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State of the art scene flow estimation techniques are based on projections of the 3D

motion on image using luminance—sampled at the frame rate of the cameras—as the

principal source of information. We introduce in this paper a pure time based approach

to estimate the flow from 3D point clouds primarily output by neuromorphic event-based

stereo camera rigs, or by any existing 3D depth sensor even if it does not provide nor

use luminance. This method formulates the scene flow problem by applying a local

piecewise regularization of the scene flow. The formulation provides a unifying framework

to estimate scene flow from synchronous and asynchronous 3D point clouds. It relies on

the properties of 4D space time using a decomposition into its subspaces. This method

naturally exploits the properties of the neuromorphic asynchronous event based vision

sensors that allows continuous time 3D point clouds reconstruction. The approach can

also handle the motion of deformable object. Experiments using different 3D sensors

are presented.

Keywords: neuromorphic vision, event-based sensing, scene flow, 3D point clouds, motion estimation, motion

from structure

1. INTRODUCTION

1.1. Scene Flow
Themotion of 3D structures is an important information to extract from a scene to build geometric
and dynamic descriptions of its content. Such information is also essential to a large set of vision
applications such as: virtual reality synthesis, scene segmentation and autonomous navigation.
Scene flows are vector fields that map points of a 3D structure to their instantaneous velocity
vectors. Because of this close relationship, estimating the scene flow usually implies to estimating
the structure and vice-versa.

The Structure From Motion (SFM) is one of the classical computer vision problems that have
been largely studied during the past few decades by the machine vision community (Maybank,
1993). However, SFM’s high vulnerability to images’ noise and to camera calibration errors raised
questions regarding its applicability in real-world scenarios (Tomasi and Zhang, 1995). Currently,
with the increasing demand for realistic and high definition 3D content, many ready-to-use sensors
are now able to provide dense 3D points clouds in real-time (such as: laser range-finders, structured
light vision sensors,...). These devices allow to decouple the structure reconstruction from the
motion estimation and to focus the effort on motion extraction and its characterization.

To achieve dense scene flow estimation, state-of-the-art techniques estimate depth maps and
compute optical flows for each camera separately. In a second stage they combine both to estimate
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the 3D flow. This approach parametrizes the motion problem
on the image plane, i.e., in 2D and is the most commonly
found in the existing literature (Vedula et al., 1999; Zhang et al.,
2001; Isard and MacCormick, 2006; Wedel et al., 2011). A 2D
parametrization is however more prone to discontinuities since
a smooth 3D signal may be projected into a discontinuous 2D
signal due to occlusions.

In Basha et al. (2013), the depth map and the optical
flow are solved simultaneously rather than in a sequential
manner, as authors argue, for a better coupling between spatial
and temporal information. In Hadfield and Bowden (2014)
and Park et al. (2012), the motion flow is extracted and
refined directly from the 3D points clouds by using particle
filtering or tensor voting techniques. Optical flows are only
estimated for comparison purposes or for initial scene flow
estimation.

A second requirement for obtaining dense flow estimation is
to introduce some form of regularization. For that purpose, one
recurrent hypothesis is to assume local rigid body motion and
therefore induce local constant velocity, i.e., points on a non-
deformable surface will have the same velocity. Regularization
is often performed by minimizing an energy function with
variational formulations (Zhang et al., 2001; Min and Sohn,
2006; Huguet and Devernay, 2007). Energy minimization has
proven to be a successful technique for both 2D and 3D
flow parametrization. It is however computationally greedy and
it makes it difficult to achieve real-time estimation without
embedding a dedicated powerful computational unit (e.g.,
GPU). Scene flow can also be computed from local descriptors
of reconstructed surfaces such as surfel that encodes the
local geometry and the reflectance information of the shapes
(Carceroni and Kutulakos, 2002). Motion is then estimated in
an integrative manner by matching descriptors over time. Several
authors adopted the same idea of addressing the scene flow as a
problem of characterization and tracking 3D surfaces over time.
Varanasi et al. (2008) proposes to describe and track the surfaces
by sparse features matching and extend this to a dense estimation
using smoothing operations based on the Laplacian diffusion.
Patch based techniques have also been used in Popham et al.
(2010) and Cagniart et al. (2010) to split complex surfaces into
simpler ones. Their matching and relative pose estimation for
each patch allows to estimate the scene flow densely.

This paper introduces a new solution to estimate scene flow
using properties of 4D (3D space+time) spaces without the
need to use luminance. We will show that the use of the time
allows to go beyond the conventional framework that relies on
the combined use of luminance and depth information (Herbst
et al., 2013). The paper is initially intended to operate on
high temporal resolution 3D depth information output from
a binocular neuromorphic event-based camera stereo rig. As
introduced in Rogister et al. (2012) and Carneiro et al. (2013),
event-based cameras allow to estimate depth and produce 3D
point clouds at unprecedented accuracy (>1 kHz in real-time)
at very low computational and energy cost using conventional
processing hardware. We will show that the method can be used
even in the case of lower temporal resolution and it can be applied
to any 3D data such as the ones output from: RGB-D cameras

(Khoshelham and Elberink, 2012), time-of-flight range-imaging
sensors (Hansard et al., 2012), laser range finder and even
conventional camera based systems that are also able to provide
robust 3D reconstructions with a reasonable accuracy using
optimized implementations. It is however important to notice
that beyond the heavy computational and energy requirement,
all these techniques rarely exceed frame rates beyond 90Hz.

We will then show that the use of timed 4D spaces (3D space
+ time) allow to derive more efficient techniques than state
of art techniques. The method assumes locally non-deformable
spatiotemporal surfaces swept by 3D moving structures. We
show that under such hypothesis, the velocity estimation is
reduced to a one dimensional search over R, the set of
real numbers, and the dense estimation is directly achieved
using local spatiotemporal planes. An additional advantage is
its ability to determine velocities collinear to moving edges
assuming it is possible to identify local 3D structures across
the trajectory. This work can be seen as a generalization of
the previous work on the event-based estimation of 2D visual
motion flow (Benosman et al., 2014) to higher dimensional
spaces.

1.2. Asynchronous Event-Based Vision
Biological retinas do not encode visual scenes as collection of
static frames, but rather as a continuous stream of asynchronous
spikes. Neuromorphic vision sensors replicate partially this
mechanism by encoding visual information with high temporal
resolution asynchronous streams of events. Since the pioneering
work of Mahowald (1992) that built the first retina on silicon,
several major improvements have been made for what is now
refered to as the “neuromorphic silicon retinas.” One of the
most important achievements is the Dynamic Vision Sensor
(DVS) (Lichtsteiner et al., 2008), a 128 × 128 pixel resolution
sensor which encodes light intensity changes into a stream
of asynchronous events. Each pixel responds independently to
contrast changes producing ON and OFF events (respectively
to increase or decrease in light intensity) at microsecond
resolution.

Posch et al. designed the Asynchronous Time-based
Imaging Sensor (ATIS) (Posch et al., 2011), a 302 × 240
pixel resolution sensor which measures absolute luminance
information when a contrast change event occurs. The sensor
provides a 143 dB dynamic range gray-level information
asynchronously encoded as the temporal difference of two
exposure measurement events. Its typical temporal accuracy
is around 1µs. The reader can refer to Delbrück et al. (2010)
for a complete review of the existing neuromorphic visual
sensors.

2. MATERIALS AND METHODS

2.1. Scene Flow Parametrization
We define a 3D event as a 4-components vector (x, y, z, t)T . It can
be increased to 5 components if the luminance information is
available. Let us consider a smooth edge C which can be assumed
planar within a small enough spatial neighborhood. If the velocity
of C is constant, then as time increases, the edge generates a ruled
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surface S in the direction of the velocity v. The surface can be
algebraically defined by the equation:

S: R
3 × R

+ → R

(x, y, z, t) 7→ S(p+ tv) = 0
(1)

where p ∈ C. Figure 1 shows an illustration of such ruled surface.
The velocity vector is according to Equation (1) the directrix

of the ruled surface swept by the edge, hence the estimation of v
is equivalent to determining the surface’s directrix. In addition to
Equation (1), if the surface is smooth (i.e., of class C1 at least), we
get a second equation satisfied by v:

(∇S)Tv = 0, (2)

because the directrix v is contained in the tangent plane Tp

(Sommerville, 1934). ∇S refers to the gradient of S. Only the
direction of v can be deduced from the two scalar equations
since v has 3 components. Its norm can be set arbitrarily to
1. To determine the exact amplitude, additional constraints are
required. A possible way to estimate amplitudes is to apply
a shape registration technique, since the velocity vector is the
vector joining the two consecutive positions of the shape when
it moves. We then propose to estimate the velocity in a two steps
operation:

1. a local fitting of a smooth surface to the 3D points clouds is
operated to derive as much equations similar to (1) and (2) as
possible,

2. v is then estimated from the equations established in step 1 by
adding a shape registration algorithm.

To get enough equations to estimate v, we propose to study
three surfaces derived from S. Let S1, S2 and S3 be respectively
the surfaces built from Equation (1) in each coordinate frame
(X,Y ,T), (Y ,Z,T), and (Z,X,T). Because of the constant velocity

FIGURE 1 | The non-deformable surface hypothesis allows to assume

the velocity v is locally constant. The surface S swept by the edge C in the

direction v is a ruled surface whose tangent plane τp at p allows to recovering

v if sufficient geometric constraints can be derived. The vector n is the

normal to τp.

hypothesis, we get three surfaces with implicit equations of the
form:

Sk(i, j, t) = Sk









pi
pj
0



+ t





vi
vj
1







 = 0, (3)

where (i, j) is any pair of elements in {(x, y), (y, z), (z, x)} and k
indexes the kth element of this list e.g., if k = 1, (i, j) = (x, y).
This means we are working with the x, y and t components of S.

These surfaces are also ruled surfaces of respective directrices
(vx, vy, 1)

T , (vy, vz , 1)
T and (vz , vx, 1)

T and their generatrices are
the restrictions of C to (X,Y ,T), (Y ,Z,T) and (Z,X,T). For the
same reason, given Equation (2), we can establish for each Sk the
equation:

(∇Sk)
T





vi
vj
1



 =
∂Sk

∂i
vi +

∂Sk

∂ j
vj +

∂Sk

∂t
= 0. (4)

As illustrated by Figure 2, we now have three geometric
constraints, which can be rearranged into a matrix form:





S1,x S1,y 0
0 S2,y S2,z

S3,x 0 S3,z





︸ ︷︷ ︸

M

v = −





∂S1/∂t
∂S2/∂t
∂S3/∂t



 , (5)

with the convention that Sk,x (respectively y, z) is the partial
derivative with respect to x (respectively y,z). To determine v,
the ideal case would be to have M invertible i.e., it is full ranked.
There is no obvious way to tell from the general expression ofM.

2.2. Plane Approximation
Solving Equation (5) for v cannot be done without knowing the
analytic equations of Sk, so we propose to apply a local plane
fitting to establish the matrix M. The choice of a plane instead
of a more complex surface is motivated by the fitting simplicity
and its computational cost even though planes give rise to rank-2
matricesM, as it will be shown further.

Let 51, 52, and 53 be the planes that are fitted locally to
the surfaces S1, S2, and S3 respectively. They then can be locally
expressed using the plane’s implicit equation as:

Sk(i, j, t) = 51
T







i
j
t
1






= 0, (6)

where 5k
T = (ak, bk, ck, dk), for 1 ≤ k ≤ 3.

If we derive Equation (6) with respect to each of the spatial
and temporal components and for each Sk, then Equation (5)
becomes





a1 b1 0
0 a2 b2
b3 0 a3



 v = −





c1
c2
c3



 . (7)
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A B

FIGURE 2 | (A) A 3D edge C moving at constant velocity v is projected as 2D curves in each of the three planes (O,X,Y ), (O,Y ,Z) and (O,Z,X ). (B) Each of the

projected curve Cu for 1 ≤ u ≤ 3 is also moving at constant speed vu = (vi , vj , 1)
T in the coordinate frames (ijT ) ((i, j) being any element in the set {(x, y), (y, z), (z, x)})

and is sweeping a ruled surface as t increases.

2.3. Rank of M
Under the local plane hypothesis we previously made, it is
possible to determine the rank ofM. For that purpose, we assume
the hypothesis that the edge C is a straight line segment defined
by a point p0, a direction vector u, and parametrized by a real α:

p ∈ C⇒ p = p0 + αu, (8)

and the equation of S is changed into:

S(p, v, t) = S(p0 + αu+ tv) = 0. (9)

Figure 3 depicts the case where C is a line and the resulting
ruled surface S, obtained by sweeping lines in the direction of
v is a plane. The vector (ui, uj, 0)

T is by construction parallel to
5k, then:

nTk





ui
uj
0



 = 0, (10)

where nk = (ak, bk, ck)
T is the normal to 5k. The three similar

equations for the three possible k lead to:

Mu = 0. (11)

This shows u as an element of the kernel of M. u is not
the null vector because C is not reduced to a point, thus M
is non-invertible and the rank of M is not larger than 2.
The rank deficiency of M means we only have two linearly
independent scalar equations from Equation (7), however we can
still express two of the velocity components as functions of the
last one, e.g., vx:

v =






vx
−a1vx+c1

b1
−b3vx+c3

a3




 = vx






1
− a1

b1

− b3
a3






︸ ︷︷ ︸

q

+





0
c1
b1
c3
a3





︸ ︷︷ ︸

r

, (12)

FIGURE 3 | The local fitting of a plane to the point cloud allows

approximating the plane tangent to the surface swept by an edge as it

moves. If the velocity is constant, the so built surface is called ruled surface

and the velocity vector v is its directrix. To estimate v, it is, up to approximation

errors, equivalent to working on the tangent plane.

whereMq =





0
det(M)
a3b1
0



 =





0
0
0



.

This last equation shows that q is collinear to u if M is rank 2,
hence we deduce from Equation (7) thatMr = (c1, c2, c3)

T .

Remark 1. M’s rank can only be reduced to one if there is no spatial
translation. The swept structures in the subspaces defined by (ijT)
are vertical lines. Such a case is a particular case which is detected
when no ruled surface is generated. It does not concern structures
undergoing rotations since points not on the rotation axis will have

a non null tangential velocity.

Remark 2. Expressing v as a one parameter vector fails if and
only if the rank of M is less than 2 i.e., if edges do not generate
planes. However, some plane configurations require larger effort to
achieve the closed form of v such as the case where the plane is
perpendicular to one of the spatial frame axes. For example, when
the X-axis is normal to the plane, Equation (12) is not valid as b1
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and a3 are equal to zero. This problem can be solved by expressing
v either as a function of vy or vz. In that case, we can see that
vx = −c3/b3 and vz is a function of vy. The problem of finding
v is again reduced to the search for the correct value of one of its
component.

2.4. Velocity Estimation
As shown in the previous section, from Equation (12), the
assumption of local constant velocity motion of straight edges
allows to establish a simple linear relation between the velocity
vector and the surface swept by the edge points. Estimating
the velocity becomes equivalent to identifying the correct real
value vx. This is a registration problem for which we need to
initiate the point cloud within a spatio-temporal neighborhood
as a given structure. We then translate it according to vectors v,
parametrized by vx. A matching operation is then performed for
several sampled values of vx, the correct vx is the one producing
the smallest matching error at the time and location given by
the velocity vector (see Figure 4). The procedure to estimate
the velocity via the shape registration is explained in detail by
Algorithm 1: the search for v is now a minimization problem
of a error cost function E, which is built as explained in the
next section.

2.5. Error Cost Function
A local point cloud centered on the event (p1, t1)

T , is temporally
consistent in the sense that any of its element will be captured
at closely the same time. If in addition, the luminance L of the
events is available, then the cloud local rigidity also ensures that
L is consistent independently of time. We can therefore state that
when the point cloud that moves from p1 at t1 to p2 at t2, the local
geometric structure and the luminance should be preserved. We
can formalize the structurematching operation as aminimization
of the energy E problem and stated as follows:

E = ES + ET + EL, (13)

where ES,ET , and EL are respectively the geometric, the temporal
and the luminance energies. ET and ES are minimal as long as

FIGURE 4 | The velocity is to be determined locally along a line

spanned by u and passing by p + r. This is achieved by matching local

structure defined by a set of 3D points (gray cubes in the figure).

the cloud is not deforming when it moves from p1 to p2. If the
events’ brightness is also preserved during this motion then EL is
also minimal.

We define the 3D events cloud S(pi, ti) as:

S(pi, ti) = {qj ∈ R
3| ||qj − pi|| ≤ 1s , tj − ti ≤ 1t

and tj > ti}.
(14)

This set contains all 3D points spatiotemporally close to pi i.e.,
points within a neighborhood of pi of radius 1s in space and
length 1t in time. The energy cost associated to each sampled
velocity vector for a given point p0 is computed according to
Algorithm 2.

EL is the sum of the smallest luminance difference between
all pairs of (pi, qj) and ES is the mean value of the smallest
distances of each pi to each qj. It is also called the mean closest
point between both points clouds and is a dissimilarity measure
often used for example in the Iterative Closest Point (ICP)
problem (Besl and McKay, 1992). The correct v is given by the

Algorithm 1 | 3D flow algorithm

Require: Stream of 3D events obtained from third-party
device/algortihm

1: for each 3D event (p, t) do
2: Determine the spatio-temporal neighborhood of 3D

event close to (p, t).
3: Fit 3 planes 51 = (a1, b1, c1, d1)

T ,52 =

(a2, b2, c2, d2)
T ,53 = (a3, b3, c3, d3)

T using a least-square
technique to minimize the three scalars:

4:

|(px, py, t, 1)51| , |(px, pz , t, 1)52| , |(py, pz , t, 1)53|

5: Initialize a large enough interval R = [R1,Rr] of length l
such that ṽx ∈ R. Set n= 1.

6: while E > threshold and n < max-iteration do
7: Divide R into r intervals Rk of size

l
r and define the

set {vk} such that vk is the center of Rk.
8: for each vk do
9: Compute Ek according to Algorithm 2,
10: if Ek is minimal then
11: Update E← Ek,
12: Update l← l(r − 1)/r,
13: Update R← [Rk −

l
2 ,Rk +

l
2 ].

14: Compute v:

v =
(

vk,−
a1vk+c1

b1
,−

b3vk+c3
a3

)T

15: Update n← n+ 1.
16: end if
17: end for
18: end while
19: Return v
20: end for
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Algorithm 2 | Energy cost computation

Require: p0, the set S(p0), vx.

1: Apply Equation 12 with the given vx to build vector v.
2: Define S(p0) + v, the translated local structure S(p0) by

v. Define S(p0 + v) the set of points that occur in the
neighborhood of p0 + v at ti + dt.

3: With the convention that pi ∈ S(p0)+ v, and qj ∈ S(p0+ v),
we compute the energy function E(v) with:

ES =
1

n

n
∑

i= 1

min
qj
||pi − qj||, (15)

ET =
1

n

n
∑

i= 1

min
qj
|ti − tj|. (16)

where tj is the time at which qj occured.
4: Finally, if luminance is available:

EL =

n
∑

i=1

min
qj
|L(pi)− L(qj)|. (17)

5: Return E.

value vx which minimizes the energy function E:

ṽx = argmin
vx∈R

E. (18)

More elaborate registration techniques to track deformable 3D
surfaces may be used for this matching operation. We can
mention themost notable ones, Starck andHilton (2007), Ahmed
et al. (2008), and Zeng et al. (2010), that are not using any shapes
prior. Accurate registrations are achieved by combined use of
several surface features, followed by a coarse to fine scheme.
These techniques are however not suitable in their actual form
for processing textureless and event-based inputs.

Tominimize Ewith respect to vx, we also applied a dichotomic
search strategy to sample possible values of vx and match local
3D structure accordingly. Let R = [R1,Rr] be a real interval
that is set large enough at the beginning of the search to make
sure it contains ṽx. Fixing R large enough is only necessary when
no recent past estimations of the velocity have been calculated
at pi, otherwise the length of R is defined from the previous
estimation of vx. To determine precisely ṽx, R is subdivided into r
equal length intervals and the centers of all intervals give a set
of possible values for vx. The error cost function is computed
for each vx and the interval producing the smallest E is used to
update R.

This operation is iterated until E is below a preset threshold
and after a minimum number of iterations. This threshold
is defined experimentally with the purpose of optimizing the
structurematching process by limiting the search to an acceptable
matching error. This threshold can be related to the point cloud
density and if it is set to zero, then the maximum number of

matching iterations is always performed. r is usually set to 5,
however it can be larger. Estimation accuracy increases with r but
at the cost of longer processing time.

2.6. Optimal Spatiotemporal Neighborhood
The correct estimation of the velocity is conditioned by the
spatiotemporal neighborhood, defined as the spatiotemporal
volume of dimensions (1x×1y×1z×1t), in which the 3D point
cloud has moved from time t to t + dt. A large neighborhood
will allow to find the correct match, but at the cost of processing
a large set of data, on the contrary, a too small one will not allow
to match the local structures. The spatiotemporal neighborhood
must also be resized automatically and dynamically in accordance
to the 3D points’ velocity. In our implementation, we deal with
the problem by adjusting a linear function on the neighborhood
size e.g., sk = (1x,1y,1z ,1t)

T is a linear combination of the m
previous values sk−1, ..., sk−m:

sk =

m
∑

i=1

aisk−i, (19)

where the coefficients ai are estimated with a standard linear
prediction coding scheme (Durbin, 1959). The value of m is
usually set to 5 according to experimental results while the initial
value s0 is deduced from the coarse estimation of the initial
velocity i.e., the mean translation between the first two frames.
Thus, we have s0 = (v0dt, dt)

T , assuming v0 is the initial estimate
of the velocity.

The asynchronous 3D flow extraction from points clouds
can be achieve by implementing Algorithms 1, 2 and improved
if necessary with the optimal neighborhood estimation. This
proposed approach does not require clusters of 3D points
captured at the same t as one uses to have with frame-based
reconstructions, yet it can still be applied if the inputs are frame-
based.

3. RESULTS

The first set of experiments are performed on synthetic scenes,
where both 3D structures and motion (velocity and trajectory)
are known. These results measure the theoretical performance
(without noise or reconstruction errors) of our method through
comparison between estimated velocity vectors and the known
motion.

The second set of experiments are performed on natural
scenes, with the purpose of showing the performance of
the event-based fitting method when dealing with real
data. The algorithm is applied to two sources of 3D data: a
Microsoft Kinect (an RGBD sensor that outputs frames of 3D
points aligned with RGB information) and an asynchronous
event-based 3D reconstruction system as introduced in
Carneiro et al. (2013).

3.1. Simulated Scenes
Four simulated scenes are synthetized: (Figure 5) a smooth
translation of a wire cube at constant amplitude; (Figure 6) a 3D
car model undergoing a straight translation at 10m per second;
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FIGURE 5 | (Top) Scene flow of a cube with the color coding time, as the

cube moves from right to left. (Center and Bottom) Angular and endpoint

errors of the estimated velocity field. The patches of planes are underlined to

show the locally constant velocity assumption. For visibility purpose, the

velocity is only shown for two edges. All axes are expressed in length unit

except for the angle color scale.

(Figure 7) the same 3D car model describing a circular motion;
(Figure 8) a pure rotation of a sphere at constant angular speed.

For each scene, the velocity flow is computed using
the geometric structure information alone (only the 3D
points’ positions and timestamps are given in the simulation).
The energy cost function in Algorithm 2 is reduced to
Es. The flow performance is measured by two quantities

conventionally used to validate optical flow, the angular error,
which is the angle defined by the estimated normalized
velocity vector ṽ and the ground-truth v. The angle is
given by the inverse cosine of the scalar product of 2
vectors:

arccos
(

ṽTv/|ṽ||v|
)

. (20)

This measure has been introduced in Fleet and Jepson (1990) to
assess the accuracy of the flow direction. However, the angular
error can be biased by large velocity vectors for which the
differences in amplitude can be significant and in the same
time, the angular errors are small. In that sense the angular
error is favoring the large motion over the smaller ones. To
compensate for that bias, a second performance measure, the
endpoint error, introduced by Otte and Nagel (1994) is conjointly
used. This endpoint error is the norm of the difference between
the estimated velocity and the real one:

|v− ṽ|. (21)

Both estimated angular error and endpoint error are represented
with a color scaled representation (Figures 5–15). For the
moving cube, the maximal error occurs at the beginning
of the motion and is due to the fitting spatio-temporal
neighborhood, chosen as the best compromise for the entire
motion.

The results on synthetic data, summarized in Table 1, show
the ability of the method to estimate densely and smoothly
the velocity field. The rotating sphere is a challenging because
the 3D points composing the surface are not spatially uniform.
The non uniform acceleration on the sphere also implies non
uniform tangential velocity of 3D points on which we fit
the local planes. This explains why the velocity estimation
is slightly less accurate for rotations. For translations (cube
and car), the velocity is estimated with higher accuracy since
the direction has a mean angular error of 0.04 rad (with a
peak value of 0.1 rad) and a mean endpoint error of 0.8%,
with a peak value of 1.2% when normalized by the ground-
truth objects sizes (respectively the cube edge length, the
sphere diameter, and the length of the car). For rotations, the
accuracy has the same order of magnitude: around 0.15 rad
and 2.2% for respectively the angular and the endpoint
error.

3.2. Natural Scenes
The second set of results is obtained from real scenes showing a
moving person in the scene. The 3D point clouds are provided
by a Kinect sensor that also measures the RGB intensity. The
Kinect provides depth information for every detected pixel. The
background pixels representing the room’s walls are removed
via depth segmentation. In these sequences, the person is a
nice example of a deformable target with limbs moving at
different non-constant velocities. However, the local constant
speed hypothesis holds. It is sufficient to allow a smooth
estimation of the scene flow. Scene flows estimations are given as
two sets of results. The first one uses only geometric constraints,
when the scene luminance is not available for the structure
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FIGURE 6 | (Top) Constant velocity translation with the color coding time, as the car moves in a straight line from left to right at 10m/s. The estimated velocity is

shown on the right. (Bottom) Angular and endpoint errors of the estimated velocity field with the 3D flow technique.

FIGURE 7 | (Top) Circular motion with no tangential acceleration: the car’s trajectory is outlined via the velocity estimation. (Bottom) Angular and endpoint errors of

the estimated velocity field.

registration operation. The second set uses the additional
information brought by the luminance in addition to the
geometry.

The flow estimation for each sequence is assessed in two
ways:

1. A reference speed is established using the person’s head to
compute speed across frames. The head’s position at time t is
annotated manually to build a reference motion scene. This is
then used as ground-truth to evaluate the event-based fitting
method.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2017 | Volume 10 | Article 596

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Ieng et al. Event-Based 3D Motion Flow

FIGURE 8 | Scene flow of a rotating sphere. (Top) Time color coded

representation of the sphere and the velocity field are represented on the top

row. Angular and endpoint errors of the estimated velocity field are shown for

two points of view. Error are shown in absolute values: the endpoint errors are

not exceeding 0.1 length unit in the dark blue regions and is higher as we are

close to the poles because of the high density of samples for which the fitting

parameters are no optimal enough.

2. If S(t) designates an arbitrary point cloud in the scene at time t
then S(t)+vdt is the morphing of S(t) by the translation vector
vdt.

Let pi ∈ S(t) and qi ∈ S(t)+ vdt such that:

qi = argmin
q∈S(t)+vdt

||q− (pi + vdt)||. (22)

We define the morphing error as the mean error of each pair
(pi, qi):

1

N

∑

i

||pi − qi||. (23)

This morphing error, normalized by the mean ground-truth
velocity amplitude (provided by tracking limbs from the
Kinect output for the 3 sequences), is used as the second
performance measurement for the rest of the paper.

3.2.1. First Sequence

In the first sequence, shown in Figure 9, a person walks in front
of the cameras at a constant pace. The velocities’ amplitudes,
and the directions are shown separately for both estimations

without using luminance information. These figures show the
performance of the algorithm in the presence of a deformable
object. The limbs, in particular, the legs and the fingertips which
are subject to the largest velocity changes show clear phases
of acceleration: when the legs reach the end of the step, the
speed is close to zero (1st and 3rd images), it reaches a maximal
value when the legs are in the middle of the step (5th image).
The velocity changes are also visible in the color coded motion
directions: the silhouettes are not all green as the hands swing.
The floor, as it is scanned by the Kinect sensor, was also processed
by the algorithm. The estimated speeds are largely coherent with
what it is expected: they are close to zero, thus negligible with
respect to the moving person. The measured velocity variation
(in amplitude and direction) from the floor are mainly due
to several sources of noise coming from the sensor itself, the
lighting change induced by the motion, etc. The background
wall has been removed using depth information before the scene
flow estimation is applied. This eliminates any non relevant
events/pixel changes due to shadows.

In this experiment, the person walks across the scene, in front
of the cameras at a constant speed of 1m/s. This reference speed
is measured by manually segmenting the head’s point cloud for
each frame. The speed is also extracted for the head from the
estimated 3D flow with Algorithm 1. The top row of Figure 11
shows both speed curves, plot together. Square markers represent
the reference speed, circle markers show the speed estimated
without luminance information while the diamond markers
represent the result achieved with the luminance (through the
term EL in Equation 13). The speed estimated from the geometric
constraint has a mean value of 0.99m.s−1 and the one using
luminance is around 1.2m.s−1. The relative mean difference
between the two estimations is around 17%. This shows that both
estimates are coherent.

The small fluctuations of the estimated speed are not
surprising as the trajectory of the head is not a straight
translation: body weight transfer happens at each step and
it modifies subsequently the head velocity in amplitude and
direction. Finally, the color coded flow directions are consistent.
Results show that the flow is pointing at 180◦, i.e., from right to
left for most of the body except for the person’s hands. Floor’s
directions however have a random distribution. We can explain
this result by two causes: noise in the acquired data as the floor
is a matt surface diffusing randomly the neon lighting and the
shape registration procedure in the algorithm which is unlikely
to register correctly structures on a uniform surface.

3.2.2. Second Sequence

In the second sequence (Figure 10), a more complex motion
is tested, showing a person jumping. The velocity amplitude
changes several times throughout the sequence: it increases at the
beginning and reaches a maximum, then decreases to 0 when the
person is at the top of its trajectory. The amplitude then increases
again during the fall until he reaches the ground. This sequence
of speed change is shown at the bottom row of Figure 11.
Similarly to the walking sequence, both reference speed curves
and estimation are shown together. However, in this experiment,
it is more difficult to assess the accuracy of the estimation since
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FIGURE 9 | Sequence of a person walking at constant speed across the scene. The amplitude of each 3D point is color-coded and shows that the

event-based plane fitting technique is able to estimate non rigid object velocity without and with luminance. A color scale is also used for the flow directions. One can

see the person going from the right to the left as confirmed by the color (green in the color scale i.e., an angle of 180◦). Again, we can observe that directions can be

accurately estimated by using only time and geometry. The addition of luminance provides slight improvements.

the reference speed itself is built with a low accuracy. This is due
to the difficulty to manually segment the head’s 3D point since
the speed changes too quickly.

The jumping sequence is an ideal example of a non-rigid body
moving at a totally unconstrained speed. The arms, in particular,
show the largest velocity changes since the person swings them
to gather momentum from the first half of the jump and he folds
them back once the body begins to fall. In this sequence one can
also observe the velocity estimated for the floor which is again
mostly equal to zero, except at the right under the jumping point
because of the moving shadow of the person. The velocities are
pointing mainly up (i.e., angle of 90◦) during the ascending phase
and pointing down when he is falling (i.e., angle of−90◦).

For both walking and jumping sequences, a higher accuracy
is achieved in estimating the velocity when luminance is used,
as shown in Table 2 for five frames taken from the sequences.
The mean morphing error is below 3% for the walking sequence
and slightly higher than 2% for the jumping one when luminance
information is used. The estimation performance is slightly lower
when the luminance is removed. In these cases, the morphing
errors increase respectively to 5 and 7%. Two main observations
should be retained from these results: first, morphed point clouds
still consist of well defined objects. This shows the computed
motion is consistent for the full scene as morphing objects do not
produce incoherent shapes. Secondly, the estimated scene flow is
shown being consistent with the real motion since S(t)+ vdt, the

morphed point cloud, matches correctly S(t+dt), the point cloud
at t + dt.

3.3. 3D Point Clouds from Event-Based
Vision Sensors
This subsection provides the 3D scene flow using event-based
cameras (DVS) as described in Carneiro et al. (2013). Computed
3D data have a high resolution of 1µs. The input to the scene
flow estimation are asynchronous 3D point clouds of a hand
closing and opening in front of the stereo rig, while the second
sequence is a moving face captured by the same stereo rig. The
hand speed is of the order of one meter per second while the
face moved slower (several cm per second). The first sequence’s
results are shown in Figures 12, 13. The events generated by
the hand’s contours are sufficient to estimate 3D flow estimation.
The direction and amplitude are consistent with the motion. The
mean morphing error, ( 8.7%), is at the same order of magnitude
than the previous experiments.

The second 3D scene flow estimation from the event-
based cameras are shown without providing morphing error
for readability reason. The second sequence shows a face
moving in front of the event-based cameras. The color-
coded flow are shown in Figure 14 with row (a) color-
coding the flow’s directions while (b), shows the motion
amplitudes.
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FIGURE 10 | Sequence of a jumping person. This is a complex motion which comprises several rapid changes of the velocity in direction and amplitude. The

amplitude plot of the velocity for each 3D points is color-coded. Parts of the body can be segmented according to the velocity e.g., the arms, the legs and rest of the

body which have distinctive amplitude. The color coded flow directions (expressed in degree) are well estimated as we can see for the whole body, the direction is

pointing up (i.e., angle close to 90◦) and pointing to the bottom when the person is falling (i.e., angle around −90◦).

FIGURE 11 | Mean velocity computed for the head in the walking (top)

and the jumping (bottom) sequences. The circle curves are estimations

achieved by time and geometric information. The diamond curves are results

one gets when luminance is used for the structure registration. Finally, the

square curve represents the velocity of the manually segmented head’s

3D points.

3.4. Comparison to the Particle Filter
Scene Flow Estimation
This third set of results obtained with the event-based plane
fitting technique (without luminance information) is compared
to the method published in Hadfield and Bowden (2014). This
paper models a set of moving 3D points using a particle filter that
supports multiple motion hypotheses to estimate the 3D scene
flow from the 3D points provided by a Kinect.

The sequence and its estimated scene flow presented
in Hadfield and Bowden (2014) were kindly provided by the
authors and are shown as output without additional processing.
Figure 15 shows samples of this sequence along with the
estimated 3D scene flow: the velocity amplitude and direction
are shown in two separate color-coded representations for the
two methods. One can notice that the event-based plane fitting
method produces smoother results that are consistant with the
scene content, especially the velocity is expected to be maximal at
the foot when the kick is accomplished.

We provide the morphing error in Table 3. It shows
the error computed for 5 frames taken at some arbitrary
regular time interval, using both method. This is consistant
with the previous analysis showing that the event-based
plane fitting method’s performance is higher than the
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FIGURE 12 | A sequence of a moving hand acquired using a stereo-rig composed of event-based silicon retinas (DVS) as sets of event {(p, t)}. No

luminance information is available from these sensors. In (A,B) color-coded plots of the estimated amplitude and direction of the velocity for each reconstructed 3D

points. In contrast with the previous resultsare shown, they correspond to the locations of dense 3D points. The motion is a smooth translation from left to right as

shown by the direction plots pointing toward 45◦.

FIGURE 13 | Morphing error for the event-based 3D point clouds of a

waving hand calculated for a set of randomly selected times. The Mean

error is around 8.7%, this is consistant with previous estimations if no intensity

information is used or available.

state-of-the-art frame-based technique. Unsurprisingly, the
overall estimation accuracy for both methods is lower than
the previous experiments mainly because the Kinect’s inability
to accurately capture fast motions that give rise to blurry
images.

4. DISCUSSION

This paper introduced a new technique of dense 3D scene flow
estimation. This is so far, the first 3D scene flow algorithm
developed for asynchronous sensing using event-based cameras.
The event-based formulation of the flow applies the rule of
“one event equals one computation” that allows an incremental
update of the 3D scene flow in an almost continuous manner.
This formulation allows also a straightforward extension to
frame-based representation as long as time is used as the main
computation feature.

The motion inference and 3D reconstruction from multiple
cameras are usually coupled tasks in frame-based computer
vision. They are solved by stereovision mechanisms which
require highly accurate calibration operation. Conventionally,

TABLE 1 | Average motion estimation errors for the synthetic scenes.

Cube Car cst. Car circular Rotating

translation translation motion sphere

Angular error (rad) 0.04 0.03 0.15 0.15

Endpoint error (%) 0.8 1.5 2.2 2

TABLE 2 | Morphing error for several sets of five randomly selected times

in the sequences.

Morphing error (ratio)

Frame Walking Jumping

Without L With L Without L With L

1 0.0542 0.0214 0.0250 0.0131

2 0.0695 0.0277 0.0635 0.0270

3 0.0786 0.0221 0.0698 0.0414

4 0.0863 0.0424 0.0510 0.0128

5 0.0433 0.0278 0.0481 0.0143

Mean 0.0664 0.0283 0.0515 0.0217

Errors are measured with and without luminance information. In the first case, the mean

error are around 6.6 and 5.2% respectively. These ratios are improved to 2.8 and 2.2%

when luminance is added i.e., errors are reduced by a factor close to 2.

the dense scene flow is estimated and refined from the dense
optical flow which is its projection on the image planes in an
iterative feedback loop scheme. The scene flow computation is
therefore a complex problem which is an optimization problem
under several conflicting constraints.

The proposed technique is based on the local constant motion
of the 3D point clouds and on their locally non deformable
geometry. These hypotheses, when satisfied, tell us that an object
moving through space, locally generates ruled surfaces from
which the velocity vectors can be extracted. The solution we
proposed is simple as it constraints the 3D velocity estimation to
a search for a parametrization value over the set of real numbers.
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FIGURE 14 | Sequence of a moving face 3D point clouds computed using event-based cameras. (A) Shows the color coded flow’s amplitude while (B) is its

color coded directions in a fronto parallel plane. The computed flow outlines the actual motion of the face that rotates from right to left: temples motion is pointing to

30◦ (blue) while the glasses motion is almost horizontal and pointing to the right (dark red). The global motion is close to be constant over the samples shown by the

figure. The amplitude is expressed in cm/s.

FIGURE 15 | Sequence of a person performing a kick. The amplitude of each 3D point is color-coded and shows respectively the flow amplitude estimation using

the event-based plane fitting and the particle filter method proposed in Hadfield and Bowden (2014). The flow direction estimation from the event-based plane fitting

and the particle filter methods are shown in the 2 last lines.
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TABLE 3 | Event-based plane fitting technique compared to particle

filtering technique.

Morphing error (ratio)

Frame Plane fitting Scene particle

1 0.0124 0.0265

2 0.0382 0.0461

3 0.0496 0.0505

4 0.0344 0.0378

5 0.0436 0.0480

Mean 0.0356 0.0418

Errors are normalized by the mean velocity of the left leg.

To achieve this search, we developed a local 3D structure
matching strategy using the geometric consistency and when it
is available, luminance as an additional constraint to identify
structures across time. Experimental results obtained from
synthetic and natural scenes show the technique to be particularly
suitable in estimating the velocity vectors of deformable objects,
undergoing arbitrary unconstrained motions. This approach
allows flow estimation from any data output by sensors
that capture the spatiotemporal information that but do not
necessarily provide nor use luminance such as range finders (e.g.,
the LiDAR).

The method also provides a dense estimation of the velocity
field as an alternative method to using a variational formulation
(a very powerful but also highly computationally demanding
technique) for flow estimation. Since the plane fitting we applied
for the flow regularization is relatively inexpensive operation,
the resources are mainly needed for the structure matching

operation. We can sketch an idea about the complexity of that
matching operation according to Algorithm 1:

• There are 2 nested loops (line 6 and 8 in the algorithm), if we
assume that the while loop is satisfied in n iterations and that
we have n values of vk to test in the for loop, then the algorithm
is at least inO(n2).
• In the case of a stream of z events, the complexity is inO(z.n2).

From that perspective, the complete scene flow algorithm‘
complexity is at least in O(z.n2). We can reasonably state that
this is still less complex compared to conventional scene flow
estimation techniques based on particular filter or variational
approaches.
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