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Abstract

Developing prognostic biomarkers for specific cancer types that accurately predict patient survival 

is increasingly important in clinical research and practice. Despite the enormous potential of 

prognostic signatures, proposed models have found limited implementations in routine clinical 

practice. Herein, we propose a generic, RNA sequencing platform-independent, statistical 

framework named Whole Transcriptome Signature for Prognostic Prediction (WTSPP) to generate 

prognostic gene signatures. Using ovarian cancer and lung adenocarcinoma as examples, we 

provide evidence that our prognostic signatures over-perform previous reported signatures, capture 

prognostic features not explained by clinical variables and expose biologically relevant prognostic 

pathways, including those involved in the immune system and cell cycle. Our approach 

demonstrates a robust method for developing prognostic gene expression signatures. In 

conclusion, our statistical framework can be generally applied to all cancer types for prognostic 

prediction and might be extended to other human diseases. The proposed method is implemented 
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as an R package (PanCancerSig) and is freely available on GitHub (https://github.com/Cheng-Lab-

GitHub/PanCancer_Signature).
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Introduction

Cancer is a major cause of morbidity and mortality worldwide, accounting for more than 8 

million deaths each year [1]. In the United States alone, an estimated 1.8 million new cases 

will be diagnosed in 2020, and more than one third of these cases will succumb to the 

disease [2]. As a multifarious disease, the prognosis of patients with a specific type of cancer 

varies substantially [3]. Consequently, developing models for specific cancer types that 

accurately predict patient survival using prognostic biomarkers is increasingly important in 

clinical research and practice since they optimize treatment options.

Currently, prognosis is predominantly predicted based on clinical variables. The Tumor 

Node Metastasis (TNM) staging system has been developed for most solid tumors types and 

is based on tumor size, regional lymph node status and metastasis [4]. Although TNM 

staging is prognostic in many cancer types, certain cancer stages have high variation in terms 

of clinical outcomes, which limits the application of this staging system in directing 

therapeutic practice. For example, overall survival in stage III melanoma ranges from 93% to 

32% depending on node involvement [5]. Additionally, for certain cancer types, few 

additional prognostic clinical variables are available. In ovarian cancer for example, 

cytoreductory status is one of the few other clinical variables utilized. The main treatment 

for this disease is surgery followed by platinum-based chemotherapy [6]. Prognosis 

prediction is primarily based on surgery status (or debulking), which is classified as optimal 

for complete tumor resection or suboptimal for incomplete resection and predicts poor 

prognosis for suboptimal cytoreductory status [7]. Thus, clinical variables certainly play 

important roles in achieving useful prognostic prediction. However, further improvement can 

be anticipated by including other information, such as genomic features.

Genomic data, especially transcriptomic profiles, provide a comprehensive characterization 

of the intrinsic molecular features of tumor samples, making them promising tools for 

predicting cancer prognosis [8]. Indeed, gene expression-based signatures have been 

extensively explored and have in some cases led to biomarkers that significantly improve the 

prediction of patient outcome. For example, expression-based tests such as MammaPrint or 

Oncotype DX can accurately predict patient outcome in ER+ breast cancer patients and are 

increasingly being implemented into clinical practice [9–11]. For many other cancer types, 

clinically relevant prognostic signatures have been proposed as well. Two strategies are 

generally utilized for creating genomic prognostic signatures: some signatures are based on 

prior knowledge, including signatures based on hypoxia-associated genes [12,13], EMT 

genes [14], or frequently mutated genes such as TP53 [15,16] and BRCA1 [17], whereas 
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other prognostic signatures are based on supervised selection of genes that are statistically 

associated with patient prognosis [18–21].

In spite of the enormous potential of prognostic signatures, proposed models have reached 

limited implementations in routine clinical practice [22]. For example, a multitude of 

prognostic signatures have been developed for ovarian cancer [23–25], but none have reach 

the clinic yet. In general, proposed signatures tend to be validated through cross-validation 

or in a small subset of all available independent datasets [26]. This results in low 

reproducibility in new datasets and impedes the prognostic robustness needed for clinical 

application, as noted in ovarian cancer, lung cancer, melanoma and other cancer types [26–

28]. In addition, gene expression data generated by both microarrays and RNAseq platforms 

should be amenable to signature application. Thus, there is a need for a standardized 

framework to develop prognostic gene signatures with high reproducibility from gene 

expression data in a straightforward fashion.

In this study, we propose a generic, RNA sequencing platform-independent, statistical 

framework named Whole Transcriptome Signature for Prognostic Prediction (WTSPP) to 

generate prognostic gene signatures. Our platform relies on signature generation from a 

training dataset based on Cox regression and consequent application of this signature in 

multiple independent test datasets. To exemplify the utility of our platform, we utilized 

TCGA data from ovarian cancer and lung adenocarcinoma to define tumor-specific 

prognostic signatures and systematically tested the predictive power of these signatures in a 

comprehensive list of independent tumor gene expression datasets with matched patient 

survival information. Our ovarian cancer signature (OV signature) outperformed 14 

published gene signatures and was prognostic in all collected datasets. In lung cancer, we 

could significantly predict survival in almost all collected datasets, even after adjustment of 

clinical variables. In conclusion, our statistical framework can be generally applied to all 

cancer types for prognostic prediction and might be extended to other human diseases. To 

facilitate future utility, we already defined prognostic signatures for 13 cancer types based 

on the TCGA and developed these signatures into the PanCancerSig R package.

Materials and methods

Datasets and pre-processing

TCGA datasets for ovarian serous cystadenocarcinoma (OV) and lung adenocarcinoma 

(LUAD) were obtained from TCGA on FireBrowse (gdac.broadinstitute.org/). These 

datasets included Level 3 RNAseq samples with matched clinical information and provided 

RSEM normalized gene expression for 20,502 genes. Matched one-channel (Affymetrix) 

and two-channel (Agilent) microarray Ovarian cancer datasets were also obtained from 

TCGA on FireBrowse for cross-platform validation. The one-channel dataset was log10 

transformed and the two-channel microarray dataset was log2 transformed. Additional gene 

expression datasets were obtained from Gene Expression Omnibus (GEO) as Series Matrix 

files. Only datasets with more than 40 samples were considered in our analysis. This resulted 

in the inclusion of 21 validation datasets (see Suppl. Table 5 and 6).
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Definition of signatures

Tumor-specific whole-gene signatures for prognostic prediction (WTSPPs) were generated 

utilizing univariate Cox regression models. In this study, we used the TCGA OV and LUAD 

datasets to define OV- and LUAD-signatures, respectively. For each dataset, a Cox 

regression model was fit for each gene to evaluate its effect on overall survival. The 

proportional hazards assumption was checked for each gene using the cox.zph function from 

the R survival package. The Benjamini-Hochberg (BH)-adjusted p-values ranged from 0.29 

to 1.0 for the OV signature. Three genes LCE4A, OR8U1, and SNORA36B) did not meet 

the proportional hazards assumption at a BH-adjusted p-value of 0.001. Since these genes 

comprised less than 0.02% (3/20501) of the gene weights and had very small weights 

(0.0002 for each of the three genes), we assumed that their influence on the final score 

would be negligible. We assumed that each p-value reflected the association of this gene 

with overall survival and utilized log10 transformed p-values as gene weights. Weights 

exceeding 10 were trimmed to 10 if necessary to reduce the effect of outliers. Subsequently, 

all transformed p-values were scaled from 0 to 1 and this vector represented the initial 

weight profile (wp) in which this scaled p-value represented the weight (w) of each gene (i). 
The wp was separated into a protective (wpp) and hazardous (wph) wp, based on the hazard 

ratio of each gene-specific Cox model; genes with hazard ratios <1 were considered to be 

protective, whereas genes with hazard ratios >1 were classified as hazardous. Gene weights 

of hazardous genes in wpp were set to zero and vice versa for protective genes in wph. The 

resulting two weight profiles, wpp and wph, represented the WTSPP. Identical steps were 

followed to generate RFS-based signatures, but now using RFS as the dependent variable 

instead of OS.

Calculation of prognostic scores

Prognostic scores (PSs) were calculated using the BASE algorithm [29], which has been 

made available in prior publications [30,31]. BASE calculates the enrichment of protective 

and hazardous genes for each patient, based on the WTSPP and patient gene expression data. 

First, one channel microarray or RNAseq gene expression datasets were median normalized 

by BASE, whereas two channel microarray datasets were not. Second, patient gene 

expression profiles were ranked in a descending order. Third, the distribution of two 

cumulative functions, the foreground (f) and background (b) functions, were calculated 

separately for the protective (wpp) and hazardous (wph) genes. These functions are given by:

f(i) =
Σi = 1

j giwi
Σi = 1

n giwi
, 1 ≤ j ≤ n

b(i) =
Σi = 1

j gi 1 − wi
Σi = 1

n gi 1 − wi
, 1 ≤ j ≤ n

where the weight w and rank g of gene i are evaluated. To obtain an enrichment score for 

protective genes in a patient sample, weights from wpp were inputted into these functions 

and a cumulative foreground and background distribution was defined. In a scenario in 

which protective genes were relatively highly expressed in a patient sample, the high ranks 

gi and large contributions of gene weights (wi) to the foreground distribution f(i) but low 
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ranks gi and small contributions (1-wi) to the background distribution b(i) would increase 

f(i) more than b(i). The enrichment score of all protective genes (PSp) was defined by the 

maximum deviation of the foreground and background distributions and PSp would thus be 

high if protective genes were relatively highly expressed in a patient sample. The same 

enrichment procedure was repeated 1000 times for each sample with randomized patient 

expression profiles to generate a patient-specific null distribution for PSp. For each patient, 

the normalized PSp was then generated by dividing PSp by the mean of the absolute value of 

the permuted, randomized PSp values. An identical process was repeated with the hazardous 

genes in wph to establish an enrichment score for hazardous genes (PSh). Lastly, the final PS 

was determined by subtracting PSh from PSp. This generated low PSs for patients with 

enriched expression of hazardous genes and high PSs for patients with predominant 

expression of protective genes. Concordantly, high PS predicted good prognosis and low PS 

predicted poor prognosis.

Survival analysis

Survival analyses were performed using the R “survival” package. Log-rank tests were 

performed to evaluate overall or relapse free survival probabilities of PS-high and PS-low 

groups, using the “survdiff” function. Additionally, Cox proportional hazards models were 

performed on continuous PS, using the “coxph” function to determine the association with 

overall or relapse free survival. Reported p-values were derived from each Cox proportional 

hazards model and calculated using a two-sided Wald test. Concordance indices were also 

determined by the “coxph”. The “survfit” function was utilized to create Kaplan-Meier plots 

that visualize differences in survival probabilities.

Correlation analysis

The Spearman correlation coefficient (SCC) was reported for all correlation analyses as the 

assumptions underlying the Pearson correlation (i.e., normal distribution, homoscedasticity 

or linearity) were not met. SCC was calculated using the R function “cor”. All analyses were 

conducted in R (version 3.4.2).

R package

An R package, “PanCancerSig”, has been made available to facilitate the application of the 

presented prognostic signatures. Users can input clinical gene expression datasets of interest, 

calculate patient-specific PS, and perform survival analyses. PanCancerSig is available on 

GitHub at github.com/Cheng-Lab-GitHub/PanCancer_Signature.

Results

WTSPP: a new statistical framework for predicting cancer prognosis

WTSPP provides a generic statistical framework to define prognostic signatures based on 

tumor gene expression data. In contrast to previous methods that focus on the selection of 

prognostic genes, the prognostic signatures defined by WTSPP contain all genes. A weight 

is assigned to each gene based on its positive or negative association with prognosis. These 

signatures are then used as a reference to gauge the expression profiles of a new tumor 

dataset by computing prognostic scores (PSs) for each patient. The PS is a statistical 
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summary that quantifies the relative expression of genes that are associated with prognosis, 

i.e., highly weighted genes in the prognostic signature. In general, a sample will have a high 

PS when genes associated with good prognosis tend to be highly expressed and genes 

associated with poor prognosis are lowly expressed. Thus, although all genes are included in 

the prognostic signature, the PSs of tumor samples are driven by genes with the highest 

absolute weights.

Application of WTSPP to prognostic prediction in ovarian cancer

To demonstrate the utility and performance of WTSPP-derived signatures, we utilized 

ovarian cancer as an example due to the limited prognostic tools available for this disease 

currently. We first developed a prognostic gene signature based on the TCGA ovarian cancer 

RNAseq dataset (Table 1, Suppl. Table 1 and 2). Gene Ontology enrichment analysis 

indicated that genes with high positive weights (associated with prolonged survival) were 

involved in immune responses, while genes with high negative weights (associated with 

shorter survival) were associated with extracellular matrix deposition (Suppl. Table 3). As an 

initial validation of this signature, we applied it to the original TCGA ovarian cancer 

RNAseq data and, as expected, the resulting PSs were significantly associated with overall 

survival (P=1E-17, Cox regression) (Suppl. Table 4).

In addition to TCGA ovarian cancer RNAseq data, we also derived OV signatures from 

TCGA ovarian cancer gene expression profiles measured by Affymetrix (one-channel array) 

and Agilent (two-channel array) to examine the applicability of an RNAseq-derived 

signature to microarray platforms and vice versa. The signatures from three independent 

platforms were similar with an average Spearman Correlation Coefficient (SCC) of 0.63 

(Suppl Fig S1). Although the prognostic performance of the three OV signatures were 

comparable, we found that the signature derived from the RNAseq dataset achieved the best 

prognostic ability (Suppl. table 4), presumably due to the superior sensitivity of RNAseq 

platform.

We subsequently applied the RNAseq-derived TCGA OV signature to a collection of 6 OV 

microarray datasets from previous publications, each containing at least 100 tumor samples 

(Suppl. table 5). For each dataset, we calculated PSs for all patients. Cox regression analysis 

indicated that PSs were significantly associated with overall (Fig. 1a) and/or relapse-free 

survival (Fig. 1b) in all datasets (HR < 1, P < 0.05, Cox regression model), even after 

adjusting for clinical variables (Table 2). Furthermore, we stratified patients into PS-high 

and PS-low groups using median PS as threshold and compared survival times. In all 6 

datasets, patients from the PS-high group exhibited significantly longer overall survival than 

those from the PS-low group (P < 0.05, log rank test) (Fig. 1a). For the two datasets 

(GSE9891 and GSE17260) with relapse-free survival information, we also observed 

significantly longer relapse-free survival in the PS-high patient groups (P < 0.05, log rank 

test) (Fig. 1b). However, a recurrence-free survival (RFS)-based signature was better able to 

predict RFS in two out of three datasets, suggesting that prediction of recurrence could be 

further improved with an RFS-based signature (Suppl. Fig 1d). Taken together, these results 

indicate that the OV signature defined from TCGA RNAseq data by our WTSPP framework 
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is predictive of patient prognosis in a platform independent manner. The PSs resulting from 

this signature are predictive of survival in all collected ovarian cancer expression datasets.

The OV signature provides additional prognostic value over Clinical variables

Clinical variables have been used to predict prognosis and direct therapeutic strategies in 

ovarian cancer [32]. One of the most utilized prognostic clinical variables is surgery status 

(optimal versus suboptimal) with suboptimal cytoreductory status predicting poor prognosis 

[7]. To examine if our signature could provide additional prognostic information to surgery 

status and other clinical variables in ovarian cancer, we applied a multivariate Cox 

regression analysis including our OV signature and several clinical variables across 12 

collected ovarian cancer datasets (Suppl. Table 5). Here, datasets GSE9891 and E-

MTAB-386 were chosen as examples for illustration due to their complete clinical 

information. Although surgery status was not associated with survival (p>0.05, Cox 

regression model), high PSs were protective in both datasets and was the only consistently 

significant variable associated with prognosis (Fig 2a, b).

As clinical variables have been suggested to be prognostic in ovarian cancer, we wondered if 

our OV signature could provide additional prognostic value. For each of the 12 ovarian 

cancer datasets, we calculated the concordance index of a multivariate Cox model including 

clinical variables only (age, stage, grade, surgery status), a univariate Cox model including 

PSs only, and a multivariate model including clinical variables and PSs. A comparison 

between concordance-indices (C-indices) showed that our signature indeed improved the 

prognostic ability of clinical variables in all 12 ovarian cancer datasets (Fig. 2c). Although 

clinical variables alone were prognostic as indicated by an average C-index of 0.57, our OV 

signature performed slightly better, showing an average C-index of 0.60 (p > 0.05, paired t-

test). Adjusting our signature for clinical variables further increased the prognostic 

performance of our model (average C-index = 0.65) and showed significant improvement of 

predictive ability compared to clinical variables alone (p=1e-4, paired t-test). Thus, our 

signature captured tumor characteristics not explained by clinical variables and could 

significantly improve the predictive ability of clinical variables in ovarian cancer.

Since PSs could substantially improve the collective prognostic ability of clinical variables, 

we were curious if PSs were associated with individual clinical variables. The GSE9891 

dataset was used as an example for illustration due to its large sample size and rich clinical 

annotations. Ovarian cancer staging is currently a major predictor of prognosis, since 80% of 

late-stage ovarian cancer patients treated with Platinum-based therapies experiences 

incurable recurrence [32]. We indeed observed that patients diagnosed at later stages (stage 3 

and 4) had significantly lower PSs than patients with early stage disease (stage 1 and 2, 

P=0.004, t-test) (Fig 3a) and that lower PSs were associated with recurrence (p=0.01, t-test) 

(Fig 3b). Additionally, low PSs were more often observed in patients with suboptimal 

cytoreduction status compared to patients classified as having optimal surgery status 

(p=6e-4, t-test) (Fig 3c). We next stratified patients with optimal or suboptimal status based 

on PSs. In both optimal and suboptimal patient groups, patients with high PSs had 

significantly longer survival than patients with low PSs (P=6e-5, log-rank test, HR=0.42 for 

suboptimal, p=4e-6, log-rank test, HR=0.33 for optimal) (Fig 3d). Notably, patients with 
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optimal surgery status but low PSs had identical survival probabilities as patients with 

suboptimal cytoreductory status and high PSs. Similar results were observed in other ovarian 

cancer datasets (Suppl. Fig S2a–e). These results indicate that our OV signature could 

improve the prognostic ability of individual clinical variables.

Ovarian cancer is a heterogeneous disease and the TCGA has identified 4 distinct molecular 

ovarian cancer subtypes [33]. Each subtype presents itself with a different prognosis [34]. 

Generally, patients with Mesenchymal (Mes) and Proliferative (Pro) have poorer survival 

compared to patients with Differentiated (Dif) and Immune (Imm) molecular subtypes [34]. 

In concordance with this, patients with Mes and Pro ovarian cancer subtypes had 

significantly lower PS than patients with Dif and Imm subtypes in two out of three datasets 

(Fig 3e, Suppl. Fig. 2f, 2h). Additionally, within ovarian cancer subtypes, patients in PS-high 

groups had longer survival in three out of four ovarian cancer subtypes, including Dif 

(p=0.03, log-rank test, HR=0.5) (Fig 3f), Imm (p=0.02, log-rank test, HR=0.5) (Fig 3g), and 

Mes (p=0.02, log-rank test, HR=0.6) (Fig 3h, Suppl. Fig 2h–i). The same trend was also 

observed in the Pro subtype, but this association did not reach statistical significance 

(p=0.08, log-rank test, HR=0.5) (Fig 3i), which might be due to a smaller sample size, since 

the Pro subtype could be stratified significantly in an independent dataset with a larger 

sample size (Suppl. Fig 2f–g). Thus, our OV signature can stratify molecular subtypes 

further based on PSs.

The OV signature outperforms previously published ovarian cancer gene signatures

After showing that our OV signature has clinical relevance, we wanted to define the 

robustness and performance of our WTSPP framework. We assessed whether (i) TCGA is 

the best dataset to generate signatures from, and (ii) compared the prognostic ability of our 

signature to published ovarian cancer specific gene signatures.

First, we derived prognostic signatures from each of the 11 collected ovarian cancer datasets 

by applying our WTSPP framework to each dataset. We then evaluated the prognostic ability 

of these signatures using C-indices (Fig 4a). Although all datasets could be used to create 

prognostic signatures, variability between the prognostic abilities of signatures was 

observed. The TCGA-derived signature had the best, overall performance among the 12 

signatures and performed well in almost all datasets (Fig. 4a, left). The TCGA signature was 

followed in prognostic ability by signatures derived from the GSE9891 and GSE32063 

datasets, each with an average C-index of 0.59 and 0.58, respectively (Fig 4a, right). There 

seemed to be a trend between dataset sample size and prognostic ability, where datasets with 

high sample sizes (e.g. TCGA and GSE9891) tended to produce more robust prognostic 

signatures, compared to datasets with lower sample size (e.g. GSE14764 and GSE32063).

To assess the similarities between the 12 derived OV signatures, we calculated the pairwise 

correlation between each of the signatures and observed relatively low correlations between 

datasets (Fig. 4b). This indicated that the prognostic genes identified by different datasets 

generally have low consistency. Despite this, the WTSPP framework can still achieve 

consistent prognostic prediction across different datasets.
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Lastly, since several gene expression-based prognostic signatures have been proposed in the 

literature for high-grade ovarian cancer, we compared the prognostic ability of our OV 

signature to published gene signatures. Waldron et al. recently evaluated 14 prognostic 

signatures in publicly available datasets [26]. We evaluated the performance of our OV 

signature in the same datasets and conducted paired t-tests on the C-indices of our signature 

and those reported by Waldron. Our signature outperformed all 14 published OV signatures 

reported in the review, as judged using the t-statistic, which indicated the direction of higher 

concordance scores, higher t-statistic meaning higher concordance scores produced by our 

OV signature (Fig. 4c). The largest difference in prognostic ability was observed with the 

Konstantinopulous signature, which was clearly outperformed by our signature (P=1e-4, 

paired t-test). Interestingly, our signature performed slightly better than a published TCGA-

derived signature. This TCGA signature was derived from a TCGA OV microarray dataset 

and adapted a similar Cox regression approach but selected the most significant genes to 

create a signature, rather than the entire transcriptome [33]. This finding confirmed the 

superiority of TCGA data in defining prognostic signatures. Thus, our TCGA-derived OV 

signature outperformed all evaluated published signatures for ovarian cancer.

Application of WTSPP to prognostic prediction in lung adenocarcinoma

To exemplify the potential use of the WTSPP platform in other cancer types, we extended 

our analysis to lung adenocarcinoma. We used the lung adenocarcinoma (LUAD) TCGA 

dataset (Table 1) to generate a prognostic signature and applied the signature to a collection 

of LUAD microarray datasets from previous publications (Supp Table 6). For each dataset 

with at least 40 samples, we calculated PSs for all patients. Cox regression analysis 

indicated that PSs were significantly associated with overall survival in 8 out of 10 

independent datasets (Fig. 5a, Suppl. Fig 3a) (HR < 1, P < 0.05, Cox regression model). 

Furthermore, by stratifying patients into PS-high and PS-low groups using median PS as 

threshold, patients in the PS-high group exhibited significantly longer overall survival than 

those from the PS-low group (P < 0.05, log rank test) (Fig. 5a). In addition, our signature 

was also predictive of recurrence free survival (RFS) in 3 out of 4 datasets (Suppl. Fig 3b). 

Datasets c00182 and GSE31210 provided extensive clinical information, which we utilized 

to preform multivariate Cox regression including PSs as a predictor. We observed that PSs 

are still prognostic in both datasets, even after adjusting for clinical variables such as stage, 

age and smoking status (Fig. 5b). Taken together, these results indicate that the LUAD 

signature defined from TCGA RNAseq data by our WTSPP framework is predictive of 

patient prognosis in independent datasets.

Discussion

Considerable effort has been devoted to understanding transcriptional deregulation in cancer. 

Consequently, a large number of prognostic signatures have been proposed based on gene 

expression levels, with varying levels of prognostic ability. However, a prognostic platform 

that can generate prognostic signatures on the pan-cancer level has been lacking. In this 

study, we presented a prognostic framework that generates cancer-specific signatures and 

evaluated the OV and LUAD signatures extensively.
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Various proposed prognostic signatures are created by selecting a number of highly 

associated mRNA transcripts as determined by a method of preference, or by the inclusion 

of genes known to take part in a relevant biological process. The key assumption of these 

studies is that prognosis can be captured by a relatively small number of genes. However, as 

we have shown here, a much larger number of transcripts may be involved in tumor 

prognosis prediction, with each individual gene having a weak association with patient 

outcome. As an example, none of the genes in the OV signature were significantly 

associated with prognosis after multiple testing correction (Table 1). We did attempt to 

reduce the prognostic signatures to contain a smaller number of genes by only including the 

top x% prognostic genes, were x was ranged from 90 to 20 (data not shown). Signatures 

were relatively stable in predicting survival when excluding up to 50% of the genes, but the 

C-indices dropped when excluding more genes. In addition, the complete signature 

preformed best in the majority of dataset and the smallest variance in C-indices was 

observed with the complete signature. Additionally, when comparing the prognostic genes 

amongst ovarian cancer signatures (Fig 3c), we observed heterogeneity between signatures. 

By using a rank-based approach that includes all genes, we are still able to capture enough 

prognostic genes to predict prognosis. Thus, the inclusion of all genes in our prognostic 

signatures generates a robust framework.

Using ovarian cancer as an example, we showed that our OV signature captures tumor 

characteristics that cannot be accounted for by clinical variables. Importantly, clinical 

variables can further enhance the predictive power of our signature. Multiple, individual 

clinical variables were associated with PSs, where high-PS predicted lower stage, non-

recurrence, optimal debulking, and less aggressive ovarian cancer subtypes. PS could also 

further separate optimal and suboptimal debulking groups, showing that patients with 

suboptimal cytoreduction status and high PS had a similar prognosis as optimal 

cytoreductory patients with low PS. These findings are of unique importance, as TMN 

staging and cytoreductory status are currently the only prognostic indications for ovarian 

cancer [32]. Notably, our OV-WTSPP signature outperformed 14 published prognostic OV 

signatures, indicating the strength of our WTSPP framework in generating prognostic 

signatures. In addition, application of the framework in a different cancer type, LUAD, 

showed a similar association with prognosis, indicating the extended application of our 

prognostic framework, as it can be used to generate prognostic signatures for multiple cancer 

types.

The WTSPP framework generates RNA sequencing platform-independent signatures, which 

can be applied to RNAseq, one-channel and two-channel microarray datasets without 

modification (Supp table 3). This is an important aspect, because the difference in sensitivity 

and data distribution between these two techniques results in an incompatibility of analysis 

methods and hinders the utility of applications designed for certain platforms [35]. We 

showed the superiority of using RNAseq TCGA data over other published datasets (Fig 3a). 

This superiority is likely due to at least two reasons, (i) RNAseq is more sensitive than 

microarray studies and generates more appropriate weights for the signature, (ii) the number 

of genes is higher in RNAseq datasets, which captures tumor characteristics better than 

microarray datasets that contain a more limited number of genes. Thus, we show that TCGA 
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data has prognostic value and can be at the basis of robust signatures that are prognostic in 

independent datasets.

Although our study proposes a new prognostic framework, several limitations are noted 

here. First, our analysis was conducted retrospectively. To validate the clinical utility of our 

signatures, they should be tested in a prospective manner under conditions that simulate 

clinical application of the signature to determine whether the use of the signature results in 

patient benefit. Second, most subjects in TCGA received standard treatments, which might 

limit the use of our signature for prognostic prediction for patients treated with newly 

developed treatments, such as immunotherapy or targeted therapies. Third, we utilized 

overall survival to determine a gene’s association with prognosis in TCGA datasets, 

however, disease-specific survival would likely improve the prognostic accuracy of our 

framework. Finally, our framework only assesses mRNA expression levels, which might not 

capture all prognostic variables present in a tumor. Additional omics technologies could be 

added to our signatures to improve prediction accuracy.

In conclusion, we have established a generic framework that has been well validated and can 

easily be applied to other datasets. Additionally, WTSPP can be further extended to other 

diseases. We have made an R package available to facilitate the use of our signatures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The OV signature is predictive of patient survival in 6 independent ovarian cancer gene 
expression datasets.
a. Kaplan-Meier curves depicting overall survival (OS) probability over time, ordered by 

sample size (n). b. Kaplan-Meier curves depicting recurrence-free survival (RFS) probability 

over time, ordered by n. For all Kaplan-Meier curves, patients were dichotomized into PS-

high (red) and PS-low (blue) using median PS as threshold. LR-p = p-value of Log Rank 

test, HR = Hazard Ratio, Cox-p = p-value calculated from the univariate Cox regression 

model in which PS is used as the only variable.
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Figure 2: The OV signature provides additional prognostic value over clinical variables.
Forest plots depicting the prognostic significance of PS and clinical variables in a. the 

GSE9891 and b. the E-MTAB-386 dataset (multivariate Cox regression model). c. Heatmaps 

of concordance indices (left) and -log10(P-values) (right) of Cox regression models 

including clinical variables alone, PS alone, and PS adjusted by clinical variables in 12 

ovarian cancer datasets.
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Figure 3: The OV signature can be used to stratify individual clinical variables.
a. Box plot of PSs in samples from early (1 and 2) and late stages (3 and 4), Wilcoxon Rank-

Sum Test. b. Box plot of PSs comparing samples with non-recurrent and recurrent events, 

Wilcoxon Rank-Sum Test. c. Box plot of PSs in samples classified as optimal (Opt) and 

suboptimal (Sub), Wilcoxon Rank-Sum Test. d. Kaplan-Meier plot depicting survival 

probability of optimal and suboptimal patients stratified by high-PS or low-PS (based on 

median PS), Log-rank Test. e. Box plot of PS in differentiated (Dif), Immune (Imm), 

Mesenchymal (Mes), and Proliferative (Pro) OV subtypes, Wilcoxon Rank-Sum Test. 

Kaplan-Meier plots depicting survival probability of PS-high and PS-low samples in f. 
Differentiated, g. Immunoreactive, h. Mesenchymal, and i. Proliferative OV subtypes, Log-

rank Test.
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Figure 4: The OV signature outperforms 14 published ovarian cancer specific gene signatures.
a. Left: concordance matrix with signatures derived from each dataset (horizontal labels) 

and applied to each other dataset (vertical labels). Numbers indicate C-indices. Black panels 

indicate self-concordance, which was excluded in all averages. Right: Box plot of C-indices 

displayed in rows of the concordance matrix. Vertical back lines indicate average including 

self-C-index, red lines indicate average excluding the self-C-index, outliers not indicated. b. 

Correlation matrix of prognostic genes across datasets based on the transformation -

I(HR<1)*log10(P-value) for each gene in the signatures, where I indicates the indicator 

function. SCC = Spearman correlation coefficient. c. T statistics of C-indices reported in 

[26] compared to our TCGA-based C-indices (paired t-test). Dashed line indicates cutoff for 

significance of p<0.05.
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Figure 5: The LUAD signature is predictive of patient survival in independent lung 
adenocarcinoma gene expression datasets.
a. Kaplan-Meier curves depicting overall survival (OS) probability over time, ordered by 

sample size (n). b. Forest plots showing results of multivariate coxph model including all 

variables depicted. For all Kaplan-Meier curves, patients were dichotomized into PS-high 

(red) and PS-low (blue) using median PS as threshold. LR-p = p-value of Log Rank test, HR 

= Hazard Ratio, Cox-p = p-value calculated from the univariate Cox regression model in 

which PS is used as the only variable.
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Table 1.

Summary of OV and LUAD TCGA datasets.

Cancer Sample
a

Event
b

Event %
b # Samples with RNAseq data Univariate Cox regression

c

HR<1 HR>1 HR<1* HR>1*

OV 591 298 51.7 302 11 37 0 0

LUAD 522 123 24.5 496 243 244 7 9

a
Sample refers to number of samples with clinical information.

b
Event and percentage refer to the number and percent of death occurrences, respectively.

c
Number of genes indicated by Hazard Ratio (HR)>1 or HR<1 are significantly associated with overall survival (p<0.001).

Number of genes indicated by HR>1* or HR<1* are significantly associated with overall survival after multiple hypotheses correction using the 
Benjamini-Hochberg procedure (FDR<0.001).
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Table 2.

Univariate Cox regression and C-indices using PS as a continuous variable.

Study Sample Size
a PS only PS + Clin. variables

P-val HR C-index P-val HR C-index

TCGA 289 6.6E-12 0.92 0.66 1.5E-8 0.93 0.68

GSE9891 278 4.2E-9 0.97 0.7 4.6E-8 0.97 0.74

GSE32063 260 2.1E-3 0.88 0.6 0.01 0.9 0.64

GSE26712 185 1.1E-3 0.98 0.61 0.03 0.99 0.66

E.MTAB.386 129 2.3E-3 0.97 0.6 2.5E-3 0.96 0.63

PMID17290060 117 4.7E-4 0.97 0.66 7.4E-4 0.97 0.67

GSE17260 110 0.05 0.99 0.6 0.09 0.99 0.66

a
Sample size indicates number of gene expression samples used in analysis. PS = prognostic score. HR = hazard ratio. C-index = concordance 

index. Clin. variables include all clinical variables (stage, grade, age and/or debulking) available for each dataset (See Supp. Table 5).
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