However, many physicians, dentists, and biologists
have insufficient knowledge regarding the cause and biochemistry of this disease.

In this review, we focused on intra-oral halitosis, regardless of classification.

2. Classifications of Halitosis

In the literature, mainly three classifications of halitosis are used, described by Miyazaki et al.,
1999 [21], Tangerman and Winkel in 2010 [22], and Aydin and Harvey-Woodworth in 2014 [23]
(Figure 1).
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Miyazaki et al. divided halitosis as intra-oral (IOH) and extra-oral (EOH) [21]. Extra-oral halitosis
can be of bloodborne or non-bloodborne origin and covers about 5–10% of all halitosis [22].
Bloodborne-related causes include diabetes metabolic disorders, kidney and liver diseases, and certain
drugs and food. Non-bloodborne-related causes include respiratory and gastrointestinal diseases.
Meanwhile, pathological conditions in the oral cavity are responsible for 80–90% of IOH [2,3,25].
Both aerobic and anaerobic bacteria can be responsible for IOH. These microorganisms tend to produce
foul-smelling, sulfur-containing gases called volatile sulfur compounds (VSCs) [23,26].

In the classification of Tangerman and Winkel [22], halitosis is classified as genuine and delusional.
Delusional halitosis (monosymptomatic hypochondriasis; imaginary halitosis) is a condition in which
patients believe that their breath is smelly and offensive. The social pressure of having fresh smelling
breath increases the number of people that are preoccupied with this condition. However, the perception
of oral malodor does not always reflect actual clinical oral malodor [27]. Self-perceived halitosis was
found to be more prevalent amongst males, particularly smokers, compared to females. However,
there are no statistical differences when comparing with different age groups [28]. Genuine halitosis is
further subdivided into physiological and pathological halitosis. Physiological halitosis (foul morning
breath, morning halitosis) is caused by saliva retention, as well as the putrefaction of entrapped food
particles. Meanwhile, intra- and extra-oral causes are responsible for pathological halitosis [3,4,19].

Aydin and Harvey-Woodworth divided pathologic halitosis into five types: Type 1 (oral), Type 2
(airway), Type 3 (gastroesophageal), Type 4 (blood-borne) and Type 5 (subjective). Moreover, it is
Type 0 halitosis (physiologic odor), which can be a connection of the physiologic contributions of oral,



J. Clin. Med. 2020, 9, 2484 3 of 17

airway, gastroesophageal, blood-borne, and subjective halitosis. Any combination of the above types
can be present in every healthy person [23].

3. Volatile Compounds

Halitosis is formed by volatile compounds, which are produced mainly by bacteria in the oral
cavity. In the oral cavity, nearly 700 different compounds have been detected [29]. To these volatile
substances belong sulfur compounds, aromatic compounds, amines, short-chain fatty or organic
acids, alcohols, aliphatic compounds, aldehydes, and ketones (Table 1) [25,30–33]. It is considered
that hydrogen sulfide, methyl mercaptan, and dimethyl sulfide are the main volatile compounds
in IOH [34–37]. In many studies, the measurement of malodor substances concerns only volatile
sulfur compounds (VSCs). The most commonly used are VSC monitors, such as the Halimeter
(Interscan, Chatsworth, USA) [11,36,38–41]. This method has a significant disadvantage because the
measure of dimethyl sulfide is not exact [42]. Moreover, the presence of alcohols, phenyl compounds,
and polyamines can interfere with readings [16,43]. For this reason, in the assessment of IOH, other
substances are often not taken into account. However, they can have an equally important role.
It is confirmed by studies using gas chromatography-mass spectrometry [29,32,44]. In the paper of
Monedeiro et al., in the persons with IOH, 85 volatiles, were detected, and the most predominant classes
of malodor compounds were alcohols and ketones. In this group, in comparison to healthy persons,
an increased number of volatile sulfur compounds and esters was observed. Simultaneously, authors
found ten VSCs substances: methyl thioacetate, dimethyl disulfide, dimethyl trisulfide, dimethyl
tetrasulfide, dimethyl pentasulfide, dimethyl sulfone, allyl thiocyanate, allyl isothiocyanate, S-methyl
pentanethioate, and thiolan-2-one [44]. In other studies, in halitosis patients, the 30 most abundant
volatile compounds in the oral cavity belonged to alkanes or alkane derivatives, therein methyl benzene,
tetramethyl butane, and ethanol [45]. Dadamio et al. reported VSC and amines (such as putrescine,
cadaverine, and trimethylamine) as the most abundant organic compounds in IOH patients [46].

In Table 1, among others, values of odor thresholds are presented. Amid VSCs, which are the
most often described compounds in IOH, the lowest value of odor threshold has methyl mercaptan,
followed by hydrogen sulfide and dimethyl sulfide. This means that these substances are mainly
responsible for the unpleasant smell in the mouth. Besides, methyl mercaptan is felt in much lower
concentrations than the other compounds.

Table 1. Volatile compounds present in halitosis [23,30–33,44,47,48].

Group of
Compounds

Compound
Name

Chemical
Formula Chemical Structure

Odor
Threshold

(ppm)
[49–52]

Toxicity in
Rats LD50
(mg/kg)

Volatile sulfur
compounds

(VSC)

Hydrogen
sulfide H2S
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most often described compounds in IOH, the lowest value of odor threshold has methyl mercaptan, 
followed by hydrogen sulfide and dimethyl sulfide. This means that these substances are mainly 
responsible for the unpleasant smell in the mouth. Besides, methyl mercaptan is felt in much lower 
concentrations than the other compounds. 

Table 1. Volatile compounds present in halitosis [23,30–33,44,47,48]. 

Group of 
Compounds 

Compound 
Name 

Chemical 
Formula 

Chemical Structure 

Odor 
Threshold 

(ppm)  
[49–52] 

Toxicity in 
Rats LD50 

(mg/kg) 

Volatile sulfur 
compounds 

(VSC) 

Hydrogen 
sulfide 

H2S  0.00004 15 [53] 

Methyl 
mercaptan 

CH4S  5.1 × 10−13 
61 (unspecified 

mammal 
species) [54] 

Dimethyl 
sulfide 

C2H6S 
 

0.00012 3300 [54,55] 

Dimethyl 
disulfide 

C2H6S2 
 

0.00029 190 [54] 

Dimethyl 
trisulfide 

C2H6S3 
 

no data no data no data no data

Allyl methyl
sulfide C4H8S
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Group of
Compounds

Compound
Name

Chemical
Formula Chemical Structure

Odor
Threshold

(ppm)
[49–52]

Toxicity in
Rats LD50
(mg/kg)

Aromatic
compounds

Pyridine C5H5N
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0.0000056 3450 [54,55] 

Amines 

Ammonia H3N  0.043 350 [56] 

Urea CH4N2O 

 

no data 
567–8471 

[54,55] 

Methylamine CH5N 
 

0.00075 100 [54,55] 
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Trimethylamine C3H9N 

 

0.00002 500–535 [54,55] 

Putrescine C4H12N 

 

no data 
463–2000 
[54,55,58] 
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Short/medium 
fatty or organic 

acids 
Acetic acid C2H4O2 

 

0.0004 3310 [54,55] 

0.01 360–891 [54,55]

Picoline C6H7N
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In the oral cavity, the most relevant anatomical part related to IOH is the tongue.
The tongue-associated microbiota produce malodorous compounds and fatty acids. The VSCs
are the most essential substances responsible for malodor. They are products of metabolism
of sulfur amino acids: methionine, cysteine, and homocysteine in the Gram-negative anaerobic
bacteria [25,30,47,60]. Hydrogen sulfide and mercaptans are the principal end products [38]. In healthy
volunteers, the concentration of H2S in saliva was within a range of 1.641–7.124 µM [61]. In other
studies, the mean amount of H2S in the saliva of healthy persons was 0.5 ng/10 mL, whereas in
patients with IOH it was 6.7 ng/10 mL [62]. Gram-positive bacteria can support Gram-negative
anaerobic bacteria in the production of VSC. They cut off sugar chains from glycoproteins and provide
proteins that are necessary for proteolytic processes [60]. Streptococcus salivarius has an impact on the
deglycosylation of salivary glycoproteins, mainly mucins, which can next be degraded to VSC by
Porphyromonas gingivalis [63]. In turn, Solobacterium moorei is associated with the production of VSC
through β-galactosidase activity and the degradation of glycoproteins [60,64].

The essential VSCs are hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl
mercaptan [25,30] (Table 1). These are produced mostly by anaerobic bacteria. The increased
production of malodorous gases occurs mainly in tongue coating, and diseases such as gingivitis and
periodontitis and, to a less extent, in pericoronitis, oral ulcers, periodontal abscesses, and herpetic
gingivitis [65]. Other volatile organoleptic compounds, such as indole, skatole, amines, and ammonia,
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are produced by the putrefaction of non-sulfur containing amino acids (i.e., tryptophan, lysine and
ornithine). Studies have shown that volatile sulfur compounds are the major contributors to bad breath.
Hydrogen sulfide, methyl mercaptan and, to a lesser extent, dimethyl sulfide, represent 90% of the
volatile sulfur compounds in halitosis [2,27].

Volatile sulfur compounds can be toxic for human cells even at low concentrations. They contain
thiols (-SH groups) that interact with other proteins and support the negative interaction of bacterial
antigens and enzymes. The result of this effect is chronic inflammation, periodontal gingivitis,
and periodontitis [66]. In human gingival fibroblasts, H2S activates the mitochondrial pathway of
apoptosis [67]. The H2S is a known genotoxic agent, which has an impact on genomic instability
and cumulative mutations [68]. In studies on rats, it was demonstrated that hydrogen sulfide leads
to ultrastructural changes in epithelial cells and periodontal destruction [69]. Increased amounts of
H2S by the activation of proliferation, migration, and invasion can also lead to carcinogenesis [70,71].
Fusobacterium nucleatum and Porphyromonas gingivalis belong to the most essential carcinogenic oral
bacteria producing VSCs [70,72]. Cancerogenic is also acetaldehyde produced from ethanol by
mucosal epithelial cells or oral microflora, e.g., Candida albicans, Candida non-albicans, Neisseria sp.,
and Streptococcus sp. Acetaldehyde binds to DNA and leads to the formation of DNA adducts, point
mutations, and DNA cross-linking [73,74].

Other important substances causing IOH are diamines, such as putrescine and cadaverine.
Both compounds are produced from amino acids, putrescine from arginine, and cadaverine from
L-lysine [75,76] (Figure 2). Both diamines are associated with the putrefaction of food by bacteria
occurring in the dental plaque and severe periodontitis [77].

Gram-negative bacteria, mostly Enterobacteriaceae, which can colonize the oral cavity and
dentures, produce urease that hydrolyzes urea into carbon dioxide and ammonia [78]. Escherichia coli
can form ammonia from cysteine using cysteine desulfhydrase [79] or reduce nitrates to ammonia [73].
Major contributors to trimethylamine production are gut bacteria, which can be inhabitants of the oral
cavity, such genera as Anaerococcus, Clostridium, Collinsella, Desulfovibrio, Lactobacillus, E. coli, Citrobacter,
Edwardsiella, Providencia, and Proteus [74,80–84].

Indole and skatole are produced in high amounts by intra-oral, Gram-positive Streptococcus milleri,
and anaerobic Gram-negative bacteria such as Porphyromonas intermedia, Fusobacterium nucleatum,
and Porphyromonas gingivalis. Small amounts of both aromatic compounds produced Aggregatibacter
aphrophilus, Staphylococcus epidermidis, and Streptococcus sanguis [85].

4. Microbiota Responsible for Intra-Oral Halitosis

The human oral cavity microbiota is an ecosystem consisting of various symbiotic microbes.
There is a relationship between the global composition of indigenous bacterial populations and human
health [86,87]. The oral microbiota is truly diverse and consists of 50–100 billion bacteria. There are about
700 taxa, of which one-third cannot be grown in vitro [88,89]. A vast range of microorganisms inhabit
the human oral cavity, including bacteria, fungi, viruses, and protozoa [90,91]. The basic oral microbiota
consists of phyla, such as Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, and Actinobacteria.
The most dominant genera are Streptococcus, Veillonella, Gemella, Granulicatella, Neisseria, Haemophilus,
Selenomonas, Fusobacterium, Leptotrichia, Prevotella, Porphyromonas, and Lachnoanaerobaculum. Lots of
current findings reported that oral bacteria can be biomarkers that differentiate healthy and pathological
conditions within the oral cavity. The oral microbiota research is used as a diagnostic and prognostic
tool in the aspect of human health. In the human body, the oral cavity is the second site, after the
colon, containing the largest diversity of microbial populations [92]. Simultaneously, changes in the
gut microbiota are reflected in the oral microbiota, and the microbial communities of the oral cavity
and gastrointestinal tract are predictive of each other [93–95].
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The oral bacteria that are most likely to produce hydrogen sulfide from L-cysteine or serum
are Bacteroides spp., Eubacterium spp., Fusobacterium spp., Peptostreptococcus spp., Porphyromonas spp.,
Selenomonas spp., Tannerella forsythia, and Veillonella spp. Another essential component of VSC is methyl
mercaptan produced from L-methionine or serum. It is a metabolic product mainly derived from
Bacteroides spp., Eubacterium spp., Fusobacterium spp., Porphyromonas spp., and Treponema denticola [30,96]
(Table 2).

Ye at al.’s studies showed a correlation between high H2S and CH4S levels and the growth of
microorganisms such as Prevotella spp., Peptostreptococcus spp., Eubacterium nodatum, and Alloprevotella spp.
Comparing the study and control group, the authors noted significantly higher concentrations of
all compounds (total VSC, H2S, CH4S, and C2H6S) in the malodor group [103]. The most active
producers of hydrogen sulfide are Gram-negative anaerobes Prophyromonas gingivalis, Treponema denticola,
and Tannerella forsythia (red complex). Furthermore, the red complex microorganisms are associated
with periodontal disease. Hydrogen sulfide and methyl mercaptan are produced in large quantities
in periodontal inflammations [104–106]. During periodontitis, Porphyromonas spp., Prevotella spp.,
and Treponema denticola may play the most crucial role in providing amino acids to other anaerobic bacteria.
Through this process, anaerobes acquire the opportunity to produce H2S and CH4S [60] (Figure 2).
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In the studies of Takeshita et al., the producers of hydrogen sulfide in saliva were bacteria from the
genera Neisseria, Fusobacterium, Porphyromonas, and SR1. In contrast, producers of the methyl mercaptan
are representatives of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas [107].
Significant contributors to methyl mercaptan production are also gut bacteria, which can be inhabitants of
the oral cavity, such as E. coli, Citrobacter spp., and Proteus spp. [48,84].

Table 2. Bacterial producers of volatile sulfur compounds (VSC) [30,96].

Chemical Compound Bacteria

Hydrogen sulfide from L-cysteine

Bacteroides intermedius, Bacteroides spp., Capnocytophaga ochracea,
Centipeda periodontii, Eikenella corrodens, Eubacterium brachy,

E. limosum, Eubacterium spp., Fusobacterium alocis, F. nucleatum,
F. periodonticum, F. sulei, Peptostreptococcus anaerobius, P. micros,

P. prevotii, Porphyromonas endodontalis, Propionibacterium propionicum,
Selenomonas artemidis, S. dianae, S. flueggei, S. infelix, S. noxia,
S. sputigena, Tannerella forsythia, Veillonella dispar, V. parvula

Methyl mercaptan from L-methionine Bacteroides spp., Eubacterium spp., F. nucleatum, F. periodonticum,
Porphyromonas endodontalis

Hydrogen sulfide from serum

Bacteroides gracilis, B. intermedius, B. loescheii, B. oralis, Eubacterium
lentum, Eubacterium spp., F. nucleatum, Mitsuokella dentalis,

Peptostreptococcus magnus, P. micros, P. prevotii, P. propionicum,
Porphyromonas gingivalis, T. forsythia, Treponema denticola, V. parvula

Methyl mercaptan from serum P. endodontalis, P. gingivalis, T. denticola

Many studies showed that bacterial diversity in the group of patients with IOH is much higher
than in the control group. Furthermore, many publications draw attention to the correlation between
halitosis and individual microorganisms. The relationship between tongue bacterial composition
structure and VSC gases is also mentioned by many authors [3,108]. Many oral bacteria that cause
IOH contain similar enzymes. These enzymes are proteins encoded by related genes (megL, lcs, mgl)
in the genomes of various bacterial species. The main enzymes are methionine γ-lyase, L-cysteine
desulfhydrase, and L-methionine α-deamino-γ-mercaptomethane-lyase [109].

Veloso et al. mentioned that in 85% of the patients IOH is caused by Gram-negative bacteria [6].
According to Wei et al., the oral microbiota responsible for IOH includes a wide range of microbial
communities, including 13 phyla, 23 classes, 37 orders, 134 genera, 266 species, and 349 operational
taxonomic units. The largest percentage amongst the oral cavity microorganisms are genera, like
Prevotella, Alloprevotella, Leptotrichia, Peptostreptococcus, and Stomatobaculum. These bacteria present a
higher percentage of occurrence in the sample of patients with IOH than in the control samples from
healthy patients [103]. In turn, the presence of bacteria, such as Firmicutes, Proteobacteria, Bacteroidetes,
Actinobacteria, and Fusobacteria, was demonstrated in both the samples from examined and control
groups. Firmicutes was the most abundant phylum in saliva samples from both groups [110,111].

The composition of the tongue microbiota has an essential influence on IOH. The most
common molecular technique for testing and evaluating an oral cavity microbiome is the
sequencing [5,107,112,113]. Seerangaiyan et al. published a review in 2017, in which they showed the
composition of the bacteria of Aggregatibacter, Campylobacter, Capnocytophaga, Clostridiales, Leptotrichia,
Parvimonas, Peptostreptococcus, Peptococcus, Prevotella, Selenomonas, Dialister, Tannerella, and Treponema in
the group of patients with IOH. Using the amplification of 16S rRNA, the researchers also demonstrated a
high prevalence of Solobacterium moorei strains in the IOH group. By testing the control group, significant
differences were found in both groups of healthy and sick people. Furthermore, using polymerase
chain reactions (PCRs), Seerangaiyan et al. showed the positive correlation of Leptotrichia spp. and
Prevotella spp. to oral malodor severity, contrary to Haemophilus spp., Gemella spp. and Rothia spp. [5].

Patients with IOH have a specific biofilm on the dorsal part of the tongue. Bernardi et al. stated
that this biofilm consists of a significant proportion of Fusobacterium nucleatum and Streptococcus spp.
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The occurrence of these two types of bacteria in patients with IOH was completely related. According to
the authors, these microorganisms contribute significantly to IOH and can be treated as treatment
targets [114]. In other research, Bernardi and partners showed that Actinomyces graevenitzii and
Veillonella rogosae were closely related to the occurrence of IOH in a group of volunteers. Also,
Streptococcus mitis/oralis, S. pseudopneumoniae, and S. infantis, as well as Prevotella spp. were
detected often in malodor patients. Moreover, following the earlier findings, the researchers’ results
revealed the presence of Actinomyces odontolyticus, Solobacterium moorei, Prevotella melaninogenica,
Fusobacterium periodonticum, and Tannerella forsythia in IOH patients. Furthermore, microorganisms
such as Streptococcus parasanguinis, S. salivarius, Veillonella spp., and Rothia mucilaginosa dominated in
the oral microbiota of healthy people [112].

Yitzhaki et al. noticed the connection between IOH and wearing dentures. The unpleasant
odor was organoleptically assessed and the oral microbiome was analyzed using Next Generation
Sequencing 16S rDNA technology. Researchers have identified bacterial taxa, including nine phyla,
29 genera, and 117 species. The samples taken from patients with IOH showed the dominance of the
phyla Firmicutes and Fusobacteria and the genera Leptotrichia, Atopobium, Megasphaera, Oribacterium,
and Campylobacter. The analyses revealed a significant diversity of the oral microbiota among samples
from IOH patients wearing alveolar dentures and significant differences in comparison to the control
group [113].

The use of tobacco also has a huge impact on the oral microbiota diversity. After examining
a group of smokers and non-smokers, researchers reported that in both groups, most of the oral
microbiota were Gram-negative bacterial strains. Simultaneously, Klebsiella pneumoniae dominated in
smokers’ saliva and Pseudomonas aeruginosa in non-smokers’ saliva samples. An essential finding of the
research was also that the Candida species accounted for the largest percentage of microbes amongst
smokers with halitosis [97]. Al-Zyound et al. performed tests showing an increased level of three
bacterial genera in smokers: Streptococcus, Prevotella, and Veillonella. Researchers provided evidence
that tobacco smoking has a direct effect on the oral microbiota. They also suggested that after smoking
cessation, it is possible to return to the standard composition of the oral cavity microbiota [115].

Wu et al. noticed significant changes in the oral microbiota that occurred amongst obese people
suffering from malodor. The Prevotella, Granulicatella, Peptostreptococcus, Solobacterium, Catonella,
and Mogibacterium were more abundant genera in the obesity group than in healthy persons [116].

Halitosis has often been reported amongst the symptoms related to Helicobacter pylori infection
and gastroesophageal reflux disease. Anbari et al. made the observations that the incidence of malodor
amongst Helicobacter pylori-positive patients was 74% [2]. However, Tagerman et al. disagreed about a
possible relationship between Helicobacter pylori infection and objective halitosis [22].

It is difficult to identify bacteria that promote malodor in children. The most common groups
of oral bacteria in children with IOH are Veillonella spp., Prevotella spp., Fusobacterium spp. However,
there is no difference in the abundance of these microorganisms in children with IOH and those
without [110].

In Table 3, results of studies concerning microbiota associated with IOH are presented.
Summarizing the table, the oral bacteria that are most related to IOH are Actinomyces spp.,
Bacteroides spp., Dialister spp., Eubacterium spp., Fusobacterium spp., Leptotrichia spp.,
Peptostreptococcus spp., Porphyromonas spp., Prevotella spp., Selenomonas spp., Solobacterium spp.,
Tannerella forsythia, and Veillonella spp.
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Table 3. Results of studies concerning bacteria associated with intra-oral halitosis (IOH).

Bacteria Related to Intra-Oral Halitosis Studied Population Study Method Reference

Bacteroides gracilis, B. intermedius, B. loescheii, B. oralis,
Capnocytophaga ochracea, Centipeda periodontii,

Eikenella corrodens, Eubacterium brachy, E. lentum,
E. limosum, Fusobacterium alocis, F. nucleatum,
F. periodonticum, F. sulei, Mitsuokella dentalis,

Peptostreptococcus anaerobius, P. magnus, P. micros,
P. prevotii, Porphyromonas endodontalis, P. gingivalis,

Propionibacterium propionicum, Selenomonas artemidis,
S. dianae, S. flueggei, S. infelix, S. noxia, S. sputigena,

Tannerella forsythia, Treponema denticola,
Veillonella dispar, V. parvula

9 persons Bacterial culture [96]

Fusobacterium sp., P. gingivalis, Prevotella intermedia 16 IOH adults or children Bacterial culture [117]

Campylobacter rectus, F. nucleatum, P. micros,
P. gingivalis, P. intermedia, T. forsythia 40 IOH patients Anaerobic culture [118]

Fusobacterium sp., P. gingivalis, P. intermedia,
T. forsythia 20 IOH adults Anaerobic culture [119]

P. gingivalis, P. intermedia, P. melaninogenica,
P. nigrescens, Streptococcus constellatus, T. forsythia,

T. denticola, V. parvula
10 adult persons

checkerboard
DNA-DNA

hybridization technique
[120]

Actinomyces israelii, A. neuii, A. odontolyticus,
Aggregatibacter actinomycetemcomitans (serotype a),

Atopobium parvulum, Prevotella bivia, P. disiens,
P. nigrescens, Pseudomonas aeruginosa, Staphylococcus

epidermis, S. constellatus, Streptococcus mitis,
T. forsythia, V. parvula

21 IOH adults
Checkerboard

DNA-DNA
hybridization

[121]

F. nucleatum, P. gingivalis, T. forsythia 30 adults PCR [122]

P. gingivalis, P. intermedia, T. forsythia 101 IOH adults PCR [123]

P. gingivalis, P. intermedia, P. nigrescens, T. forsythia,
T. denticola

29 IOH patients and 10
healthy adults Real-time PCR [124]

F. nucleatum, Solobacterium moorei, T. forsythia 78 adult males Quantitative real-time
PCR [35]

A. actinomycetemcomitans, F. nucleatum, P. gingivalis,
P. intermedia, T. denticola

31 IOH patients and 31
healthy adults 16S rDNA-directed PCR [125]

Atopobium sp., Dialister sp., Eubacterium sp.,
Fusobacterium nucleatum, Leptotrichia sp.,

Megasphaera sp., Neisseria sp., Parvimonas sp.,
Peptococcus sp., Peptostreptococcus sp., P. gingivalis,

P. endodontalis, Prevotella sp., Selenomonas sp.,
Solobacterium sp., SR1 sp., Veillonella sp.

30 IOH patients and 13
healthy persons PCR and sequencing [107]

A. odontolyticus, F. periodonticum, Leptotrichia sp.,
Okadaella gastrococcus, Prevotella melaninogenica,

S. moorei, T. forsythia

6 IOH patients and 6
healthy adults PCR and sequencing [112]

phyla Firmicutes and Fusobacteria,
genera Atopobium, Campylobacter, Leptotrichia,

Megasphaera, Oribacterium
26 full dentures patients PCR and sequencing [113]

A. odontolyticus, Atopobium parvulum, Lysobacter-type
species, Porphyromonas sp., P. melaninogenica,

P. pallens, P. veroralis, Streptococcus salivarius, S. mitis,
S. oralis, V. parvula

20 IOH patients and 12
healthy adults

PCR and DNA
sequencing [126]

Eubacterium sp., Dialister sp., Granulicatella elegans,
Porphyromonas sp., P. intermedia, Staphylococcus

warneri, S. moorei

8 IOH patients and 5
healthy adults

PCR and DNA
sequencing [127]

Aggregatibacter sp., A. segnis, Campylobacter sp.,
Capnocytophaga sp., Clostridiales, Dialister sp.,

Leptotrichia sp., Parvimonas sp., Peptostreptococcus sp.,
Peptococcus sp., Prevotella sp., Selenomonas sp., SR1,

Tannerella sp., TM7-3, Treponema sp.

16 IOH patients and 10
healthy adults 16S rRNA sequencing [5]
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Table 3. Cont.

Bacteria Related to Intra-Oral Halitosis Studied Population Study Method Reference

Prevotella sp., Leptotrichia sp., Actinomyces sp.,
Porphyromonas sp., Selenomonas sp., Selenomonas noxia,

Capnocytophaga ochracea

5 IOH children and 5
healthy 16S rRNA sequencing [128]

A. parvulum, Eubacterium sulci, F. periodonticum,
Dialister sp., S. moorei, Streptococcus sp., TM7-8,

6 IOH patients and 5
healthy adults 16S rRNA sequencing [129]

A. odontolyticus, Hemophilus parainfluenzae, Gemella
sp., Leptotrichia wadei, Prevotella tannerae, Streptococcus

sp.,
29 adults 16S rDNA amplicon

sequencing [130]

Actinomyces sp., Prevotella sp., Veillonella sp. 10 adults 16S rRNA gene
sequencing [131]

Aggregatibacter sp., Anaerovorax sp., Bacteroidales,
Butyrivibrio sp., Dialister sp., Eikenella sp.,

Mogibacterium sp., Moraxella sp., Peptococcus sp.,
Peptostreptococcaceae, RF39, Tannerella sp.,

Treponema sp., Veillonellaceae

40 IOH adults 16S rRNA sequencing [132]

Streptococcus halitosis sp. nov. strain VT-4 - 16S rRNA sequencing [133]

5. Conclusions

The IOH is formed by volatile compounds, among which volatile sulfur compounds (VSCs),
such as hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl mercaptan, are predominant.
VSCs are produced mainly by anaerobic bacteria belonging to genera Actinomyces, Bacteroides, Dialister,
Eubacterium, Fusobacterium, Leptotrichia, Peptostreptococcus, Porphyromonas, Prevotella, Selenomonas,
Solobacterium, Tannerella, and Veillonella. A combination of different microbial techniques is
recommended to analyze the etiological microflora associated with IOH. Increased knowledge of the
microbiota of the oral cavity and especially tongue biofilm is essential for further research to develop
new halitosis therapy strategies.
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